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1. INTRODUCTION 

IN THE present paper we present new existence theorems for weak and strong solutions of 
problems of the form 

Ex = Nx, 

where E is a real elliptic linear differential operator in a bounded domain G of R” with a given 
system of linear homogeneous conditions, say, BX = 0 on the boundary aG of G and where 
N is a Nemitsky type nonnecessarily linear operator. 

We shall make use here of the alternative method, and particularly we shall make use for 
the elliptic case of new remarks. These remarks suggest that both the auxiliary and bifurcation 
equations can be analyzed under different topologies, and by a more specific construction of 
the operator S: Y0 -+ X0. 

Actually some of these remarks have been already used implicitly in previous papers on the 
semilinear wave equation in R2 (Cesari and Kannan [5], Cesari and Pucci [6]). 

For selfadjoint elliptic problems, Landesman and Lazer [9] proved, also by the alternative 
method, a remarkable theorem which was then extended by Williams [14] by the same method, 
and by others by different arguments. Later, Shaw [12] proved, again by the alternative 
method, that Landesman’s and Lazer’s theorem extends even to nonselfadjoint problems with 
equal Fredholm indices and whose eigenfunctions share regions of positivity and negativity 
with their corresponding adjoint eigenfunctions. 

In the present paper we definitely aim at elliptic problems which are not necessarily 
selfadjoint and do not necessarily satisfy Shaw’s requirements. The sufficient conditions we 
obtain are more quantitative in character and concern the cases Nx = f(t) + g(t, D”x) and 
NX = f(f) + g(t, x(t)), t E G. However, as we show by examples for the case Nx = f(t) + 
g(t, x(t)), our sufficient conditions for existence allow a great freedom on g, on which no 
monotonicity is required. 

* This work was done within the Gruppo Nazionale per I’Analisi Funzionale e le sue Applicazioni de1 Consiglio 
Nazionale delle Ricerche, Rome, Italy. 
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2. GENERAL ASSUMPTIONS 

Let G be a bounded connected open set in [w” with smooth boundary aG: in fact most of 
our results extend to a compact connected smooth Riemannian n-manifold with or without 
boundary. On the other hand, we shall consider situations where the smoothness assumptions 
on aG can be relaxed so as to allow, say, G to be an interval in UP. 

For s a nonnegative integer we denote by H” the Sobolev (Hilbert) space lV.‘(G) of square 
integrable functions on G whose (distributional) derivatives of orde,r* ss are also square 

integrable functions (Ho = L,(G)), with norm &&I = (o~~~J IID”~l~i) ’ . Here we denote by 

(x, y) and lixllz = (x, x)l’* h t e inner product and norm in L,(G). Then H”, is the linear subspace 
of H” which is obtained by completion in the norm above of the set of the functions of class 
c^ and compact support in G. 

Let E be a (not necessarily selfadjoint) uniformly elliptic real linear partial differential 
operator of order 2m, i.e. 

where (Y = (LYE, . . cx,,), /3 = (PI. . . ., /3J, /aI = ml + . . . + m,,, all cu,, bs are nonnegative 
integers, with associated linear homogeneous boundary conditions, say Bx = 0 on aG; or more 
explicitly B,(t, D”x) = 0, j = 1, . . , M, where D’x denotes the set of the derivatives D^x on 
the boundary aG. 0 c I aI s K =Z m. - 1 for some K (the derivatives being replaced by their 
traces for x in a Sobolev space H”o). We denote by A[@, IQ] the usual bilinear form associated 
to E: 

We denote by E* the formal adjoint operator, 

E*y = .,,F m (-l>‘B’D”(aga(t)D”y), 
s 

with the associated boundary conditions, say Dy = 0 on aG. or D,(t, Dfiy) = 0. s = 1. . . ., 
N. 

We assume that both Ker E and Ker E* are finite dimensional, with x > p 3 q 3 0, p = 
dim Ker E. q = dim Ker E*. (However, we shall consider situations where x = p > q 2 0). 

A few words on the concept of solution x of the linear problem Ex = f, f E L?(G), with 
Bix = 0, j = 1. . , M. 

For weak solutions we need only to assume that the coefficients U,~ are measurable bounded 
functions on G. For instance, for the typical homogeneous Dirichlet boundary problem the 
boundary conditions are given by x = 0, ax/an = 0, . . . , d”-lx/dnm-l = 0. n the exterior 
normal to aG, and we say that x is a weak solution of Ex = fprovided x E H$’ and A[x, ~1 = 
cf, v) for all v E C;(G). In other words. W = D(E) = Hz is the domain of E. We refer to 
[2] for the concept of weak solution for more general boundary value problems. 

For strong, or classical solutions, we need to assume that the coefficients a,@ are of class 
Ci@l(G). Again, for the homogeneous Dirichlet boundary value problem above we say that x 
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is a strong solution of Ex = f provided x E HT II HL” and Ex = f a.e. in G. Thus, W = 

D(E) = Hy n Hz” and W is equipped with the topology of H’“, W = D(E). 
In general, let W = D(E) be the subspace of all elements x of a Sobolev space H”” for 

which Bx = 0, and we assume that W is closed in HmO. Since B involves derivatives of orders 

< K we shall assume K s m. - 1. For weak solutions of the Dirichlet problem above we have 
K = m - 1, m. = m. For strong solutions of the same problem we have K = m - 1. m. = 
2m. 

We assume that a Fredholm’s alternative theorem holds, that is, for f E Lz(G). the problem 

EX = f, with BjX = 0, ; = 1, . . , M, has a solution x E W if and only if f is orthogonal (in 
L,(G)) to all elements w of Ker E*. 

Let X = Y = L,(G). We assume that E is a closed operator with range R(E) closed in Y. 
All the assumptions above are generally true for reasonable boundary conditions B (cf., 

e.g., (10, pp. 148-154, ill-1131). 
Let N be a (nonlinear) Nemitsky operator of the form Nx = f(f) + g(t, D”x), where f is a 

given element in L*(G), where D”x denotes the set of all derivatives of x of orders LY, 0 c /(YI 
< k,,, where k. is any integer S2m and in any case k. s mo, and where g(t. u). or g: G X WP 
+ R, is measurable in t for all u E [WV, and continuous in u for a.a. I E G. Here ,U = 1 + n + 
n(n + 1)/2 + . . 5 n(n + k. - 1)/2 is the number of different derivatives in R” of orders LY, 

0 =Z IcyI s ko. 
Thus, for g bounded in G X R”, then since 0 =Z k. 6 mo, and W C H”‘o C H’o, then 

N: W-, @ is a bounded continuous operator from W C H”o to fl = L,(G) in the topologies 

of H”o and L2(G) (cf. [13, p. 155; 8, p. 271). Again, for g bounded, the range R(N) of N is 

made up of functions on G which are in absolute value < if(t)1 + sup/gl. If both f and g are 
bounded, then the range of N is a subset of L,(G), and N is a bounded continuous operator 
from W to L,(G). 

If g = g(t, u) is bounded in G X lV and uniformly Lipschitzian in U. then N: W + Ho is a 
Lipschitzian operator. 

With these assumptions, we shall consider elliptic problems of the form: 

Ex = f(t) + g(t, D&X), [EC, 

Bj(t,D”x)=O onaG, j=l,..., M. 1 
(1) 

3. SOME FURTHER PROPERTIES OF E 

Let @,, . . ., Qp be an orthonormal basis for Ker E, the elements I$, being certainly 
X = Lz(G), and let P: X --, X denote the orthogonal projection of X onto X0 = Ker E 

(6, . .I @,) defined by Px = $, (x, $4 @, f or x E X. Then PP = P and we take X, = 

in 
= 

(Ker E)’ = (I - P)X so that we have the decomposition X = X0 + X,, X0 = Ker E. 

The restriction of E: D(E) C X-, Y to the subspace D(E) n (Ker E)’ is a 1 - 1 closed 
linear operator, whose closed range is the complete range of E. Hence, by the closed graph 
theorem, the inverse map H = [EID(E) II (Ker E)‘-I-’ is a 1 - 1 continuous linear operator 
with domain R(E) and range D(E) n (Ker E)I, or D(H) = R(E), Z?(H) = D(E) fl (Ker E)I. 
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Moreover, 

EHy=y for ally E R(E), 

HEX = x - f, (x, c$~)c#J~ for allx E D(E), 
i=l 

llH~liw c Li!h for ally E Z?(E) and some constant L. 1 

(2) 

Let wr, . . ., wq be an orthonormal basis for Ker E*, the elements o, being certainly in 
Y = L,(G), and let Q: Y + Y denote the orthogonal projection of Y onto Y0 = Ker E* = 

4 

(WI, . . ., oq> defined by Qy = x (y, w,)w, for y E Y. Then, QQ = Q and we take Y1 = 
s=l 

(Ker E*)’ = (I - Q)Y so that we have the decomposition Y = Y0 + Y,. 

Thus, by the Fredholm alternative theorem, for every f E Y = L2(G) there is a solution of 
Ex =fif and only iffl Ker E*, that is, if and only if Qf = 0, that is, if and only if f E Y,, 
with Y1 = (I - Q)Y = (Ker E*)‘. 

Since R(E) = Y, and QYr = 0, then QE = 0; since PX = Ker E we also have EP = 0. 
These two remarks and relations (2) yield now 

HE=Z-P, QE=O=EP, EH(Z-Q)=Z-Q, 

and these are only particularizations of the usual relations for the alternative method [4], 
namely: 

H(Z-Q)E=Z-P, QE=EP, EH(Z-Q)=Z-Q. 

For p > q we further decompose X0 = (&, . . . , A) into a space, say X0, = (@r, . . ., q5,) 
of dimension q, and a space X0, = (@, + 1, . . . , 4) of dimension p - q. For p = q we take 
X,,, = X0 and X0, = (0). 

We make here the specific assumption: 

the decomposition X0 = X,,r + Xo2 can be made in such a way that the q X q matrix 

A4 = [(o,, @;), s, i = 1, . . .q] is nonsingular. 1 
(3) 

For instance, if ei = Wi, i = 1, . . . , q, as in the selfadjoint case, then M = Z is the identity 
matrix. We shall use the notational convention to denote briefly by o any given vector 
o = col(a,, . . ., aq). 

4 
We now define the linear map S: Y0 --, X0,. For any y E Y0 we have y = 2 drw,, with 

s=l 

dr = (y, wJ, since the o, form a basis, and we take Sy = 5 d,@,, with d = M-‘d#. Let us 
1=1 

prove that S-‘(O) = (0). Indeed, if y E S-‘(O), then Sy = 0, that is d = 0, hence d# = 0, since 
M is nonsingular, and y = 0. 

We note that X0, C X = Y; hence Q: Y + Y is well defined on X0,. Let us prove that SQx = 
x for every x E X0,. In other words, SQ reduces to the identity map on X0,. Indeed, if x E 

9 
Xol, then x = 2 c,&, c, = (x, &), and 

r=l 



Qx = il (x, ms)w, = i 
s=l 

where c# = MC, and then SQx 
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(5 ‘i@i> us) OS = Ik (SI (ws, @j)Ci) W, = i CfWs, 
i=l s=l i=l s=l 

= ,$ cl @;, with c’ = M-‘(MC) = c, or sQx = x. 

It may occur that a given element, say w1 in Y0 is also an element, say $r in X0,. Since both 
bases are orthonormal, the matrix M = [mij] has ml1 = 1, and all ml, = mil = 0 for i # 1. In 
particular, if +; = Wi, i = 1, . . . , q, as in the selfadjoint case, then M = I is the q x q identity 
matrix as already stated. 

4. THE INTERMEDIATE TOPOLOGY 

As we know from the alternative method (cf. [4]), the original problem Ex = Nx. with the 
conditions Bx = 0 on 8G, is equivalent to the system of auxiliary and bifurcation equations: 

x=Px+H(Z-Q)Nx, QNx=O, xEW, 

This system can be written as the problem of the fixed points of the transformation 3: (x0,, 
xo2, xl) -+ (cZol, fo2, Xl> defined by 

~. RI = 3,x = H(Z - Q)N(x,, + xo2 + xl), 
. _ 
xol = 3,+ = xol - kSQN(xol + xo2 + x1), Xo2 = x0?. 

(4) 

where x = xol + xo2 + x1 E W, R = Rol + .fo2 + f, E W, xol, ,fol E X0, C W, x0?. Xo2 E Xcll C 
W, x1, Xl E X, fl W, and the chain of maps is as follows 

Tl: W: L,(G) 
I-Q H 

+ Y1-+XlflW, 

So: W: L,(G) 
Q S 

-+Yo+xo,cw, 

where X0, is a finite dimensional subspace of W. Thus, 3 can be thought of as a map from W 
into W, W C Hm”. W with the topology of PO. 

We shall introduce a different topology. 
Indeed. we shall denote by 2 a Banach space satisfying the following requirements: 

WC Hm” C Z C Zf”O C Y = L,(G) with continuous imbeddingsj, : W+ Z. 

jz: Z+ HkU, and ji compact. I 
(5) 

Since j3: HkO + L,(G) is certainly continuous, then j3j2: Z + Lz(G) is also continuous. Note 
that for the continuity of jr and jz we require that for some constants y, /3 we have llxllz < y]]x]lw 
for all x E W, and ]/xI/~~~ s p]b& for all x E Z. 

Under assumptions (5) the chain of maps in the transformation 3 becomes 

II 
51: Z-, Hk(‘: L,(G) 

I-Q H 

+ Y,-+X,” wI:xr nz, 

I? 
T2: Z-, Hko: L,(G) 

Q S 
+ Y,~x,,L:x,, cz. 

where X0, is a finite dimensional subspace of W. 

(6) 
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As a particular case we assume first that 2(m0 - k,) > n so that, from Sobolev’s imbedding 
theorem (cf., e.g., [l, p. 97, Case Cl), for any x E W C Hmo, the function x and all its 
distributional derivatives D&x, 0 s (LY( G ko, are bounded in G, that is, are in L,(G), and are 
continuous in the open set G. Then we can take for instance Z = Hko, or Z = Wko.‘(G), since 

in either case the imbeddings 

ji : W C HmO + HkO, jz: HkO --, Hko the identity. or 

j,: WC H”o+ Wko.“(G), jz: Wk@x(G)+Hkn, 

are continuous, and ji is compact. 
In the further particular case in which k0 = 0, 2m, > n, then g = g(t, x) depends only on 

x = x(t) and not on the derivatives, and for any x E W C Hm”, x is a bounded function on G, 
or x E L,(G), (hence, Ker E C L,(G)), and we can take Z = L,(G). Moreover, we assumed 
g to be bounded, and forf = f(t) in (1) also bounded, then N: L,(G) * L,(G). Furthermore, 
we assume that Ker E* is made up of bounded functions. Now we may restrict X = Y = 
L,(G) to the space X* = Y* = L,(G) with the norm lJx\l, = sup/x(t)1 of L,(G). LetX,* = 
PX*, X,* = (I - P)X*, Yz = QY*, YT = (I - Q)Y*, and now Ker E and Ker E* are made 
up of bounded functions (all Gi and w, are bounded in G), and thus X,* . Yi C L,(G). In this 
situation then relations (5) become 

WC H”O --, Z = Y = L,(G) with continuous imbeddings jl : W+ Z = L,(G), 

j2: L,(G) ---, L,(G) the identity, and ji is compact. 

Moreover, the chain of maps in 3 becomes: 

‘Y 1-Q H I1 

FI: L,(G) + L,(G) + Y;c -+ XT n W+ X; n L,(G) 

T,,: L,(G): L,(G): Y; : X& n Wi: X,*, c L,(G). 1 

and thus 5 is a map from L,(G) into L,(G). 
On the other hand, the operators P: X* + Xx, Q: Y* + Y*. H: Yz 

(5’) 

(7) 

x; 1 
SQ: Y,$ +X,* should be thought of in the topology of L,(G). and the norms of P and Q 
may be 21, and the norm of H may be different from L. We may not need the exact value of 
these norms but estimates, say 

and certainly cl, ~2, ~3, c4, cs 2 1. 

5. EXISTENCE THEOREMS 

The general assumptions in Section 2 are typical of elliptic problems and we do not repeat 
them here. 

Let us write g = g(t, D”x, 0 s Ia/ s p) in the form g(t, x, D”x. 1 4 1~~1 d p). that is, g = 

~(t, u), u E W, in the form g = g(t, z, <), z E R, c E R!‘-‘, t E G. We shall denote by 
Lo, c5 positive constants so that 

IlH(I - Q)YL s Ldl~\b~ PQyllz =S d_~ll~ for all I’ E MG). 
Note that L 0 c YL since IIHU - Q)YIIz c odlH(I - QM =S ~LIIYII. 

(8) 
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THEOREM 1. Under assumptions (3) and (5) with W C Z C L,(G), jl: W + Z, jz: Z +. 

HkO(G) continuous and ji compact, let p = q, f E Lz(G), g: G x FP’ + R and assume that for 
suitable positive constants c, C, D, Ro, r, p, k we have 

llfll 2 c c> Ikk 4 s ICI -1’2C fJ;; ‘,‘y WGyn”d ;H; E Iw~ 

Ig0, u) - g(t, u)l s Dlu - ~1 
11x(t) - kg(r,x(t), (D”x)(t), 1 s Ial s’k,)llz c pRo for, E Zandlbllz s R,, 
Lo(c + C) s r, peg < 1, 
kcs(c + D/3r) s (1 - pc5)Ro. 

Then, problem (1) has at least a solution x E W with lb& s R, + r. 

(9) 
(IO) 
(II) 
(12) 
(13) 

If p > q, then for every element ga2 E X0, C Ker E C W we take x = & + y so that problem 
Ex = f(r) + g(r, D&x), Bx = 0, is changed into Ey = f(r) + g(r, Dy), By = 0, where f = 
f - Ego2 = f since go2 E Ker E, and g(r, Day) = g(r, Da& + D”y). Now theorem 1 can be 
completed as follows. 

If p > q and there are constants R2 > 0 and c, C, D, Ro. r, p, k as above such that for every 

&2 E X02 with llM~ G R2 the new functionsf and g satisfy relations (9)-(13). then problem 
(1) has x - many solutions x = x0, + Eoz + xi, x E W C Z. ICylIz s ~~&2~~z + R,, + I. namely 
at least one for every & E X0? with ljEo211w s R2. 

Proof. Let n = So x S, with So = {xol E X0,: IG;& s RJ, S1 = {xi E Xi: 1Cyiliz s r), where 
we note that X,, is a finite dimensional subspace, X0, C Ker E C W C Z. hence the topology 
in X0, does not depend on the norm we choose. We have taken the norm of Z in So instead 
of the norm of W. 

Now let us consider the transformation 3 in (4) with xo2 = 0. Hence. 9 is a transformation 

(x01. xl) + (Xol. Xl) which we think of as defined in R. Now for x = xol + x,, xol E S,,. x I E 
S,, we have 

x, = 3,x = H(Z - Q)v(r) + g(r, (D”x)(r))] 

Il-fillZ =G ~o(llfllz + II&. D“x)ll?) c LO(C + C> s r. 

using hypotheses (8). (9) and (12). 
Thus, Tj-l maps R into 5,. Moreover, by properties (6) and (8) we also have X-, E W. 
We have now 

xol = 3,~ = xol(r) - k.SQWt) + g(r, (D^x)(r))] 
= (x01 - SQxd (0 + kSQf(O + sQ[x,,(r) - k(r, (D”xod(r), 0 6 I4 s kdl 
+ kSQ[g(r. (D^x~,,)(~). 0 s /aI s k,) - g(r, (Daxol)(r) + (D”x,)(r), 0 s Ial c k,)], 

where the first term in the last expression is zero, since by using assumption (3) we have shown 
in Section 2 that SQ is the identity map on X0,. Hence, we obtain 

ll~o~llr G kc+ + c&h + kcsWIk,Ilz 
s kc5c + c5pRo + kc5Dpr s Ro, 

making use of assumptions (8), (9), (ll), (10) and (13). 
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Thus, 3,, maps Q into S,. and 3 maps R into itself. 
Let us prove that 3: 52 + S2 is a compact map. Indeed, F,Q is a bounded closed subset of 

W, and this set is then compact in Z because jr is a compact map by assumption (5). On the 
other hand, by relations (6) we note that Y,Q is a bounded closed subset of Ker E which is a 
finite dimensional space. Thus, YS2 is a compact set in Z. 

By Schauder’s fixed point theorem, 3: Q + Q has a fixed point x E Z and actually x E W 
with I/_x llz c R0 + r satisfying both the auxiliary and the bifurcation equation, and x is a solution 
of the original problem (1). 

In the particular case when k0 = 0, 2m0 > n, then g = g(t, x) depends only on the function 
x = x(t) and not on its derivatives, and for x E W, then x = x(t) is bounded in G. As stated 
in Section 2, we can take Z = L,(G). In this situation, the following variant of theorem 1 is 
of interest. 

We denote here by Lo, c5 positive constants so that 

IIH(I - Q)ylix G J%M~, IISQyllx s cslirllx for ally E Y* = L(G). (14) 

THEOREM 2. Under assumptions (3) and (5)’ with W C Z = L,(G) C L,(G), k0 = 0. 2m,, > 
n, let p = q, f E L,(G), g: G x [w + 1w, and assume that for suitable constants c, C. D. RO, 
r, p, k we have 

llfllx c c, ig(t, u)l c C for (t, u) E G x R; (15) 

lg(t. u) - g(t. u)i s D/u - ul, for a.a. f E G, u, u E R with ju/. Iu/ s R0 + r: (16) 

lu - kg(t, u)i s pRo, fort E G and IuI 6 RO; (17) 

LO(c + C) c r, pcs < 1; US) 

kc,(c + Dr) c (1 - pcj)Ro. (19) 

Then, problem Ex = f(f) + g(t, x(r)), Bx = 0, has at least a solution x E W with I/x/I, 6 R0 + 
r. 

If p > q. then for every element & E X0, C Ker E C W. we take x = fo2 + )’ so that 
problem Ex = f(t) + g(t. x(t)), Bx = 0, is changed into Ey = f(r) + g(t. y(t)). By = 0. where 
f = f - E& = f since f,,? E Ker E, By = 0, since certainly Bit”,, = 0, and g(t, y(t)) = 

g(t3 M) + y(t)). N ow theorem 2 can be completed as follows: 

If p > q and there are constants R2 > 0 and c, C, D, R,,. r, p, k as above such that, for 
every & E XOZ with II&& G Rz the new_ functions f and g satisfy relations (15)-( 19), then 
problem Ex = f(r) + g(r, x(r)), Bx = 0, has 3~ - many solutions x = xol(r) + &(r) + x,(r), 
x E W c L(G), llxltx s Ilh,ozllx + R, + r, namely at least one for every joz E X0? with II&& < 

R2. 

Proof. Let 52 = S,, x S, with S,, = {x,,r E X& : I/xolllx c R,}, S, = {x1 E XT : /xl(lr s r}, with 
the same remarks as for theorem 1. Now let us consider the transformation 3 in (4) (cf. (7)) 
with xo2 = 0. Hence, 3 is a transformation (xol, xi) --, (ior, R,) which is defined in S2. As for 
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theorem 1 we have now 

by using assumptions (14). (15) and (18). Thus, 91: Q + S, and analogously, by (7) and (14), 
we obtain x1 E W and Il~rllw c L(c + C). 

On the other hand, 

and 

s kc+ + c,pRo + kc5Dr s R,, 

by making use of assumptions (3), (14), (15), (17), (16) and (19). 
Thus, 9” maps R into So, and 3 maps 52 into itself. Here jr : W --;* L,(G) is a compact map 

and therefore the compactness argument is the same as for the previous theorem 1. 
The case p > q can be treated as before. 
For problems of perturbation, that is, Ex = TV + g(t, x(t))], Bx = 0, where E > 0 is a 

small parameter, the following corollary holds: 

COROLLARY. Under assumptions (3) and (5) with W C 2 = L,(G) C L,(G), kc, = 0, 2~2, > 
n, let p = q, f E L,(G), g: G X [w + Ft, and assume that for suitable constants C, D, R,,, r, 

p, k we have lg(t, u)l s C for all (t, U) E G x R; ]g(t, u) - g(t, u)l s Dlu - u/ for all t E G, 
U, u E R with /uI, 1u( s R. + r; Iu - kg(t, u)j s pRo for all c E G and ]uI s Ro; pc, < 1. Then, 
there always are positive constants c, Ed, r. such that for llf]lr s c, then .$ and cg satisfy all 
relations (15)-(19) for E s E(,, and hence problem 

Ex = elf(t) + g(t, x(t))], Bx = 0, 

has at least a solution x E W. with l/xlr s R0 + roE, for every E s eo. 
For p > q a statement analogous to the previous one holds. 

Proof. First, &f, &g satisfy relations (15), (16) with c, C, D replaced by EC, EC, ED respectively 
and relation (17) with k replaced by E -’ k. Now we take r. = L,(c + C) and we apply theorem 
2 with r replaced by r’ = r(,E = LO(~c + EC), provided roe = LO(x + EC) s r, that is, for 
0 < E s er = L,‘(c + C)-‘r. Now relation (19) becomes 

E-1kc5[Ec + EDL~(Ec + EC)] s (1 - pc,)Ro, 
or 

kc5(1 + &DL,)c + EkDLoCcs s (1 - pc,)Ro 

and this relation can be satisfied by taking, say E =S &2 and 

e2 s min{(2kDLoCcs)-‘(1 - pc5)Ro, (DL,)-‘}, c s (4kc,)-‘(1 - pc5)Ro. 

We shall take now e. = min[a,, EJ. 
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6. EXAMPLES 

It is clear that theorems 1 and 2 hold for both selfadjoint and nonselfadjoint problems, 
though for selfadjoint problems the stronger theorem of Landesman and Lazer [9] holds. For 
the sake of simplicity, let us consider first two selfadjoint problems. 

Example 1. Let us consider the elliptic problem 

u,, + US, + (24T2)u =f(t, s) + g(@, s)), (t, s) E G = P, 2-l x [O, Tl, 

> 
(20) 

u(t, S) = 0 on aG. 

We know that the problem is strongly elliptic and selfadjoint. The operator E defined by EM = 

4 + 4, + (2x2/7? U, with the homogeneous Dirichlet boundary conditions above, has 
eigenvalues and eigenfunctions 

A& = (J-S/27(2 - a* - P), Gob(t, s) = (2/T) sin(a,zt/T) sin(bns/T). 

a, b = 1,2, . . . . 

Also, Ker E = {cc#J~~} = Ker E*, and thus we can take @r = wr = (2/T) sin(,zt/T) 

sin(xs/T), p = q = 1. Thus, Qf = (f, W&B,, and for f= (7, cabqobr we have 
(1. 

lvll2 = Ix Cb> V- QY= c &b#ab, 
(a.61 @.b)+U,l) 

H(I - QY= ( 
0, 

,zc,,, A,-dCab@ob. 

To simplify notations, we take A,$, = 2 - a* - b2, and we note that for (a. b) # (1. 1) these 
numbers have values -3, -6, -8, -11, . . . . Hence 

iIH(r - Q)fl12 = (( ,z(, 1) &h:b) “’ = (T2/Jr2) ( 2 A;&$ 
n. / (a.b)+(l.l) 

1’ 2 

S (7-*/x2)(1/3) ( x c;#* s (7-*/3x2) ]lflll 
(a,b)+(l.l) 

On the other hand 

For these L2- and Lx-estimates (cf. Cesari [3]). 
The sum of the series can be evaluated by separating the terms with 1 < u* + b* < 50, from 

those with u2 + b’ 3 50, or 

c 
(o,b)fU. 1) 

c 
l<a2+b2<50 
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For a’ + b’ 2 50 we have (a’ + b2)/(a2 + b’ - 2) s 50/48 (the equality holds for a = b = 
5), and 

Sz = c (a’ + b2 - 2))’ G @O/48)’ 
02+b2r50 

.;+z2, (a’ + b’)-’ 

s (50/48)2 
,2+:a,, I-0:1 lb:, (r2 + S2)-2 dr ds. 

It is immediately seen that for a* + b2 a 50 we have (a - 1)2 + (b - 1)’ 2 32 (again the 
equality holds for a = b = 5), and 

S2 s (50/48)2 
il 

12+,2>32 (t2 + s~)-~ drd.s = (50/48)2 i’= jri? p-j pdpde 

= (5O/48)22-’ (32j--‘(x/2) = (1.085068)(0.0245436;~ $026632. 

There are only 29 terms in Sr whose sum is 0.335210. Hence 

S, + S2 < 0.335210 + 0.026632 = 0.361842. 

Thus (0.361842) Ii2 = 0.601533, and 

/H(Z - Q)f[lr s (T2/x2)(2)(0.361842)1’2 l/fllx = (T2/n’)(1.203066) llf/x. 

We also have 

lQf<w>I = / (ir Jr 
0 0 

f(a, P)h ((~3 P> dW)@u Cr. s) 1 

(1 

T 

c G/T) sin(xa/T) da > (1 r sin(nPP) dB) llfllx P/73 

= (2/7)(2/07)(2Tin)(2r/,s) llf,,: = M/3) llfllx 
= (1.621139) lifllx 

I(Z - Q>f(r, s>l c (2.621139) llfllr, 

and if we take S : Y. * X,, the identity map, we have 

ISQf(t, s>i s (1.621139) Ilflix. 
Thus, we can take 

Lo = (T?/jr’)(1.203066), cj = 2.621139, cg = 1.621139. 

For instance, for c = 0.1, C = 1, D = 2, T = 0.5, k = 1, R0 = 1, p = 0.4, relations (15)-( 19) 
are satisfied since 

LO(c + C) = (T’/n2)(1.203066)(0.1 + 1) = 0.0335214 < 0.0336 = r 

pc, = (0.4)(1.621139) = 0.648455 < I 

(1 - pc5)Ro = 0.351544 

cg(c + Dr) = (1.621139)(0.1 + 0.0672) = 0.271054 < 0.351544. 

Thus, for any f = f(t. S) measurable and bounded, Ilfl13 =S 0.1, and any continuous g = g(u) 
with lg(u)l s 1, /g(u) - g(u)1 c 21~ - u I f or all (~1, IuI G 1.0336, IU - g(u)1 s 0.4 for (~1 G 1, 
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-Ro-r -R,, 
I 

&I R,+r 

Fig. 1. 

problem (20) has at least one solution. In other words, g can be any continuous function, 
Lipschitzian of constant two, whose graph is within the heavy lines of Fig. 1. 

Example 2. Let us consider the strongly elliptic and selfadjoint problem 

u,, + u,, + 5(2Jr2/T2)U = f(G s) + g @(I, s)), (t.s)E G = [O, 7-j x [O, z-j, 
(21) 

u(t,s) = 0 on 8G. 

The operator E defined by EM = u,, + u, + 5(2n’/T*)u with the Dirichlet homogeneous 
boundary conditions above has eigenvalues and eigenfunctions: 

Lab = (n’/z-2)(5 - a* - V), Qab(t, S) = (2/T) sin(artt/T) sin(birS/T). 

a, b = 1.2. . . . . 

Also, Ker E = {c,+,~ + c~&,} = Ker E* and thus we can take ~$r = o1 = c#+, c$~ = w2 = 

&,, p = q = 2. Thus, Qf = (f, w,)w, + (f, w2)wZ, and for f = x cobQah, we have 
(0.b) 

(1 - Q>f = C&b Gab. 

where X’ ranges over all (a. b) different from (1, 2) and (2. l), and then 

WI-- Q>f = %-,‘, Cab@nb, 

and the smallest I&, with (a, b) # (1, 2), and (a, b) # (2.1) are Ai, = (3&/T’), A*2 = 
(-3$/T’). Hence 

l/WI - Q>ftiz = (z'A-ib ttb)'" 1112 s (7-‘/3J9) Ilfl12. 

On the other hand. as before 

lIH(I - Q)& s (=-‘/n’) (c.‘A*,-,l ) “* I&, 

where here A$, = 5 - a’ - b2. 
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The estimate of the sum of the series can be made as for example 1. For a2 + b’ 2 50 we 

have (a* + b*)/(a? + 6’ - 5) c 50/45 = 10/9, and 

z (a* -t- b* - 5)-* s (10/9)2 
,2+ bZz50 .Z+& (a* + b2)- 

2 s (1.234567)(0.0007669) = 0.000947 

There are other 28 terms with a? + b* < 50 and their sum is 0.385298. Then, 

z:‘A,*,-’ s 0.385298 + 0.000947 = 0.386245. 

Thus, (0.386245) ‘I2 = 0.621486, and 

IIH(Z - Q)& < (T2/n2)(2)(0.386245)“2 llfllr = (T2/,2*)(1.242972) iifllx. 

Therefore, we can take 

Lo = (T2/n2)(1.242972), cq = 2.621139, c5 = 1.621139. 

For instance, for c = 0.1, C = 1, D = 2, T = 0.5, k = 1, R. = 1, p = 0.4, relations (15)-(19) 
are satisfied since 

L,(c + C) = (T2/n2)(l.242972)(1.1) = 0.0346331 < 0.035 = r 

pc5 = (0.4)(1.621139) = 0.648555 < 1 

(1 - pc,)&J = 0.351544 

cg(c + Dr) = (1.621139)(0.17) = 0.275593 < 0.351544. 

Thus, for any f = f(tt s) measurable and bounded, (If/lx 6 0.1, and any continuous g = g(u) 
with Ig(~)~l s 1, ig(u) - g(u)1 s 21~ - uI for 1~1, IuI s 1.035, IU - g(u)1 s 0.4 for /z/ 6 1, 
problem (21) has at least one solution. A geometric picture of a possible g is shown in Fig. 1. 

Example 3. Let us consider the elliptic nonselfadjoint problem 

I% = U,, + U,, + 2/I’u =f(t, S) + g(u(t, S)), (t, s) E G = [O, T] x [O, T/2], (22) 

40, s) = - a(u,(O, s) - u,(T, s)), 0~s~ T/2, 

u(T, s) = +,(O, s) - u,(T, s)), 0~s~ T/2. (23) 

u(f. 0) = u(r, T/2) = 0, Octs T, 

where A = 2n/T, and 0 > 0 is a given constant. For u = 0 we have the Dirichlet conditions 
u = 0 on aG. The underlying linear problem is 

Eu = u, + I.4 SS + 2A2u = 0 (24) 

with the same boundary conditions (23). The corresponding dual problem is then 

E*u = u,, + u, + 2A2v = 0, (t, s) E G, 

~(0, s) = u(T, s) = - a(u,(O, s) + u,(T, s)), Oss=s T/2, (25) 
u(t, 0) = u(r, T/2) = 0, OstcT. 

The nonzero solutions of problem (24), (23) are all proportional to 

@(t, s) = 2312 T-’ sin At sin As, (t, s) E G; 
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the nonzero solutions of (25), (26) are all proportional to 

w(t, s) = 23i2T-1(l + 4a’A2)-1/2 (sin At - 2uA cos At) sin As. 

In other words, Ker E = {c#}, Ker E* = {dw}, p = q = 1. Certainly problem (22), (23) is 
nonselfadjoint and @ and o do not share regions of positivity and negativity in G. 

However, an analysis similar to the one for the preceding examples has been possible, 
leading to an existence theorem for weak solutions of problem (22), (23) under analogous 
requirements on f and g. Also numerical examples have been exhibited. The intricate details. 
and the choice of topologies, will be presented elsewhere [ll]. 

Example 4. Let us consider the elliptic nonselfadjoint problem of order 2m = 4, 

A2u = clf(t, s) + g(#, s))], (t, s) E G 

I 
(26) 

B: au/ax = 0, a(au)/an = 0 on aG, 

where A = a 2u/at2 + a2u/as 2, G is a bounded region in the rs-plane with smooth boundary 
aG, n is the exterior normal to aG, and E is a small parameter, E > 0. 

The linear operator E = A2 with the homogeneous boundary conditions above has Ker E = 
{cl + c,s + cg2}, while Ker E* = {c}, c, cl, c2, c3 constants, p = 3, q = 1 (cf. Hormander [7, 
pp. 265-2661). H ere we have 2m = 4, and for weak solutions u E Hi we have m. = 2. II = 2, 
4 > n, so that for f E L,(G) the solutions of the linear problem A% = f, Bu = 0, are in 
Hi fl L,(G). The corollary applies. 

Upon evaluation of the constants Lo and cs, if a real function g : R - Rsatisfies ]g(u)] S C 
for all ]ul S R. + r, /g(u) - g(u)/ C D/u - u I f or all 12.1, Iu/ S R. + r, 1u - kg(u)1 C pRo for 
IuI S Ro, pc, < 1, for given constants C, Ro, r, D, p, k, then there are constants &o > 0, 
c > 0, r. > 0, such that relations (15)-(19) of the corollary hold and problem (22) has at least 
one weak solution u E Hi n L,(G) with ]]z& s R, + r&O for every E s ~0. 

This example 4 is not selfadjoint, is 
g arbitrary and not differentiable, the 

apply. 

not in the classes considered by Shaw in [12], and, for 
usual theorems for perturbation type problems do not 

REFERENCES 

1. ADAMS R. A., Sobolev Spaces, Academic Press, New York (1975). 
2. AGMON S., Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Studies No. 2. Princeton (1965). 
3. CESARI L., Function analysis and periodic solutions of nonlinear differential equations, Contrib. diff Eqns 1, 

149-187 (1963). 
4. CESARI L., Functional Analysis, Nonlinear Differential Equations and the Alternative Method. Nonlinear Functional 

Analysis and Differential Equations (Edited by L. CESARI, R. KANNAN and J. D. SCHUUR). pp. 1-196. Dekker, 
New York (1976). 

5. CESARI L. & KANNAN R., Periodic solutions of nonlinear wave equations, Archs ration. Mech. Analysis 82, 295- 
312 (1983). 

6. &SARI L. & PUCCI P., Global periodic solutions of the nonlinear wave equation, Archs ration. Mech. Analysis 
(1984). 

7. HORMANDER L.. Linear Partial Differential Operators, Springer, Berlin (1969). 
8. KRASNOSELSKII M. A., Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New 

York (1964). 
9. LANDESMAN E. M. & LAZER A. C., Nonlinear perturbations of linear elliptic boundary value problems at 

resonance, J. Math. Mech. 19, 609-623 (1970). 



Existence theorems 1241 

10. LIONS J. L. & MAGENES E., Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Springer. 
Berlin (1972). 

11. PUCCI P., A semilinear elliptic problem which is not selfadjoint, Archs ration. Mech. Analysis (to appear). 
12. SHAW H. C., A nonlinear elliptic boundary value problem at resonance, J. diff Eqns 26, 335-346 (1977). 
13. VAINBERG M., Variational Methods for the Study of Nonlinear Operators, Holden Day, San Francisco (1964). 
14. WILLIAMS S., A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem, J. diff. 

Eqns 8, 580-586 (1970). 


