Rootsystems of Simple Lie Algebras

David J. Winter
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Communicated by Walter Feit
Received June 13, 1983

Rootsystems of nonclassical simple Lie algebras $L=\sum_{a \in R} L_{a}$ such that $a([e, f]) \neq 0$ for some $e \in L_{a}^{\prime}, f \in L_{-u}^{\prime}$ for each $a \in R-\{0\}$ either contain T_{2}-sections or are irreducible Witt rootsystems. The irreducible Witt rootsystems of prime ranks $1,2,3$ are $W, W_{2}, S_{2}, W_{3}, W \oplus(W \vee W), W \oplus S_{2}, S_{3}, S_{3} \oplus(W \vee W), S_{3}\left(S_{2}\right)$. Witt rootsystems having no sections $S_{2}, W \oplus(W \vee W)$ are classified as those rootsystems whose irreducible components are finite vector space subgroups. Since the latter are rootsystems of generalized Albert-Zassenhaus Lie algebras, it follows that the rootsystems of nonclassical simple Lie algebras $L=\sum_{a \in R} L_{a}$ such that ($[e, f]) \neq 0$ for some $e \in L_{a}^{\prime}, f \in L_{-a}^{\prime}$ for each $a \in R-\{0\}$ which contain no section of type T_{2}, S_{2}, or $W \oplus(W \vee W)$ are classified up to isomorphism by finite vector space subgroups. © 1985 Academic Press, Inc.

INTRODUCTION

In this paper, we discuss the rootsystem of a simple Lie algebra L with respect to a split Cartan decomposition $L=\sum_{a \in R} L_{a}$ such that for each $a \in R-\{0\}$, there exist $e \in L_{a}^{\prime}, f \in L_{-a}^{\prime}$ such that $a([e, f]) \neq 0$. Here, L_{α}^{\prime} is the eigenspace $L_{a}^{\prime}=\left\{x \in L \mid[h, x]=a(h) x\right.$ for all $\left.h \in L_{0}\right\}$ of L_{0} corresponding to the root a. The class of such simple Lie algebras $L=\sum_{a \in R} L_{a}$ includes, relative to the appropriate Cartan subalgebra, the simple classical Lie algebras, the Albert-Zassenhaus algebras, and the Kaplansky algebras $W(m, n)$ (also called generalized Witt algebras).

When the condition of simplicity is dropped, one has the larger class of symmetric Lie algebras studied in Winter [3]. The rootsystems of 2 -sections $L^{(a, b)}=\sum_{i, j=0}^{p-1} L_{i a+j b}$ of symmetric Lie algebras L are classified up to isomorphism by types $A, W, A \vee A, A \vee W, W \vee W, A_{2}, B_{2}, G_{2}, A \oplus W$, $W \otimes W, S_{2}, T_{2}$. The rootsystem R of L decomposes as $R \subset R^{w}+S(S$ classical) if and only if no 2 -section is of type T_{2}. For L simple, we now show that if L has no 2 -scetion T_{2}, then cither L is classical or R is a Witt
rootsystem, that is, $R=R^{w}$. We then classify the Witt rootsystems of prime rank 3. Using the prime rank 3 classification, we classify all Witt rootsystems having no sections $S_{2}, W \oplus(W \vee W)$. Specifically, the following theorems are proved.

Theorem 2.1. Let $L=\sum_{a \in R} L_{a}$ be a simple nonclassical Lie algebra such that there exists, for each $a \in R-\{0\}$, $e \in L_{a}^{\prime}, f \in L_{-a}^{\prime}$ such that $a([e, f]) \neq 0$. Suppose that L has no 2-section of type T_{2}. Then either L is classical or R is an irreducible Witt rootsystem.

Theorem 3.7. Let R be an irreducible Witt rootsystem. Then R is one of $W, W_{2}, S_{2}, W_{3}, W \oplus(W \vee W), W \oplus S_{2}, S_{3}, S_{3} \oplus(W \vee W), S_{3}\left(S_{2}\right)$.

Theorem 3.15. Let R be a Witt rootsystem. Then R has no sections S_{2}, $W \oplus(W \vee W)$ if and only if the irreducible components of R are vector space subgroups.

Theorems 3.7 and 3.15 are the basis for the classification of rootsystems of generalized classical-Albert-Zassenhaus Lie algebras in Winter [2].

1. Preliminaries

Throughout this paper, Lie algebras L over a field k of characteristic p are considered relative to a split Cartan decomposition $L=\sum_{a \in R} L_{a}$. Notation and conventions follow Seligman [1] and Winter [3].

We regard R as subsets of its k-span $V=k R$. Then L is graded by the additive group V with support R in the sense that $L=\sum_{a \in V} L_{a}$ (direct) with $L_{a} \neq\{0\}$ if and only if $a \in R$ and $\left[L_{a}, L_{b}\right] \subset L_{a+b} a, b \in V$. This grading of L by V is a Carian grading with rootspaces $L_{a}(a \in R)$ in the sense that the subalgebra L_{0} is a Cartan subalgebra of L and the $L_{a}(a \in R)$ are the eigenspaces $L_{a}=\left\{x \in L \mid(\operatorname{ad} h-a(h) I)^{\operatorname{dim} L} x=0\right.$ for all $\left.h \in L_{0}\right\}$ of ad L_{0}. Each rootspace L_{a} is nonzero and contains the linear rootspace $L_{a}^{\prime}=\left\{x \in L \mid \operatorname{ad} h(x)=a(h) x\right.$ for all $\left.h \in L_{0}\right\}$. If ad L_{0} is triangulable, then each linear rootspace $L_{a}^{\prime}(a \in R)$ is nonzero.

Following Winter [3], L is symmetric if a $\left(\left[L_{-a}^{\prime}, L_{a}^{\prime}\right]\right) \neq 0$ for all $a \in R-\{0\}$. And (R, V) is a Lie rootsystem over k if

LRS 1. $0 \in R=-R$ and R is a finite subset of the vector space V over k;

LRS 2. for all $a \in R-\{0\}$, there exists $a^{0} \in \operatorname{Hom}_{k}(V, k)$ such that $a^{0}(a)=2$ and the reflection $r_{a}(b)=b-a^{0}(b) a$ al a^{0} stabilizes all bounded a-orbits $R_{b}(a)$;

LRS 3. each nonzero root a is classical or Witt;
LRS 4. each Witt orbit has $1, p-1$, or p elements.

Here, the a-orbit of b is the translational orbit $\{b-r a, \ldots, b+q a\}$ with $b+i a \in R(-r \leqslant i \leqslant q)$ and either $q+1=-r$ modulo p, in which case $R_{b}(a)=\mathbb{Z} a+b \quad$ and $\quad R_{b}(a) \quad$ is unbounded, or $b-(r+1) a \notin R$ and $b+(q+1) a \notin R$, in which case $R_{b}(a)$ is bounded. An element $a \in R$ is classical (respectively Witt) if the subsystem $R_{a}=\mathbb{Z} a \cap R$ is $\{-a, 0, a\}$ (respectively $\mathbb{Z} a$); and an orbit $R_{b}(a)$ is classical (respectively Witt) if a is classical (respectively Witt). The set of Witt roots is denoted R^{w}, and the set of classical roots is denoted R^{c}. It is observed in Corollary 1.6 below that, in the absence of 2 -sections of type T_{2} (see below), R^{w} is a Lie rootsystem.

Any Lie rootsystem R decomposes as $R=R_{1} V \cdots V R_{n}$ where R_{i} are the irreducible component Lie rootsystems of R, following Winter [3].

A classical rootsystem is a Lie rootsystem R such that $R=R^{c}$, and a Witt rootsystem is a Lic rootsystem R such that $R=R^{w}$. Clearly, R is classical (respectively Witt) if and only if its irreducible components R_{i} are classical (respectively Witt).

The present paper depends on the following results.
1.1. Theorem (Winter [3]). For $L=\sum_{a \in R} L_{a}$ symmetric, (R, V) is a Lie rootsystem. Moreover, L_{a} is one dimensional for every $a \in R^{c}$.
1.2. Theorem. (Winter [3]). The irreducible classical rootsystems are those of type $A_{n}(n \geqslant 1), B_{n}(n \geqslant 2), C_{n}(n \geqslant 3), D_{n}(n \geqslant 4), E_{n}(n=6,7,8), F_{4}$, G_{2}.
1.3. Theorem (Winter [3]). A Lie algebra $L=\sum_{a \in R} L_{a}$ is classical if and only if L is symmetric with R classical and $L^{2}=L$, Center $L=\{0\}$.

Given \mathbb{Z}_{p}-independent a_{1}, \ldots, a_{n} in $R, R a_{1} \cdots a_{n}={ }_{\text {def }} R \cap\left(\mathbb{Z} a_{1}+\cdots+\mathbb{Z} a_{n}\right)$ is a Lie rootsystem of prime rank n called an n-section of R. The 1 -sections and 2 -sections are of special importance. They are classified as follows.
1.4. ThEOREM (Winter [3]). For (R, V) a Lie rootsystem, the 1 -sections R_{a} and 2 -sections $R a b$ are of the following types:
A_{1} or $W_{1}($ if $a=b)$,
$A_{1} \vee A_{1}, A_{1} \vee W_{1}, W_{1} \vee W_{1}$ (if R is reducible),
A_{2}, B_{2}, G_{2} (if R is irreducible and classical),
$W_{2}, W_{1} \oplus A_{1}$ (if R is irreducible, nonclassical, and no Witt orbits of $p-1$ elements occur),
S_{2}, T_{2} (if Witl orbits of $p-1$ elements occur).
In particular, Rab is of type T_{2} if $a \in R^{w}-\{0\}, b \in R^{c}-\{0\}$, and $b^{0}(a) \neq 0$.
Letting ${ }^{`}: R \rightarrow \hat{R}$ be the closure homomorphism from R to its double
\mathbb{Z}-dual \hat{R}, \hat{R} is a classical rootsystem and R^{w} is the kernel of ${ }^{\wedge}$ if R has no 2 -section of type T_{2}, by Winter [3].
1.5. Theorem (Winter [3]). Let R be a Lie rootsystem having no 2 -sections Rab of type T_{2}. Then every classical complement S of R^{w} is a classical rootsystem such that $R \subset R^{w}+S$ and S is isomorphic to \hat{R} under $b \mapsto \hat{b}$.

Here, a classical complement of R^{w} is any subset S of R which is constructed by taxing a base $\hat{a}_{1}, \ldots, \hat{a}_{r}$ for the classical rootsystem \hat{R}, taking preimages $a_{1}, \ldots, a_{r} \in R$ and forming S as

$$
S=\left\{n_{1} a_{1}+\cdots+n_{r} a_{r} \mid n_{1} a_{1}+\cdots+n_{r} a_{r} \in \hat{R}\right\} .
$$

We call $b \mapsto \hat{b}$ the canonical isomorphism from S to \hat{R}.
We also need the following corollary.
1.6. Corollary. Let R be a Lie rootsystem having no subsystem Rab of type T_{2} and let c be a nonzero root in R. Then

1. c is a Witt root if and only if $\hat{c}=\hat{0}$, and R^{w} is a Lie rootsystem consisting of Witt roots;
2. c is classical if and only if $c \in S$ for some classical complement S of R^{0}.

Proof. For (1), take a classical complement S of R^{0} and write $c=a+b$ with $a \in R^{0}, b \in S$. Then $\hat{c}=\hat{a}+\hat{b}=\hat{0}+\hat{b}-\hat{b}$. Thus, it suffices to show that $\hat{b} \neq \hat{0}$ for every $b \in S-\{0\}$. But this is a consequence of the fact that $b \mapsto \hat{b}$ maps S isomorphically onto \hat{R}. The remaining assertion is now evident, $a, b \in R^{0}$ with $a+b \in R \Rightarrow a \hat{+} b=\hat{a}+\hat{b}-\hat{0} \Rightarrow a+b \in R^{0}$.

For (2), let c be classical. Then $\hat{c} \neq \hat{0}$ by (1). It follows that \hat{R} has a base $\hat{a}_{1}, \ldots, \hat{a}_{r}$ which includes \hat{c}, so that R has a classical complement S containing c.

Finally, we need the following theorem on collapse. In the theorem, H_{∞} is the k-span of $\left\{a^{0} \mid a \in R-\{0\}\right\}$ and $a_{\infty}: H_{\infty} \rightarrow k$ is defined by $a_{\infty}(f)=f(a)\left(f \in H_{\infty}\right)$. Note that $a_{\infty}=b_{\infty}$ if and only if $c^{0}(a)=c^{0}(b)$ for all $c \in R-\{0\}$.
1.7. Theorem. Let $a_{1 \infty}=\ldots=a_{n \infty}$. Then $R a_{1} \cdots a_{n}$ is of type S_{m} for some m.

2. The Rootsystem of a Simple Symmetric Lie Algebra

Let $L=\sum_{a \in R} L_{a}$ be a symmetric Lie algebra. We show in this section that if L is simple, then L is classical, R is Witt, or R has a 2 -section $R a b$ of type T_{2}. This is done using the results of Winter [3] collected in Section 1.
2.1. Theorem. Suppose that R is a simple nonclassical having no 2 -section of type T_{2}. Then R is an irreducible Witt rootsystem.

Proof. Let S be a classical complement of R_{w}, so that $R \subset R^{w}+S$ by Theorem 1.5. If $\mathrm{R}^{w}=\{0\}$, then R is classical and L is a classical Lie algebra by Theorem 1.3. Thus, $R^{w} \neq\{0\}$. Observe that the subalgebra $I=\sum_{b \in R^{c}-\{0\}}\left(L_{b}+\left[L_{b}, L_{c}\right]\right)$ generated by $\left\{L_{b} \mid b \in R^{c}-\{0\}\right\}$ is an ideal. For this, we must use the result $R^{c}-\{0\}=\{b \in R \mid \hat{b} \neq \hat{0}\}$ of Corollary 1.6. That I is, indeed, the subalgebra generated by $\left\{L_{b} \mid \hat{b} \neq \hat{0}\right\}$ is then easily verified. Next, consider any L_{a} with $a \in R-\left(R^{c}-\{0\}\right)=R^{w}$, so that $\hat{a}=\hat{0}$. If $\left[L_{a}, L_{b}\right] \neq\{0\}$ then $a+b \in R$ and $\hat{a}+\hat{b}=\hat{0}+\hat{b}=\hat{b} \neq \hat{0}$ implies that $a+b \in R^{c}-\{0\} \quad$ and $\quad\left[L_{a}, L_{b}\right] \subset I$. Similarly, $\left[L_{a},\left[L_{b}, L_{c}\right]\right]=$ $\left[\left[L_{a}, L_{b}\right], L_{c}\right]+\left[L_{b},\left[L_{a}, L_{c}\right]\right]$ with $\hat{b}, \hat{c} \neq 0$ implies that $\left[L_{a},\left[L_{b}, L_{c}\right]\right]$ $\subset I$. Thus, I is an ideal of L. If $I=\{0\}$, then $R^{c}=\{0\}$ and $R=R^{\omega}$, and we are done. Suppose that $I \neq 0$. Then $L=I$, by simplicity of L. We now show that it is impossible, thereby completing the proof. Since $R^{w} \neq\{0\}$, we may take $a \in R^{w}-\{0\}$. Since $L=I$, we have

$$
L_{a}=\sum_{\substack{u==+c \\ \delta \neq 0}}\left[L_{b}, L_{c}\right] .
$$

Consequently

$$
\begin{aligned}
{\left[L_{-a}, L_{a}\right] } & =\sum_{\substack{a=b+c=d+e \\
b \neq \hat{0} \neq d}}\left[\left[L_{-b}, L_{-c}\right],\left[L_{d}, L_{e}\right]\right] \\
& =\sum_{\hat{b} \neq \hat{0} \neq d}\left[\left[L_{-b}, L_{-a+b}\right],\left[L_{d}, L_{a-d}\right]\right] .
\end{aligned}
$$

Since $\left[\left[L_{-b}, L_{-a+b}\right],\left[L_{d}, L_{a-d}\right]\right] \subset\left[L_{a-b}, L_{-a+b}\right]+\left[L_{-b}, L_{b}\right]$, by a straightforward calculation, we conclude that $\left[L_{-a}, L_{a}\right] \subset$ $\sum_{\hat{b} \neq \hat{0}}\left\{L_{a-b}, L_{-a+b}\right]+\sum_{\hat{\delta} \neq \hat{0}}\left\{L_{-b}, L_{b}\right]$. Take $h_{a} \in\left[L_{-a}^{\prime}, L_{a}^{\prime}\right]-\{0\}$ such that $a\left(h_{a}\right) \neq 0$. For $b, a-b \in R$ with $\hat{b} \neq \hat{0}, \operatorname{dim} L_{b}=\operatorname{dim} L_{a-b}=1$ since $b, a-b \in R^{c}$, by Theorem 1.1. Thus, $\left[L_{-b}, L_{b}\right]=k h_{b},\left[L_{a-b}, L_{-a+b}\right]=$ $k h_{a-b}$ for $b \in R, \hat{b} \neq \hat{0}$. Writing $h_{a}=\sum_{\hat{b} \neq \hat{0}} c_{b} h_{b}$, we must have $a\left(h_{b}\right) \neq 0$ for some $\hat{b} \neq \hat{0}$, since $a\left(h_{a}\right) \neq 0$. For such b, we have $b^{0}(a)-a\left(h_{b}\right) \neq 0$ and $b \in R^{c}-\{0\}$. Since $a \in R_{w}$, it follows from Theorem 1.4 that $R a b$ is of type T_{2}. But that is impossible, by hypothesis.

Witt rootsystems are studied in detail in the next section.

3. Witt Rootsystems

We now assume that R is a Witt rootsystem. We know from Theorem 1.4. that the Witt rootsystems of prime ranks 1 and 2 are $W_{1}=W, W \vee W, W_{2}, S_{2}$. We show in Theorem 3.7 that the irreducible Witt rootsystems of prime rank 3 are $W_{3}, \quad W \oplus(W \vee W)$, $W \oplus S_{2}, S_{3}, S_{3} \oplus(W \vee W), S_{3}\left(S_{2}\right)$ where the Witt rootsystems of the form $S_{3}(R)$ are introduced below. This is then used to show, in Theorem 3.15, that the irreducible Witt rootsystems having no section S_{2} or $W \oplus(W \vee W)$ are the finite subgroup of vectorspaces.
We begin by constructing and studying an infinite family $U_{n}(n \geqslant 3)$ of irreducible Witt rootsystems.
3.1. Definition. $U_{n+1}=\left\{\left(i_{1}, \cdots, i_{n}, i_{n+1}\right) \in \mathbb{Z}_{p}^{n+1} \mid i_{1}+\cdots+i_{n} \neq 0 \quad\right.$ or $\left.i_{n+1} \neq 0\right\}$ for $n \geqslant 2$.

Let a_{1}, \ldots, a_{n+1} denote the standard basis for \mathbb{Z}_{p}^{n+1}, let $R=U_{n+1}$, and let $c=a_{n+1}$. Observe that $R a_{1} \cdots a_{n}=R \cap\left(\mathbb{Z} a_{1}+\cdots+\mathbb{Z} a_{n}\right)$ is a Witt rootsystem of type S_{n}.

To establish that U_{n+1} is a Witt rootsystem and determine its symmetries, we introduce $d^{0}(e)$ for $d=i_{1} a_{1}+\cdots+i_{n+1} a_{n+1}$, $e=j_{1} a_{1}+\cdots+j_{n+1} a_{n+1} \in U_{n+1}$ as follows:

$$
\begin{array}{ll}
d_{0}(e)=2 \frac{j_{1}+\cdots+j_{n}}{i_{1}+\cdots+i_{n}} & \text { if } \quad i_{1}+\cdots+i_{n} \neq 0 \\
d_{0}(e)=2 \frac{j_{n+1}}{i_{n+1}} & \text { if } \quad i_{1}+\cdots+i_{n}=0 \text { and } i_{n+1} \neq 0
\end{array}
$$

Remarkably, U_{n+1} is a Witt rootsystem with symmetries $r_{d}(e)=e-d_{\mathrm{n}}(e) d$, the $d^{0}(e)$ being defined by the above conditions. Since $R a=\mathbb{Z} a$ for all $a \in R$, verification that $R=U_{n+1}$ is a Witt rootsystem amounts to showing that $d_{0}(d)=2$ (obvious); and that every bounded d-orbit $R_{e}(d)$ has 1 (clearly impossible) or $p-1$ elements and is stabilized by r_{d}. For this, consider any bounded d-orbit $R_{e}(d)=\{e-r d, \ldots, e+q d\}$ and the nonroots $e+(q+1) d, e-(r+1) d$. Since the latter are not contained in U_{n+1}, we must have $(q+1) i_{n+1}+j_{n+1}=0$ and $(q+1)\left(i_{1}+\cdots+i_{n}\right)+$ $j_{1}+\cdots+j_{n}=0$. Thus, $q+1=-j_{n+1} / i_{n+1}$, if $i_{n+1} \neq 0$, and $q+1=$ $\left.-\left(j_{1}+\cdots+j_{n}\right)\right) /\left(i_{1}+\cdots+i_{n}\right)$ if $i_{1}+\cdots i_{n} \neq 0$. Similarly, we have, $-(r+1)=-j_{n+1} / i_{n+1}, \quad$ if $i_{n+1} \neq 0$, and $-(r+1)=-\left(j_{1}+\cdots+j_{n}\right) /$ $\left(i_{1}+\cdots+i_{n}\right)$ if $i_{1}+\cdots+i_{n} \neq 0$. In particular, we have $-(r+1)=q+1$ and $q=p-2-r=-2-4$, which implies that any bounded d-orbit $R_{e}(d)$ has $p-1$ elements, that is, $R_{e}(d)=\{e-r d, \ldots,(e-r d+(p-2) d\}$. To show that $R_{e}(d)$ is stable under r_{d}, we observe, first, that $e+\mathbb{Z} d$ is r_{d} stable, since $r_{d}(e+i d)=e-d^{0}(e) d-i d$ with $d^{0}(e) \in \mathbb{Z}_{p}$. Thus, it suffices to show that r_{d}
stabilizes the singleton set $(e+\mathbb{Z} d)-R_{e}(d)=\{e+(q+1) d\}$. Equivalently, it suffices to show that $0=d^{0}(e+(q+1) d)=d^{0}(e)-2(q+1)$ or $d^{0}(e)=2(q+1)$. But this follows from our earlier calculation of $q+1$:

$$
\begin{array}{ll}
q+1=-\frac{j_{n+1}}{i_{n+1}} & \text { if } \quad k \neq 0 \text { and } i_{1}+\cdots+i_{n}=0 \\
q+1=-\frac{j_{1}+\cdots+j_{n}}{i_{1}+\cdots+i_{n}} & \text { if } \quad i_{1}+\cdots+i_{n} \neq 0
\end{array}
$$

This completes the proof of the following proposition, the assertions of irreducibility and rank being clear.
3.2. Proposition. $U_{n}(n \geqslant 3)$ is an irreducible Witt rootsystem of prime rank n.

The Witt rootsystem U_{n} can also be expressed as $U_{n}=S_{n}(R)$ for $R=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{p}^{n} \mid i_{1}+\cdots+i_{n}=0\right.$ and $\left.i_{n} \neq 0\right\}$, a Witt rootsystem of type S_{n-1}. Here, $S_{n}(R)$ is the Lie rootsystem $S_{n}+R=S_{n} \cup R$ defined in Section 1, where $S_{n}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{p}^{n} \mid i_{1}+\cdots+i_{n} \neq 0\right\} \cup\{0\}$ and R is any Lie rootsystem in the vector space $\mathbb{Z}_{p}^{n}-S_{n}$. We therefore have $U_{n}=S_{n, n-1}$ in the sense of the following definition.
3.3. Definition. Let $n=\left(n_{1}, \ldots, n_{r}\right)$ wherc the n_{i} are integers $n_{1}>\cdots>n_{r}(r>1)$. Then $S_{\mathbf{n}}=S_{n_{1} \ldots, n_{r}}$ is the Lie rootsystem defined by the recursive construction $S_{n_{1}, \ldots, n_{r}}=S_{n_{1}}(R)$ where R is a Lie rootsystem of type $S_{n_{2}, \ldots, n_{r}}$ in the vector space $\mathbb{Z}_{p}^{n_{1}}-S_{n_{1}}$.

Note that there is a canonical choice for R in the above definition, generated by the choice $S_{n, m}=S_{n} \cup R$ where $R=\left\{\left(i_{1}, \ldots, i_{n}\right) \in\right.$ $\left.\mathbb{Z}_{p}^{n} \mid i_{1}+\cdots+i_{n}=0, i_{m+1} \neq 0, i_{m+2}=\cdots=i_{n}=0\right\}$ in the case $r=2$. It can be shown that $S_{n}(R)$ and $S_{n}\left(R^{\prime}\right)$ are isomorphic if and only if R and R^{\prime} are isomorphic, so that $S_{n^{1} \ldots, n_{r}}$ is well defined even when not specified as the canonical choice.

We introduce explicitly two more Witt rootsystems $S_{3}(W), S_{3}(W \vee W)$ needed for the rank 3 classification.
3.4. Definition. $S_{3}(W)$ and $S_{3}(\mathrm{~W} \vee \mathrm{~W})$ are defined as $S_{3}(R)$ where $R=\mathbb{Z}(1,-1,0)$ and $R=\mathbb{Z}(1,-1,0) \vee \mathbb{Z}(0,1,-1)$, respectively.

It is a simple exercise to prove that $S_{3}(W)$ is isomorphic to $W \oplus S_{2}$, which explains the omission of $S_{3}(W)$ from the list given in Theorem 3.7.

For the sequel, we need the following definition and proposition, which naturally extend the concept of connectivity for Dynkin diagrams of complex semisimple Lie algebras. The proof is straightforward.
3.5. Definition. We let $a \sim b$ (read a adjoins b) be the statement that $a+b \in R$ or $a-b \in R$ for $a, b \in R-\{0\}$.
3.6. Proposition. The equivalence classes of the equivalence relation on $R-\{0\}$ generated by \sim are the irreducible components of R with 0 removed.

We say that a and b are connected if a and b are nonzero elements of the same irreducible component of R, that is, if $a \sim b_{1} \sim \cdots b_{n} \sim b$ for suitable $b_{i} \in R-\{0\}$.

We now proceed to classify the Witt rootsystems of prime rank at most three, in the following theorem. This leads to the classification in Section 3 of all rank three subsystems $R a b c$ of a Lie rootsystem R excluding T_{2}, which in turn leads to strong structural results for Lie rootsystems excluding T_{2}. The classification is, of necessity, combinatorial, the strategy being to search systematically among statements describing rank 2 features of R; and then to abandon those statements defining sets which are not Witt rootsystems.
3.7. Theorem. Let R be an irreducible Witt rootsystem of prime rank 3. Then R is isomorphic to exactly one of $W_{3}, W \oplus(W \vee W), W \oplus S_{2}, S_{3}$, $S_{3} \oplus(W \vee W), S_{3}\left(S_{2}\right)$.

Proof. In what follows, scalars i, , k, etc., are assumed to come from \mathbb{Z}_{p}, and we write \mathbb{Z}_{a} (set of sums $\left.0, \pm(a+\cdots+a)\right)$ and $\mathbb{Z}_{p} a$ (set of scalar multiples of a) interchangeably, depending on context and notational expedience.

Since R is irreducible of prime rank 3, we may assume with no loss generality that $R=R a b c$ with $a \sim b \sim c$. We first consider the case where R excludes S_{2}, that is, where no subsystem $R u v(u, v \in R)$ is of type S_{2}. We then show, as follows, that R is of type W_{3} if and only if $a \sim c$; and that R is of type $W \oplus(W \vee W)$ if and only if $a \not \not c c$. Suppose first that $R=R a b \cup R b c \cup R a c, \quad$ so that $\quad R=\mathbb{Z} a+\mathbb{Z} b \cup \mathbb{Z} b+\mathbb{Z} c \cup R a c$ with $R a c=\mathbb{Z} a+\mathbb{Z} c$ or $\mathbb{Z} a \cup \mathbb{Z} c$, by Theorem 1.4 and the exclusion of S_{2}. If $a \nsim c$, it then follows that, $R=\mathbb{Z} a+\mathbb{Z} b \cup \mathbb{Z} b+\mathbb{Z} c=\mathbb{Z} b \oplus(\mathbb{Z} a \cup \mathbb{Z} c)=$ $W \oplus(W \vee W) \quad$ and $\quad R a b c=R b \oplus(R a \vee R c)$. Conversely, $\quad R a b c=$ $R b \oplus(R a \vee R c)$ clearly implies $a \nsim c$. Next, suppose that $a \sim c$, so that $R a c=\mathbb{Z} a+\mathbb{Z} c$. Then $R_{i b+j c}(a+b)=\{i b+j c\}$ and $0=(a+b)^{0}(i b+j c)=$ $i(a+b)^{0}(b)+j(a+b)^{0}(c)$ for all $i \neq \pm 1, j \neq 0$, so that $(a+b)^{0}(b)=0$. Similarly, $\quad(a+b)^{0}(a)=0, \quad$ so that $\quad 2=(a+b)^{0}(a+b)=(a+b)^{0}(a)+$ $(a+b)^{0}(b)=0$, a contradiction. We conclude that $R \supsetneqq R a b \cup R b c \cup R a c$, that is, R contains some $d=r a+s b+t c$ where $r, s, t \neq 0$. Since R contains $r a+s b \in R a b=\mathbb{Z} a+\mathbb{Z} b$ and $s b+t c \in R b c=\mathbb{Z} b+\mathbb{Z} c$, by the assumed exclusion of $\quad S_{2}, \quad R \quad$ contains $\quad R d \oplus(r a+s b)=\mathbb{Z}(r a+s b)+\mathbb{Z} c \quad$ and $R d \oplus(s b+t c)=\mathbb{Z} a+\mathbb{Z}(s b+t c)$, by the exclusion of S_{2}. Since R contains
$\mathbb{Z} a+q a b+q t c$ and $\mathbb{Z} a+q s b$ for all $q s b \in \mathbb{Z} b$, it follows that R contains $\mathbb{Z} a+q s b+\mathbb{Z} c$, by the exclusion of S_{2}, for all $q s b \in \mathbb{Z} b-\{0\}$. Thus, R contains $(\mathbb{Z} a+\mathbb{Z} b+\mathbb{Z} c)-(\mathbb{Z} a+\mathbb{Z} c)$. To show that $R=W_{3}$, it suffices, therefore, to show that R contains $\mathbb{Z} a+\mathbb{Z} c$, that is, that $a \sim c$ and $R a b=\mathbb{Z} a+\mathbb{Z} c$. Suppose, to the contrary, that $a \nsim c$ and $R a c=\mathbb{Z} a \cup \mathbb{Z} c$. Then $R_{a+b+c}(b)$ has $p-1$ elements, that is, $R b(a+b+c)=S_{2}$, by Theorem 1.4, which contradicts our assumption that R excludes S_{2}. We conclude that $R a b=\mathbb{Z} a+\mathbb{Z} c$ and $R=W_{3}$. From the discussion, it is also clear that $a \nsim c$ if and only if $R a b c=R b \oplus(R a \vee R b)$, for Witt rootsystems R excluding S_{2} and $a \sim b \sim c$.

Next, we consider the case where some subsystem $R u v$ is of type S_{2}, in which case we may assume with no loss of generality that $R a b$ is $\{i a+j b \mid i+j \neq 0\} \cup\{0\}$, of type S_{2}. Suppose that $R=R a b \cup R b c \cup R a c$. Then we have $R_{b \pm 2 c}(a)=\{b \pm 2 c\}$ and $0=a^{0}(b \pm 2 c)=$ $a^{0}(b)+2 a^{0}(c)=2 \pm 2 a^{0}(c)$, which implies that $a^{0}(c)=-1$ and $a^{0}(c)=1$, a contradiction. Thus, $R \nsupseteq R a b \cup R b c \cup R a c$, so that R contains some $d=r a+s b+t c$ with $r, s, t \neq 0$.

We now proceed to show that $a \sim c$ for any Witt rootsystem $R=R a b c$ where $a \sim b \sim c$ with $R a b$ of type S_{2}. This transitivity plays an important role in the proof, both now and later. As observed in the preceding paragraph, we may take $a^{0}(b)=2, \quad R a b=\{i a+j b \mid i+j \neq 0\} \cup\{0\}$. Moreover, there exists $d=r a+s b+t c \in R$ with $r, s, t \neq 0$. Suppose first that $a \nsim c$. And then suppose next that some such d adjoins b, that is, $b \sim d$. We then proceed, in the next few paragraphs, to explicitly determine the set R and show that it is not a Witt rootsystem, a contradiction. We then can assume that no such d adjoins b.

Since $b \sim d, R b d$ is of type S_{2}. It follows that $R b d=\{r a+j b+t c \mid j \neq 0\}$, since $r a+t c \in(\mathbb{Z} b+\mathbb{Z} d)-R$. In particular, $R b d$ contains $r a-r b+t c$. Moreover, we have $r a+j b \in R$ and $(r a+j b) \sim c$ for all $j \neq 0, r+j \neq 0$. It follows that, for $j \neq 0, r+j \neq 0, R(r a+j b) c$ is of type S_{2} or W_{2} and R contains $r a+j b+k c$, at least for all values of k for which the element c of $R(r a+j b) c$ is not orthogonal to $r a+j b+k c$, that is, for which $0 \neq c^{0}(r a+j b+k c)=0+j c^{0}(b)+2 k$ or $k \neq-j c^{0}(b) / 2$.

We first consider the case $c^{0}(b)=0$, in which case it follows that $r a+j b+k c \in R \quad$ for \quad all $\quad j \neq 0, \quad r+j \neq 0, \quad k \quad\left(r, j, k \in \mathbb{Z}_{p}\right)$. Then $R \supset \mathrm{~S}=(R a b-\mathbb{Z} a) \oplus \mathbb{Z} c \cup R a b \cup R(r a-r b+t c) c$. Since $\quad c^{0}(r a-r b+t c)$ then equals $0+0+2 t \neq 0$, we see that $R(r a-r b+t c) c$ is of typc S_{2} and equals $\left\{j(a-b)+k c \mid j, k \in \mathbb{Z}_{p}, k \neq 0\right\}$. Since $a \nsim c$ and $R a c=\mathbb{Z} a \cup \mathbb{Z} c$, it follows that any element $a+j b+k c$ of R must be in $R a b \cup R b c \cup$ $\left\{j(a-b)+k c \mid k \neq 0, \quad j \in \mathbb{Z}_{p}\right\} \cup\left\{i a+j b+k c \mid j \neq 0, \quad i+j \neq 0, k \in \mathbb{Z}_{p}\right\} \subset S$. Thus, we have $R=S=\{i a+j b+k c \mid(k=0$ and $i+j \neq 0)$ or $(k \neq 0$ and $i+j=0) \quad$ or $\quad(j \neq 0 \quad$ and $\quad i+j \neq 0)\} \cup\{0\}=((\mathbb{Z} a+\mathbb{Z} b+\mathbb{Z} c)-$ $(\mathbb{Z}(a-b) \cup\{i a+k c \mid i k \neq 0\})) \cup\{0\}$ where the i, j, k come from \mathbb{Z}_{p}. But this
set S is not a Witt rootsystem, because it has an orbit $S_{d}(e)$ of cardinality $\left|S_{d}(e)\right| \neq 1, p-1, p:$

1. S contains $d=-2 b-c$ and $e=a+b+c$;
2. $S_{d}(e)$ contains d and $d-e=-a-3 b-2 c$;
3. $S_{d}(e)$ does not contain $d+e=a-b, d+2 e=2 a+c$.

Thus, the assumption $c^{0}(b)=0$ leads to a contradiction.
Accordingly, we now may assume that $c^{0}(b) \neq 0$. Replacing a and b by a suitable scalar multiple (the same for both), we may assume that $c^{0}(b)=2$. Thus, by the foregoing, R contains $r a+j b+k c$ for all $j \neq 0, r+j \neq 0$ and $k \neq-j c^{0}(b) / 2=-j$. Since R contains all scalar multiples of its elements, R contains $i a+j b+k c$ for all i, j, k for which $j \neq 0, i+j \neq 0, j+k \neq 0$. If $c \nsim r a-r b+t c$, then $0=c^{0}(r a-r b+t c)=0-r c^{0}(b)+t c^{0}(c)=2(t-r)$ implies that $t=r$, so that $R \cap\left\{i a-i b+k c \mid i, k \in \not \mathbb{Z}_{p}\right\}=\mathbb{Z}(a-b+c)$. It follows that R does not contain $r_{b}(a-b+k c)=a-b+k\left(c-b^{0}(c) b\right)=$ $a-\left(1+k b^{0}(c) b+k c\right)$ for, $k \neq 1$. Since R contains $i a+j b+k c$ whenever $j \neq 0, i+j \neq 0, j+k \neq 0$, it follows that $b^{0}(c)=0$. But then $b^{0}(a-b+c)=0$ which, since $b \sim(a-b+c)$ by the assumption $b \sim d$ with $d=r a+s b+r c$, implies that $R b(a-b+c)$ is of type W_{2}. But then $a+c \in R$, a contradiction. Accordingly, we must conclude that $c \sim(r a-r b+t c)$, so that R contains $\left\{i(a-b)+k c \mid i \in \mathbb{Z}_{p}, k \neq 0\right\}$.

We now determine the elements $i a+j b+k c=e$ of R explicitly. For $j=0$, we have $\mathbb{Z} a \cup \mathbb{Z} c \subset R$. For $k=0$, we have $S_{a b}=$ $\{i a+j b \mid i+j \neq 0\} \cup\{0\} \subset R$. For $i=0$, we have $\mathbb{Z} b+\mathbb{Z} c \subset R$, since $R b c$ contains $\mathbb{Z} b \cup \mathbb{Z} c \cup\{j b+k c \mid j \neq 0$ and $j+k \neq 0\}$. For $j \neq 0$, we already know that $\left\{i(a-b)+k c \mid i \in \mathbb{Z}_{p}, \quad k \neq 0\right\} \cup\{i a+j b+k c \mid j \neq 0, \quad i+j \neq 0$, $j+k \neq 0\}$. Suppose next that $j \neq 0, i+j \neq 0$, and $j+k \neq 0\}$. Suppose next that $j \neq 0, i+j \neq 0$, and $j+k=0$, so that $e=i a+j b-j c$. Then $e \in R$ for $i=0$ and $i=-j$. It follows that $R a(b-c)$ is of type S_{2} or W_{2}, so that it contains e unless $0=a^{0}(e)=2(i+j)$. Since $i+j \neq 0$, we have $e \in R$. Since R contains $i a+j b-j c \quad(j \neq 0, \quad i+j \neq 0) \quad$ and $\quad i(a-b)+k c \quad(k \neq 0), \quad R$ contains $\mathbb{Z} a+\mathbb{Z}(b-c)$. We conclude that $R=\{i a+j b \mid i+j \neq 0\} \cup \mathbb{Z}_{b}+\mathbb{Z}_{c} \cup$ $\{i(a-b)+k c \mid k \neq 0$, any $i\} \cup\{i a+j b+k c \mid j \neq 0, i+j \neq 0$, any $k\}$. But then $R=S \quad$ where $\quad S \quad$ is the set $\quad((\mathbb{Z} a+\mathbb{Z} b+\mathbb{Z} c)-(\mathbb{Z}(a-b) \cup$ $\{i a+k c \mid i k \neq 0\})) \cup\{0\}$ which was shown above not to be a Witt rootsystem, a contradiction. We must conclude, therefore, that no $d=r a+s b+t c \in R$ with $r, s, t=0$ adjoins b.

We next consider the case where $a \nsim c$ and $b \nsim d$ for all $d=r a+s b+t c \in R$ with $r s t \neq 0$. Take some such d (shown above to exist). Then $R b d=R b \vee R d$ and $0=b^{0}(d)=d^{0}(b)$. We claim that $s b+t c \notin R$. For otherwise, $a \sim(s b+t c)$ implies that R contains some $d^{\prime}=r^{\prime} a+s b+t c$ with $r^{\prime}=r, 0$, in which case we also have $b \not \not d^{\prime}$, by our assumption, so that $0=b^{0}(d)=b^{0}\left(d^{\prime}\right)$ and $0=b^{0}\left(d-d^{\prime}\right)=b^{0}\left(\left(r-r^{\prime}\right) a\right)=\left(r-r^{\prime}\right) b^{0}(a)=$
$2\left(r-r^{\prime}\right)$, a contradiction. Thus, $s b+t c \notin R$. Normalizing d so that $s=1$, we have $d=r a+b+t c$ with $b+t c \notin R$. Since $b \sim c$ with $b+t c \notin R$, we must have $R b c=S_{2}$. Choosing c such that $b^{0}(c)=2$, we then have $t=-1$ and $d=r a+b-c$. It follows that $r a+b \notin R$; for otherwise $(r a+b) \sim c$ implies that R contains some $d^{\prime}=r a+b+t^{\prime} c$ with $t^{\prime} \neq-1$, in which case we also have $b \nsim d^{\prime}$ and $0=b^{0}\left(d^{\prime}-d\right)=b^{0}\left(\left(t^{\prime}+1\right) c\right)=2\left(t^{\prime}+1\right)$, a contradiction. But $r a+b \notin R$ with $b^{0}(a)=2$ implies that $r=-1$, so that $d=-a+b-c$. From this, we conclude from our supposition $a \nsim c$ that $R=\{i a+j b \mid i+$ $j \neq 0\} \cup\{i b+j c \mid i+j \neq 0\} \cup \mathbb{Z}(-a+b-c)$, given the normalization of c introduced above. But then $d \nsim a, d \nsim b$, and $d \nsim c$, and in fact there is no chain $a \sim e_{1} \sim \cdots \sim e_{n} \sim d \quad\left(e_{i} \in R-\{0\}\right), \quad$ which contradicts the irreducibility of R. (And, moreover, this particular $S_{2} \cup S_{2} \cup W_{1}$ with $S_{2} \cap S_{2} \neq\{0\}, S_{2}$ is not even a Lie rootsystem.) Thus, we must conclude that $a \sim c$.

By the foregoing, we now have $\operatorname{Rab}=\{i a+j b \mid i+j \neq 0\}, b \sim c, a \sim c$, and $d=r a+s b+t c \in R$ with $r, s, t \neq 0$. We first consider the case where one of $R b c, R a c$ is of type W_{2}; and we then take $R b c$ to be of type W_{2}, with no loss of generality. After a few paragraphs, we then consider the general case. Suppose that Rac is of type S_{2}, and normalize c so that $a^{0}(c)=2$. We then have $a \sim b \sim(b-c)$ with $\operatorname{Rab}, R b(b-c)$ of types S_{2}, W_{2}, respectively. As in the foregoing, we may conclude that $a \sim(b-c)$. Since $a^{0}(b-c)=a^{0}(b)-a^{0}(c)=2-2=0, \quad R a(b-c)$ is of of type W_{2}, by Theorem 1.4.

Since we may replace c by $b-c$, we may assume with no loss of generality that Rac is of type W_{2}.

We claim that $a^{0}(c), b^{0}(c) \in \mathbb{Z}_{p}$, without loss of generality. Suppose to the contrary that, say, $a^{0}(c) \notin \mathbb{Z}_{p}$. Consider any $j b+k c \in R b c=\mathbb{Z} b+\mathbb{Z} c$ with $k \neq 0$. Then $a^{0}(j b+k c) \notin \mathbb{Z}_{p}$ implies that $R a(j b+k c)=\mathbb{Z}_{a}+\mathbb{Z}(j b+k c)$. It follows that $R=R a b \cup\{i a+j b+k c \mid k \neq 0, i, j \in \mathbb{Z}\}=\{i a+j b+k c \mid k \neq 0$ or $(k=0$ and $i+j \neq 0)\}=S_{3} \cup\{i a+j b-(i-j) c \mid i+j \neq 0\}=S_{3}\left(S_{2}\right)$, which is among the Witt rootsystems listed in the theorem. Thus, we may assume that $a^{0}(c), b^{0}(c) \in \mathbb{Z}_{p}$.

We claim next that $a^{0}(c)=0$, with no loss of generality. We have seen above that we may assume $a^{0}(c) \in \mathbb{Z}_{p}$. If $a^{0}(c) \neq 0$, replace c by $c^{\prime}=c-\left(a^{0}(c) / / 2\right) b \in \mathbb{Z} b+\mathbb{Z} c=R b c$. Then $a^{0}\left(c^{\prime}\right)=0$, as desired, and $R a c^{\prime}=W_{2}$ as before, $R a c^{\prime}=W \vee W$ being ruled out as in the foregoing exclusion of $R a c=W \vee W$, since $b \sim c^{\prime}$; and $R a c^{\prime}=S_{2}$ being ruled out by $a^{0}\left(c^{\prime}\right)=0$. We therefore have $R a b=S_{2}, R b c=W_{2}, R a c^{\prime}=W_{2}$ as before, as well as $a^{0}\left(c^{\prime}\right)=0$. Thus, we may assume with no loss of generality that $a^{0}(c)=0$.

We now show, using $a^{0}(c)=0$, that $R=\{i a+j b \mid i+j \neq 0\}+\mathbb{Z} c=$ $S_{2} \oplus W$. Note first that $a \sim(j b+k c)$ for all k and all $j \neq 0$, since $a^{0}(j b+k c)=a^{0}(j b)=2 j$. If $R a(j b+k c)$ is of type W_{2}, then R contains
$i a+j b+k c$ for all i. Otherwise, $R a(j b+k c)$ is of type S_{2}, in which case the condition that $i a+(j b+k c)$ be in this S_{2} is that $0 \neq a^{0}(i a+j b+k c)=$ $2(i+j)+a^{0}(k c)=2(i+j)$. It follows that R contains $a a+j b+k c$ for all $i, j, k \in \mathbb{Z}_{p}$ with $i+j \neq 0$, that is, $R \supset\{i a+j b \mid i+j \neq 0\}+\mathbb{Z} c=S_{2} \oplus W$. If $R=S_{2} \oplus W$, we are done. Otherwise, R contains $\mathbb{Z} d$ with $d=a-b+k c$ for some $k \neq 0$. We may therefore assume, with no loss of generality, that $a-b+c \in R$. If $c \sim d$, then $R c d$ is of type S_{2} with $a-b \notin R$, so that R contains $i(a-b)+k c$ for all $i, k \in \mathbb{Z}_{p}$ with $k \neq 0$. It then follows that $R=\{i a+j b+k c \mid i+j \neq 0, \quad$ any $k\} \cup\{i(a-b)+k c \mid k \neq 0, \quad$ any $\quad i\}=$ $\{i a+j b+k c \mid(i+j+k \neq 0)$ or $(i+j=-k \neq 0)\}=S_{3}\left(S_{2}\right)=S_{3.2}$. If $c \nsim d$, then $R c d$ is of type $W \vee W$ and $R c d=\mathbb{Z} c \cup \mathbb{Z}(a-b+c)$. Furthermore, $R=S_{2} \oplus W \cup R c d=R a b \oplus \mathbb{Z} c \cup \mathbb{Z}(a-b+c)=S_{2} \oplus W \vee W$ with $\quad R a b=$ $\{i a+j b \mid i+j \neq 0\} \cup\{0\}$. Counting, we see that $|R|=p^{3}-p^{2}+2 p-1$. Let $x=a, y=a+c, z=b$ and note that $x-y=-c, y-z=d$. Then R contains $\{i x+j y+k z \mid i+j+k \neq 0\} \cup \mathbb{Z}(x-y) \cup \mathbb{Z}(y-z)=S_{3}(W \vee W), \quad$ since $i x+j y+k z=(i+j) a+k b+j c \in R$ for $i+j+k \neq 0$. Since $\left|S_{3}(W \vee W)\right|=$ $\left|S_{3} \cup W \cup W\right|=\left|S_{3}\right|+|W|+|W|-2=p^{3}-p^{2}+1+p+p-2=p^{3}-$ $p^{2}+2 p-1$, it follows that $R=S_{3}(W \vee W)$.

Finally, given that $R a b=S_{2}$, we drop the hypothesis that one of $R b c$, Rac be of type W_{2}. Suppose that some subsystem Ruv $(u, v \in R)$ is of type W_{2}, and take a chain $a=e_{1} \sim b=e_{2} \sim \cdots \sim e_{n-1}=u \sim e_{n}=v$. Since $R a b$ is of type W_{2}, and since each $R e_{i} e_{i+1}$ is of type S_{2} or W_{2}, there exists $1<i<n$ such that $R e_{i-1} e_{i}$ is of type S_{2} and $R e_{i} e_{i+1}$ is of type W_{2}. Thus, we may assume with no loss of generality that $n=3, i=2, e_{1}=a$, $e_{2}=b=u, e_{3}=v=c$, that is, that Rab is of type S_{2} and $R b c$ is of type W_{2}. But this is the case which we considered above.

We now may assume that $R u v$ is of type S_{2} or $W \vee W$ or W for all $u, v \in R-\{0\}$. Since $a \sim b \sim c$ with Rab and Rac of type S_{2}, we may assume with no loss of generality that $a^{0}(b)=2$ and $b^{0}(c)=2$. After preliminary observations, we now show that $R=\{i a+j b+k c \mid i+j+k \neq 0\}$, so that R is of type S_{3}.

Consider any \mathbb{Z}_{p}-independent elements $u, v \in R-\{0\}$. With our present assumptions, Ruv is of type $W \vee W$ if and only if $u^{0}(v)=0$; and $R u v$ is of type S_{2} if and only if $u^{0}(v) \neq 0$. Moreover, it is clear that $u^{0}(v) \in \mathbb{Z}_{p}$, and that $R u v=\{i u+j v \mid i+j \neq 0\}$ if and only if $u^{0}(v)=2$.
We proved the transitivity $u \sim v \sim w$ implies $u \sim w(u, v, w \in R-\{0\}$), under the assumption that Ruv be of type S_{2}, earlier in this proof. In the present context, the condition that Ruv be of type S_{2} is always satisfied when $u \sim v \sim w$. Consequently the relation \sim is transitive on $R-\{0\}$. We now use this transitivity to prove that $R=\{a+j b+k c \mid i+j+k \neq 0\}=S_{3}$. For this suffices, by Theorem 1.7, to show that, $d^{0}(a)=d^{0}(b)=d^{0}(c)$ for all $d \in R-\{0\}$. By symmetry, we need only show that $d^{0}(a)=d^{0}(b)$ for all $d \in R-\{0\}$. Suppose, to the contrary, that $d^{0}(a-b) \neq 0$ for some
$d \in R-\{0\}$. If $d^{0}(a)=0$, it follows that $d^{0}(b) \neq 0$ and $a \sim b \sim d$. But then $a \sim d$, by transitivity, so that $d^{0}(a) \neq 0$, a contradiction. Similarly, if $d^{0}(b)=0$, then $d^{0}(a) \neq 0$ and $b \sim a \sim d$. Thus, $b \sim d$, by transitivity, so that $d^{0}(b) \neq 0$, a contradiction. We conclude that $d^{0}(a) \neq 0, d^{0}(b) \neq 0$. Consequently, $d^{0}(i a-b)=0$ for some $i \in \mathbb{Z}_{p}$. Since $d^{0}(a-b) \neq 0$, we have $i \neq 1$ and $i a-b \in R-\{0\}$. But then $a^{0}(i a-b)=2(i-1) \neq 0$ and $d \sim a \sim(i a-b)$. By transitivity, we then have $d \sim(i a-b)$, so that $d^{0}(i a-b) \neq 0$, a contradiction. We conclude that $d^{0}(a-b)=0$ and $d^{0}(a)=d^{0}(b)$ for all $d \in R-\{0\}$. By symmetry, we also have $d^{0}(b)=d^{0}(c)$ for all $d \in R-\{0\}$. By symmetry, we also have $d^{0}(b)=d^{0}(c)$ for all $d \in R-\{0\}$. Thus, $R=\{i a+j b+k c \mid i+j+k \neq 0\}$, by Theorem 1.7.

It remains only to verify that no two distinct Witt rootsystems from among $W_{3}, W \oplus(W \vee W), S_{3}\left(S_{2}\right)$ are isomorphic. But this is clear by inspection of cardinalities:

$$
\begin{aligned}
\left|W_{3}\right| & =p^{3} \\
|W \oplus(W \vee W)| & =2 p^{2}-p \\
\left|W \oplus S_{2}\right| & =p^{3}-p^{2}+2 \\
\left|S_{3}\right| & =p^{3}-p^{2}+1 \\
\left|S_{3}(W \vee W)\right| & =p^{3}-p^{2}+2 p-1 \\
\left|S_{3}\left(S_{2}\right)\right| & =p^{3}-p+1 .
\end{aligned}
$$

It is clear from the proof of Theorem 3.7 that $a \sim b \sim c$ with Rab of type S_{2} implies $a \sim c$ for any nonzero elements a, b, c of Witt rootsystem R. We next suppose that $a \sim b \sim c$ and $a \nsim c$ where a, b, c are nonzero elements of a Witt rootsystem R. It follows from inspection of the possibilities for Rabc given in Theorem 3.7 that either Rabc is of type $W \oplus(W \vee W)$, in which case $R a b c=R b \oplus(R a \vee R c)$, or $R a b c$ is of type $S_{3}(W \vee W)=$ $\{i x+j y+k z \mid(i+j+k \neq 0)$ or $(i+j+k=0$ and $i k=0)\}$. In the latter case, let $a=i x+j y+k z, c=r x+s y+t z$. Since $a \nsim c$, it follows that $a \pm c \notin R$. Consequently, we have $(i+j+k)+(r+s+t)=(i+j+k)-(r+s+t)=0$. But then $i+j+k=r+s+t=0$, so that a and c are in the subspace $\{i x+-$ $j y+k z \mid i+j+k=0\}$. It follows easily that $x, y, z \in S_{3}(W \vee W)$ can be chosen such that $a=x-y$ and $c=y-z$. This establishes the following transitivity theorem for Witt rootsystems.
3.8. Theorem. Let R be a Witt rootsystem and let $a \sim b \sim c$ with $a \nsim c$. Then Rab and Rbc are both of type W_{2}. Moereover, Rabc is either $R b \oplus(R a \vee R c)$ of type $W \oplus(W \vee W)$ or $S_{3}(R a \vee R c)$ of type $S_{3}(W \vee W)$ where $S_{3}\left(R_{a} \cup R_{c}\right)=\{i x+j y+k z \mid(i+j+k \neq 0) \quad$ or $\quad(i+j+k=0 \quad$ and $i k=0)\}$ with $a=x-y, b=y-z$.
3.9. Definition. A Witt rootsystem R is transitive if R excludes $W \oplus(W \vee W)$ and $S_{3}(W \vee W)$.
Theorem 3.8 shows that a Witt rootsystem R is transitive if and only if \sim is a transitive relation on $R-\{0\}$. Clearly $W \oplus R$ is transitive if and only if R is transitive. Therefore, the determination of all transitive Witt rootsystems reduces to the determination of those which are compact in the following sense.
3.10 Definition. A Lie rootsystem is compact if it is not of the form $W \oplus R$ where R is a Lie rootsystem.
3.11. Proposition. A Witt rootsystem R is compact if and only if there exists no $x \in R$ such that $R x y$ is type W_{2} for all $x \in R-R x$.

Proof. Suppose that there exists $x \in R$ such that $R x y$ is of type W_{2} for all $y \in R-\mathbb{Z}_{p} x$, and take \mathbb{Z}_{p}-independent elements x_{1}, \ldots, x, with r maximal such that $x \notin R x_{1} \cdots x_{r}$. Then $y \subset R x_{1} \cdots x_{r}$ implies $\mathbb{Z} x+\mathbb{Z} y \subset R$, so that $R \supset \mathbb{Z} x \oplus R x_{1} \cdots x_{r}$. We claim equality. Thus, let $y \in R-R x_{1} \cdots x_{r}$. Then $x \in R y x_{1} \cdots x_{r}$, so that $x=c y+\sum_{1}^{r} c_{i} x_{i}$. But then $\sum_{1}^{r} c_{i} x_{i} \in \mathbb{Z} x+\mathbb{Z} y \subset R$ and $\quad y=(1 / / c)\left(x-\sum_{i}^{r} c_{i} x_{i}\right) \in \mathbb{Z} x+\mathbb{Z} \sum_{i=1}^{r} c_{i} x_{i} \subset R$. Thus, $\quad R=\mathbb{Z} x \oplus$ $R x_{1} \cdots x_{r}$ and R is not compact. The other direction is trivial.
3.12. Proposition. $R=S_{n}=\left(R^{\prime}\right)$ is transitive and irreducible for any $n \geqslant 3$ and any transitive irreducible Witt rootsystem R^{\prime} of prime rank less than n.

Proof. We have $R=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{p}^{n} \mid \sum_{i=1}^{n} a_{i} \neq 0\right.$ or $\sum_{i=1}^{n} a_{i}=0$ and $\left.\left(a_{1}, \ldots, a_{n}\right) \in R^{\prime}\right\}$ where R^{\prime} is a transitive irreducible Witt rootsystem in the vector space $\mathbb{Z}_{p}^{n}-\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \sum_{i-1}^{n} a_{i} \neq 0\right\}$. Let $x=\sum_{i-1}^{n} x_{i} a_{i}$, $y=\sum_{i=1}^{n} y_{i} a_{i} \in R-\{0\}$ and suppose that $x \not x y$. Then $x+y, x-y \notin R$, so that $\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}=0$. It follows that $\sum_{i=1}^{n} x_{i}=$ $\sum_{t-1}^{n} y_{i}=0$, so that $x, y \in R^{\prime}$. But then $x \sim y$ since R^{\prime} is transitive and irreducible, a contradiction. We must conclude that $x \sim y$ for any two $x, y \in R-\{0\}$, so that R is transitive and irreducible as asserted.
3.13. Conjecture. The transitive irreducible Witt rootsystems are those of the form W_{m}, S_{n}, or $W_{m} \oplus S_{n}\left(R^{\prime}\right)$ for $m \geqslant 1, n \geqslant 2$, and R^{\prime} a transitive irreducible Witt rootsystem of prime rank less than n.

The above propositions reduce the above conjecture to the following conjecture.
3.14. Conjecture. A transitive irreducible Witt rootsystem R having no element $x \in R-\{0\}$ such that $R x y$ is of type W_{2} for all $x \in R-R x$ has the form $R=S_{b}\left(R^{\prime}\right)$ for some $n \geqslant 2$ and some transitive irreducible Witt rootsystem R^{\prime} of prime rank less than n.

The following theorem determines the transitive Witt rootsystems which exclude S_{2}.
3.15. Theorem. The irreducible components of a Witt rootsystem R are groups if and only if R excludes S_{2} and $W \oplus(W \vee W)$.

Proof. We assume with no loss of generality that R is irreducible. One direction is clear. For the other, assume that R excludes S_{2} and $W \oplus(W \vee W)$. Then \sim is a transitive relation on $R-\{0\}$, by Theorem 3.8. By the irreducibility of R, we have $a \sim b$ and $R a b$ is of type S_{2} or W_{2} for all \mathbb{Z}_{p}-independent $a, b \in R$. Since R excludes S_{2}, we conclude that $a, b \in R \Rightarrow \mathbb{Z} a+\mathbb{Z} b \subset R$, so that R is a group.

Acknowledgment

The author takes this opportunity to thank the University of Chicago for its hospitality during his visit there, where this paper was written.

References

1. G. Seligman, Modular Lie algebras, Ergeb. Math. Grenzgeb. 40 (1967).
2. D. J. Winter, Generalized classical Albert-Zassenhaus Lie algebras, J. Algebra 97 (1985), 181-200.
3. D. J. Winter, Symmetric Lie algebras, J. Algebra 97 (1985), 130-165.
