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ORDERING AND KINETICS IN GRAPHITE INTERCALATED WITH NITRIC ACID 
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Physics Department, The University of Michigan, Ann Arbor, MI 48109 (U.S,A.) 

ABSTRACT 

Molecular ordering in HNO3-graphite is studied by X-ray scattering. Two 
stable in-plane configurations coexist at T~250K and both appear to be 
registered with graphite. One configuration is hexagonal and the other 
oblique, the lat ter  possibly stabilized by a ~12 ° t i l t  of the nitrate group. 
Time resolved X-ray scattering shows that the evolution of the oblique phase 
is very sluggish. 

INTRODUCTION 

While n i t r i c  acid graphite was the f i r s t  intercalation compound to be 

synthesized, more than 150 years ago, i ts  structure is s t i l l  not well 

understood [1]. Here, we report on an X-ray study of HNO3-graphite with the 

aim of probing the temperature dependence of the molecular arrangement, 

especially the in-plane structure. 

The structure of many molecular graphite intercalation compounds (GICs) 

can be described in terms of long-period superlattices, either commensurate or 

incommensurate with the graphite host [2,3]. Our major interest in HNO3-GIC 

is the possibi l i ty  that the intercalant could break the symmetry of the host 

graphite to produce a non-hexagonal structure which may be quasi-two- 

dimensional at the higher stages. In particular the behavior can be con- 

trasted with that of the more isotropic, hexagonal, structures; for example, 

SbCI5-GIC which shows interesting kinetic phenomena associated with the 

ordering of the J-7 x~'7 in-plane superlattice [3]. 
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EXPERIMENTAL PROCEDURE 

Natural single crystals of graphite were intercalated in the vapor of a 

50/50 mixture of fuming and normal HNO 3 to give stage 4. Only pure stage 

samples were selected, After intercalation (~24 hours) the samples were 

removed from the reaction tube and transferred quickly to the cold finger of a 

closed cycle helium cryostat. To prevent vacuum desorption of the intercalant 

the shroud of the cryostat was not evacuated unti l  the sample temperature fe l l  

below T ~ 255K, the "melting" point of the molecular layer [4]. The samples 

were found to be perfectly stable at these temperatures for periods of at 

least two weeks, as judged by the hkO and 004 di f f ract ion intensit ies. The 

X-ray data were obtained using a four-circle offset Huber diffractometer in 

conjunction with a 12 kW rotating anode (MoK~) generator. 

IN-PLANE STRUCTURE 

The in-plane di f f ract ion pattern of stage 4 HNO3-GIC at T : 200K is shown 

in Fig. 1, represented as a contour map of the scattered intensity. 
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Fig. 1. (a) In-plane di f f ract ion pattern of stage 4 HNO3-GIC at T=2OOK. 
(b) Detail of (a) showing peaks from graphite (G), oblique (A-D), and 
hexagonal (E,H,I,K) latt ices discussed in the text.  

Accompanying the six expected graphite (10) peaks are a large number of 
re lat ively sharp intercalant peaks arranged in a star-shaped pattern which 

immediately suggests that the symmetry of the GIC at T = 200K is no longer 

hexagonal. Our interpretation of the complex (hkO) di f f ract ion data shown in 
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Fig. I is based on a long period super lat t ice ordering of the in terca lant .  A 

port ion of the proposed unit  cel l  is shown in Fig. 2. Out-of-plane (c*) scans 

through several in terca lant  peaks suggests that the in tercalant  layers are 

e f f ec t i ve l y  uncorrelated in stage 4 and so a quasi-two-dimensional treatment 

should be su f f i c ien t .  
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Fig. 2.(a) Oblique unit cell of C4n(HN03) based on the packing of NO 3- ions 
suggested by Touzain [5]. (b) Viewed normal to c-axis. 

Transformation of the reciprocal t rans lat ion vectors shown in Fig. 1 to direct 

space gives a I : 4.43A, precisely para l le l  to graphite <I00>, and a 2 = 14.94A, 

rotated by an angle y = 4.5~0.2 ° re la t ive  to <I00>. The former distance, 

4.43A, is consistent with an alignment of n i t ra te  ions suggested recently by 

Touzain [5] in which the NO3 plane is approximately normal to the layers and 

para l le l  to <I00> [Fig. 2(b)] .  Note that 5 x 4.43A : 9 a o, where a o is the 

graphite in-plane unit cel l  dimension; thus a chain of 5 HNO 3 molecules is 

exact ly in regist ry with graphite along <I00>. Also, the actual per iod ic i ty  

may be doubled, i . e . ,  18ao, because of the up-down al ternat ion of molecules 

[Fig.  2(b)] .  

The a 2 l a t t i c e  spacing yields no such obvious registry although we strongly 

suspect that some kind of registered arrangement must exist  because the 

d i f f r ac t i on  pattern, in par t icu lar  the spacing of peaks, shows no temperature 

dependence from just below the order-disorder t rans i t ion  at T - 255K down to 

T : IOK. Extending the a 2 t rans la t ion vector out to a length of approximately 

12 a o, at the 4.5 ° rotat ion angle indicated by the d i f f rac t i on  pattern, brings 

the structure into registry in this d i rec t ion .  The presence of closely spaced 

super la t t ice sa te l l i t es  [e .g . ,  peaks F and L in Fig. l ( b ) ]  also supports th is 

p ic ture.  A closer inspection of the in-plane d i f f rac t i on  pattern [see Fig. 

l ( b ) ]  reveals a series of peaks (labeled H,I,K . . . .  ) exactly along the {I00} 

reciprocal graphite axes coinciding ~ t h  those expected for a 7x7 commensurate 

hexagonal super la t t ice.  We therefore conclude that the in-plane arrangement 

is actua l ly  a coexistence of two registered st~ct~es, one oblique and the 
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other hexagonal. Possible explanations may include the existence of other 

nitrate reaction products [6] and/or several equivalent molecular orientations 

in the host. Note that we see no evidence for a "residue" phase [7] in our 

samples. 

MOLECULAR ORIENTATION 

In order to better understand the in-plane structural arrangement in the 

ordered phase of HNO3-GIC a f i t  was made to the 00~ structure factor which is 

very sensitive to the orientation of the HNO 3 molecules. We assumed 

undistorted HNO 3 molecules [6] and confirmed Touzain's finding that a 

perpendicular arrangement [Fig. 2(b)] gives a better f i t  to the OOX 

intensit ies than the parallel orientation or ig inal ly  suggested by Rbdorff [8]. 

However, allowing the perpendicular configuration to t ip a l i t t l e  relative to 

the c-axis, a s t i l l  better f i t  could be obtained (see Table I ) .  The f i t  gave 

a t i l t  angle of 1~2 ° and an average composition of C4n.HNO 3 (stage n=3) could 

also be derived from the structure factor f i t .  

The s l ight ly  off-vert ical  molecular t i l t  is consistent with recent y-ray 

resonance scattering measurements [9] and with recent experiments showing HNO 3 

vibrational modes polarized predominantly normal to the layers [6]. I t  was 

suggested some time ago that the forces acting between n i t r i c  acid molecules 

may pull the graphite blocks out of their A/A alignment [10]. This kind of 

mechanism, involving a t i l t  of the molecules, could provide a reason for the 

oblique in-plane structure that we observe. 

Table I. 
HNO3-GIC. 
Waller effects (Au = 0.21A) are included. 

Comparison of measured and calculated 00~ intensit ies for stage 3 
Corrections for Lorentz factor, polarization and Debye 

Imeas Icalc ~ Imeas Icalc 

2 1.27 0.06 7 0.01 0.04 

3 0.30 3.24 8 3.14 3.56 

4 100 100 9 6.63 6.56 

5 21.63 22.00 10 0.03 0.00 

6 1.50 1.43 

ORDER-DISORDER TRANSITION 

The order-disorder transit ion in HNO 3 occurs at T ~ 250K and is known to be 

somewhat hysteretic [11]. A detailed sequence of diffractometer scans through 

several superlattice peaks close to the (10) reciprocal axis is shown in 
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Fig. 3(a) with the temperature slowly increasing through the transit ion. The 

coexistence of a diffuse peak (k = 1.77A-1), from the " l iquid" phase, and 

sharp peaks from the ordered phase can be seen at T ~ 255K clearly identifying 

the transit ion as f i rs t -order,  as expected since the symmetries of the upper 

and lower phases are not related. Note also, in Fig. 3(a) that the peaks 

associated with the hexagonal axes tend to fade out a few degrees higher 

than those from the oblique phase. The dif ferent s tab i l i t y  of the two 

phases may be responsible for the observation of two closely spaced peaks (at 

150K and 154K) in the calorimetry measurements of Dworkin et al. [12]. 

The data shown in Fig. 3(a) were taken using a position sensitive X-ray 

detector which allows the recording of many X-ray peaks simultaneously. The 

method therefore lends i t se l f  to probing time-dependent X-ray scattering such 

as one might observe near a phase transit ion. Fig. 3(b) shows the results of 

quenching through the transit ion of stage 4 HNO3-GIC at a rate of more than 

20K s- l .  The peaks from the oblique phase evolve much more slowly than those 

from the hexagonal phase. In fact, on quenching to only 30K below the 

t ransi t ion,  the peak from the oblique phase remains broad for hundreds of 

seconds. The inverse width of this peak corresponds to a domain size of only 

~80A whereas the hexagonal-phase peaks achieve resolution width after a few 
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Fig. 3. (a) Series of in-plane dif fract ion scans on heating through the 
order-disorder t ransi t ion. Peak labels correspond to those in Fig. l (b) .  
(b) Time resolved scans after quenching to 230K. The lowermost scan was taken 
after annealing for 5 min. at 245K. 
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seconds. This behavior implies that domains of the low symmetry phase are 

essentially pinned, even near Tc, whereas the hexagonal phase is free to under- 

go rapid evolution. This lat ter  finding is consistent with recent quenching 

experiments in high stage SbCI5-GIC [3] and is related to the results of recent 

computer simulations [13] of domain growth in highly degenerate systems. These 

studies show that the syn~net~ of the domain walls is crucial in determining 

the nature of the evolution of the ordered structure. 

Finally we comment on previously reported results on stage 2 HNO3-GIC [1] 

showing an incommensurate phase and an extra associated ~ransition. The 

incommensurate phase seems to be absent in the stage 4 samples and is possibly 

stabilized by the stronger interlayer interactions at lower stage. 
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