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Abstract: An extended coherent-state theory is used to give a simple construction for the matrix elements 

of the L = 0 pair operators of the LST SO(8) 3 U(4) quasispin algebra leading to a more explicit 

construction of n-nucleon states in the orbital seniority scheme. 

1. Introduction 

Recent developments lm4) in the theory of the noncompact symplectic groups 

Sp(2d, R), and more specifically Sp(6,R) through its application to the nuclear 

collective mode15,6), have opened up new possibilities for the study of collective 

motion in terms of the underlying nucleon degrees of freedom7). In particular, very 

useful explicit constructions have been given for the discrete infinite-dimensional 

unitary irreducible representations of Sp(2d, R). The cases Sp(4, R) 2 [U(l) x SU(Z)] 

and Sp(6, R) ZI U(3) have been worked out in full detail. The perspective and 

language of different workers is slightly different. Moshinsky and coworkers’) 

emphasize boson realizations. Rowe and Rosensteel ‘) have developed an extended 

coherent-state theory with its associated functional representations in a multidimen- 

sional Bargmann space. Deenen and Quesne3) have introduced the language of 

partially coherent states to generalize the simple coherent-state theory applicable to 

Sp(2, R). Many of the compact groups of interest in nuclear spectroscopy have also 

been discussed in terms of coherent-state theory by Dobaczewski *) in his functional 

representation analysis of boson expansion theories. To date, however, detailed 

constructions and applications have been limited to the symplectic groups. The 

generalized coherent-state methods of refs. le3) can be applied with equal ease to 

many other groups of interest in nuclear spectroscopy, particularly the so-called 

noninvariance groups 9), which include fermion pair-creation and pair-annihilation 

operators among their generators. The proton-neutron quasispin group is a unitary 

symplectic group in four dimensions, the compact analog of Sp(4,R), and has 

recently been reexamined in terms of the new generalized coherent-state 

*Supported by the US National Science Foundation, 
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techniques”). The results for Sp(6, R) have also been extended to the USp(6) 

symmetry group “), in particular in connection with the Ginocchio model ‘*), and 

attempts to find a sound fermionic foundation for the rotational or SU(3) limit of 

the interacting boson model. The generalized coherent-state methods developed for 

the explicit construction of an orthonormal basis for the noncompact group 

Sp(2d, R) 1 U(d) can be taken over directly for any compact noninvariance group 

with a parallel G 1 H group structure. However, these methods are most useful in 

those cases where the Wigner-Racah calculus for the subgroup H is worked out in 

sufficient detail. Another example in this category is the LST pairing symmetry, 

SO@) 3 U(4), in its application to the Wigner-supermultiplet nucleon-number clas- 

sification in the orbital seniority scheme. Since this symmetry has no exact Sp(2d, R) 

3 U(d) analog, it is of particular interest to show how the coherent-state methods 

can be applied to this case. 

The quasispin group in the LST scheme has been identified as an SO@) 1 U(4) 

symmetry group by Flowers and Szpikowski’3) and applied to LST pairing theory 

by Pang 14). However, the applications have been very limited since the details of the 

theoretical apparatus could be worked out only for the lowest-seniority states u = 0 

and u = 1. It is the purpose of the present contribution to show how the new 

coherent-state techniques make possible a generalization to states of arbitrary 

seniority and reduced Wigner-supermultiplet symmetry. 

The coherent-state realization of the LST quasispin algebra will be given in sect. 

2. As in refs.iV3) co h erent-state theory is used to express the generators of the U(4) 

subalgebra of the full SO(S) Lie algebra in terms of a set of U(4) “intrinsic” 

generators and a set of U(4) “collective” generators. The intrinsic generators act only 

in the subspace of u nucleons coupled to reduced Wigner-supermultiplet symmetry 

( pp’p”). Following ref. ‘) the collective generators will be expressed in terms of a set 

of six Bargmann-space variables zi (i = 1, . . . 6) and their adjoint derivative operators 

a/azi. The strategy used to calculate the matrix elements of the full SO(8) quasispin 

algebra is again that of refs. le3). 0 ne considers first a simpler algebra, a direct sum 

of a six-dimensional Heisenberg-Weyl algebra and the U(4) algebra of intrinsic 

generators. The Heisenberg-Weyl algebra is generated by the six collective operators 

z, and the six vi, a realization of a set of six boson creation and annihilation 

operators. The very explicit construction of this algebra in terms of Bargmann-space 

solid harmonics is given in sect. 2. As in refs. 1-3,1o) it leads to a very simple 

analytical expression for the matrix elements of the L = 0 pair-creation/annihilation 

operators valid for all cases where both ket and bra states are multiplicity-free with 

respect to the U(4) algebra; i.e. where, for given seniority number u and reduced 

Wigner supermultiplet quantum numbers (pp’p”), the states are completely speci- 

fied by nucleon number n and the Wigner supermultiplet quantum numbers of the 

full n-nucleon system. As in the earlier applications, the more general case involves 

the square-root-taking of a hermitean U(4)-invariant operator (or matrix) K* which 

converts states specified by both U(4) intrinsic and U(4) collective labels from a mere 
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labelling scheme into an orthonormal unitary basis for the SO@) 3 U(4) symmetry 
group. This case is discussed with a detailed example in sect. 3. In the most general 
case some additional work was required to construct the needed SU(4) Wigner and 
Racah coefficients. The coherent-state methods and the Bargmann-space construc- 
tions have again proved very useful. Sect. 4 shows how these methods can be used in 
the general case where the spin and isospin quantum numbers S and T are not 
sufficient to label the states of the Wigner supermultiplet. 

2. Coherent-state realization of the LST quasispin group 

In the LST scheme the quasispin group includes the six pair-creation (and 
pair-annihilation) operators coupled to L = 0, ST = 10 and 01, 

=+l,*r+iA+(f& M,) = [a+ x Cz+];>;,sh;, 

=+1J~+1/@&, &_) = (2S+i.2r+Qf+(Ms, M,))+, (1) 

[The notations and normalizations follow ref. 14).] Together with the Wigner-super- 
multiplet generators 

and the nucleon-number operator, which appears naturally in the combination 

95, - 52, these generate the LST quasispin group SO(8) 3 U(4) [see table 1 of 
ref. 14)]. In eq. (2) r is the particle index, and 0 = X(21+ 1) may involve a single 
term or a sum over active I-subshells. As in refs. 1-3*1o), it will be useful to convert 
these generators into Cartesian components in the separate spin and isospin spaces; 
e.g. %+(*l,o)= T fi(31 A,., f i3?4f,o). In terms of such Cartesian components, the + 
commutator algebra of SO(S) is given by 

I 31Ai,o, 31Af,o] = Sjj( D - $‘,,) + ieijJ,, 

[ 13Ao,i, 13Ag i] = Sii( D - +N,) + iE,,kTk, 

[31A,T]=[Y4,S]=0, 

[ 3?4i,o, 5-J = iEi,k31Ak,o) 

[ 13A o,i, ~1 = iEljk13Ao,k, \ 

[ * 31At o, 13A O,i] = [ 13A&,i,31A,.i,] = +>i.i, 

(3) 

with i, j, k = 1,2,3. 
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The n-particle state vectors in the LST seniority scheme can be constructed from 

linear combinations of states: 

]#)=JV[[A+xA+x .** xA+][‘~l~~=“[~~])]~~~rM,, (4) 

where JV is a normalization factor. The u nucleons, free of pairs coupled to L = 0, 
i.e. with 

4fl=&f,l)=O, (5) 
have U(4) symmetry given by a Young tableau [f,], with equivalent SO(6) quantum 

numbers (PP’P”), 

P=I(f”,+f”*-f”,_f”,), 
p’ = :( f,, -f,, +f”, _f”,,)’ 

4 

p” = :( f”, -f,, -L, +LJ ’ u= Cf”,, 
i=l 

These v-particle states are acted upon by f(n - v) (L = 0)-coupled pair-creation 

operators A+ which are coupled to U(4) symmetry described by a Young tableau 

[fp] with a = a( n - v - 2P) columns of 4 and P columns of 2, with equivalent 

SO(6) symmetry (POO). The [f,] X [ fp] U(4) coupling leads to the resultant n-par- 

ticle U(4) symmetry [f 1. Note that the [f,] only form a convenient labeling, since 

the labels a and P cannot be associated directly with the eigenvalues of a hermitean 

operator. 

Generalized coherent states for the space of the above 14) will be constructed 

following both the methods and the language of ref. ‘). For this purpose it is useful 

to introduce six complex (Bargmann-space) variables zi, to be associated with the six 

components of the pair-annihilation operators. These can be organized into a 

6-vector to be denoted by z, or two 3-vectors, z,, z,, one in spin space and one in 

isospin space: 

I ’ 

(~;)+(“t~)_p. j; . (7) 

25 
‘6 

In terms of these the generalized coherent state can be expressed as 

Iz, u( PP’P”)) = exdz* -A+)~u(PP’P”)). (8) 

In a shorthand notation, eq. (8) represents a family of coherent states, one for each 

subgroup label of ( pp’p”); but these subgroup labels have been suppressed. Since all 

final-state vectors will be SU(4)-coupled, and since all matrix elements will be 

expressed in terms of SU(4) reduced matrix elements, this distinction between a 

simple coherent state and a family of generalized coherent states [or partially 

coherent states in the language of ref. ‘)I will be suffused in the notation. 
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The state vectors I#) have the functional representation’) 

J, u~PP~P&) = (aWP”)lexpk *A)lrCIL (9) 

and operators 0 are represented by r(0): 

W)\l/u(pp’p”) (z) = (aW~“)lexp(z MW) 

=(U(PP’P”>I(O+[(z.A),Ol +:[(z4,[(Z4,@41+ --) 
Xew(z *A)IG). (10) 

This leads to the coherent-state realization of the SO(8) algebra, a (nonunitary) 
Dyson realization: 

r(3?l)=+,, 
0 

T(13A) = -& = v,, 
7 

r(s)=-i[z,xv,], r(T)=t--i[z,XV,], 

r(;(u7)ij)=3(u7)ij+Z.iV~j+Z71V~,1 

r(lN,,-52)=(+D)l +z;v,+z;v,, 

r(“A+) = (s2 - :u)z, - i[z, x d] - $(z,. 7) 

+ :(z, * z, - z, * ZJV, - z,(z, * v, + z, . v,) , 

r(lA+> = (52 - +)z, - i[z, X t] - +(z,. U)T 

+ :(z,. z, - z, . ZJV, - z,(z, . v, + z, . v,) ) (11) 

where u(z, . T), for example, is shorthand for (z,)~(u~)~~ with summation conven- 
tion for repeated indices. Note also that the U(4) subalgebra, generated by 

S, T, +(UT)ij, ($No,-~), 

is a direct sum of an “intrinsic” U(4) algebra 

0, 4, $(aT)ij, ($I - O)d ) 

acting on the subspace lu( pp’p”). . . ), and a set of “collective” U(4) generators 
expressed in terms of the six Bargmann-space variables z and their derivative 

operators v. 
The SU(4) Casimir operator can thus be written as 

C,,,=S2+ T2+~(m)a/_+&~ 

= Cintrinsic + cdlective -2i{(~*[z,Xv,l) +(J.[z,x v,l)} 

+hhx&.& + “&J 9 (124 
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Ci*trinsic=62+tZ+:(uT),8(u7)*Br (12b) 

c cdlective = M- ~~~~v~-v~~+(z~.v~+ 2;v,)(2;v,+z;v,$.4), 

(W 

where, for example, zf = (z, * 2,). In the method of refs. le3) one considers first the 
simpler algebra 

%,,Z,, v,,v,, 

a, t, $(al)ij, (+u - 52)d. 03) 

Since the six z and v operators commute with the intrinsic operators, this is a direct 
sum of a 6-dimensional Heisenberg-Weyl algebra and the U(4) intrinsic algebra. In 
Bargmann space the six operators z = (~,,a,) and the six v = (v,,v,) are a 
realization of a set of six boson creation and ~ni~lation operators. Due to the 
Bargmarm measure in the complex z-spaces the operators vi are the hermitean 
adjoints of zi. The first step of the calculation involves the evaluation of the SU(4) 
(or the equivalent SO(6)) reduced matrix elements of these 6-dimensional bosonic 
operators. These follow from an explicit const~ction of the Bar~ann-space U(4) 1 

SU(4)z> [SU(2), x SU(2)r] polynomials of degree 2a f P in the z, with n - u = 4a 
+ 2P, i.e. with Young tableaux with a = a(n - u - 2P) columns of 4, and P 

columns of 2 and hence SU(4) symmetry [PP] (with equivalent SO(6) quantum 
numbers (POO)). These have the specific form 

x$- [ 
(Y!(S + k)!(T+ ff - k)!(2T+ 2a: f 1)!(2S + 2a: -c l)!(S + T-t (Y + I)! 

I 

l/2 

k432e: (a- k)!k!(ZS+ 2k f 1)!(2T+2a - 2k f l)!(T+a)!(S+ cu)!(S+ T+ 2a-t I)! 

XP~~S.O)(Z,)p~~~2k+~,O)(Z,), 

with 

ff=#+s-T). (14) 

In eq. (141, the P&@(z) are the Bargmann transforms of normalized, 3-dimensional 
harmonic-oscillator functions Esee refs. 15*16); the phase convention is that of ref. i6)]. 

where 9”M(z) is a standard normalized solid harmonic in z. To arrive at eq. (14) it is 
sufficient to consider states with Ms = S, MT= T, The eigenvalue equation 

C ,,,,*i,~nS~~(Z,,IJ7)=p(p+44)~~~~~p;!(zo,Z7). f16) 
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with 

leads to a recursion relation for the ck. This can be solved to yield 

cr!(2S + 1)!!(2T+ 2CX + l)!! 

ck = (a - k)!k!(2S + 2k + 1)!!(2T+ 2a - 2k + l)!! co. 
(18) 

Finally, the evaluation of the normalization factor for eq. (14) is carried out in two 

steps, first for the SU(4)3 [SU(2), x SU(2),] factor with a = 0, and second for the 

S, T-independent U(4) 3 SU(4) factor. 

To evaluate the SU(4) reduced matrix elements of z and v it is sufficient to use 

states with SM,, TM,= PP,OO; P(P - 2),00; (P - 2)(P - 2),00; or similar simple 

combinations. The action of simple operators such as (z,r f iz,,) on such simple 

states yield the SU(4) reduced matrix elements 

(aP+ lllzll aP)= 
[ 

(P+l)(a+P+3) I'* 

I (p+3) ' 

(a+lP-lllzllaP)= - 
[ 

(a+l)(P+3) 1/Z 

I (p+1) ’ 

(UP- lJJV(I aP)= - 
(P+3)(a+P+2) "* 1 (p+1) ’ 

a(P+l) l’* 
(a-1P+1IIVIIaP)= (p+3) 5 

[ 1 (19) 

with a = a( n - u - 2P). Reduced matrix elements are defined by (full matrix 

element) = (double-barred reduced matrix element) X (SU(4) Wigner coefficient), 

without square roots of dimensional factors. The SU(4) Wigner coefficients are 

products of SU(4) 3 [SU(2), X W(2),] coefficients [see table A.2.1 of ref.“)] and 

ordinary SU(2) spin and isospin Wigner coefficients. 

Straightforward unitary group Racah algebra gives the SU(4) reduced matrix 

element of the collective variable z in the SU(4)-coupled space of [intrinsic x 

collective] degrees of freedom: 
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where the U-coefficient is a multiplicity-free SU(4) Racah coefficient (in unitary 

form). In eq. (19) the SU(4)-coupled [intrinsic x collective] state vectors are given 

both in SO(6) and U(4) language. The needed SU(4) Racah coefficients are not 

known in complete generality. For many cases of actual interest, however, involving 

simple SU(4) representations [f,], all SU(4) representations in the U-coefficient 

involve at most 3-rowed tableaux or can be related to such a 3-rowed tableau 

coefficient by a symmetry relation. Such 3-rowed tableau coefficients are known 

from SU(3) tabulations. In other cases the needed SU(4) coefficients can be 

calculated from the tabulations of ref.17). For most cases of practical interest the 

matrix elements of eq. (20) are therefore evaluated in terms of easily calculated 

coefficients. 

Since the Dyson realization, r, of the SO@) algebra, as given by eqs. (ll), is 

nonunitary, the final step in the process of constructing a unitary basis for the SO(8) 

algebra involves a transformation to a unitary or Holstein-Primakoff realization, y, 

of this algebra. As in refs. lm3) this is achieved by means of a hermitean U(4)- 

invariant operator K, which, in matrix form, will convert the labelling scheme 

nu[[f,] x [PP]][f] into an orthonormal unitary basis for the irreducible representa- 

tions of SO@) 1 U(4): 

?‘(A+) = K-‘r(A+)K, y(A) = Kd&‘i)K. (21) 

The unitarity requirement y( A +) = (y(A))+ and the hermitean adjoint character of 

v and z leads to 

r(Li+) = K$K-2. (22) 

Again, following ref. ‘), a U(4)-invariant operator A is sought with the property 

[A,z] = r(/f+) = K%K-*, (23) 

where the first step of eq. (23) is used to determine A. The A-operator has the simple 

form 

A = - $Cr”ii + f Ccotiective 

-~(~;~,+z;~,)(z;~,+z;~,+2u-4~-66), (24) 

where the SU(4) Casimir operators C,,, and Ccollective are given by eq. (12). In the 

SU(4)-coupled basis UJ X [PPllLffu,~l, with equivalent SO(6) quantum numbers 

[( pp’p”) x (POO)]( PfP;Pi'), the A-operator has the simple eigenvalue 

Aeigen= -i(Pf(P/+4)+Pj(Pj+2)+PjJ2) 

+:P(P+4)-$(n-u)[:(n-u)+2u-40-61. (25) 

With these eigenvalues, eq. (23) in the form 

(AZ-zA)K~=K% (26) 

leads to recursion relations for the matrix elements of the operator K~. Since ~~ is a 
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U(4)-invariant operator, within SO(B), its matrix elements are diagonal in u[f,,] and 

n [ ffu,,], and independent of SU(4) subgroup labels P = /lSM,TM,: 
-- 

(~‘,~[[fi~lX[PPl][fF:n1P~I”21~~“[[~~l x[PPll[fmb) 

=8 6 n’n [,~“,,l[fr”,,l~~‘,~~~*~~~fi~l~ 4fd).,. (27) 

The dimension of the ~~ matrix is thus given by the multiplicity of possible 

“collective” labels P, i.e. the number of possible [ PP] for fixed u[f,,] and a state of 

definite n[ fruit]. There are a large number of interesting cases in the orbital seniority 

scheme in which the label P is uniquely determined by the quantum numbers u[f,,], 

n and [ft”i,], for which K’ is l-dimensional, e.g. all states of the SO(B) irreducible 

representations with u = 0, u = 1, u = 2 and [f,,] = [2], u = 3; [f,,] = [13], u = 4; 

IfJ = [141, u = 5; if,,1 = [2131,. . ., are simple (with l-dimensional ~~ matrices). In 

some SO(B) irreps certain types of U(4) irreps lead to simple states only, e.g. in the 

SO(B) irrep with u = 2 and [f,] = [12] states with [fr,,,] = [P + 1, P, l] are all simple. 

For the l-dimensional case the square-root-taking and inversion of ~~ required for 

eq. (21) is trivial. Taking matrix elements of the operator relation, eq. (26) between 

simple (l-dimensional) states with n, [ fR] on the right and n + 2, [ fJ on the left, 

leads to 

K2(4f”l; n + 3fLl) 
~‘wt~1~ 4fRl) =Aeigen(L) -Aeigen(R) 9 (28) 

where the labels P, p are ommitted because it is assumed that these are uniquely 

specified by n and [ fR] and similarly by n + 2 and [ fL]. For such states the matrix 

elements of the unitary realization of the SO(B) algebra are simply related to the 

bosonic matrix elements of eq. (20) through 

y(At) = KZK-‘, (29) 

(see eqs. (21) and (22)). Since the carrier space of bosonic states in the functional 

representation is mapped isomorphically into the fermion states, eq. (29) also leads 

directly to the SU(4) reduced matrix elements of At [cf. refs. ‘,“)I. For the case when 

both the states on the left and right of the matrix element are simple (with 

l-dimensional K~), eqs. (29) and (28) lead to the general analytic expression for the 

SU(4) reduced matrix element of At: 

(n, 4f”l x PPll[fLlII~+ll~ - 23 u[[fJ x PmfRl) 

= [‘eigen(L) -‘eigen(R)]1’2 

-- 
+~P(P+4)-$P(P+4)+52-+~n+:]1’2 

-- 
x ~([f”ltppl[fLlDll~ [fRlWl)h mlln - 2, p>. (30) 
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TABLE 1 

W(4) reduced matrix elements 

(~.~‘~~~~l~~~~lI~/LlII~+ll~-~.~‘[[~l~[~~l][/~l) 
Cusel: (p,D’p”,=(ooo); u=o. u=4[f,,]=[14].... 

IfLl l/RI 7 ( IIA+ll) 

[PPI [P-l,P-1] P-l 
1 (4&2/‘+4-n-u)(n+2P+8-o)P I’* 

4 [ (P+ 2) 1 
[PPI [P+l,P+l] P+l -4 

(452+2P+12-n-cr)(n-2P-u)(P+4) I” 

(P+2) 1 
cuser:(pp’p”,=(:~5); o=l[f,.]=[l], 0=5[f,,]=[213],... 

[/I.] [/RI F (IIA’II) 

[P+l,P] [P.P-1] P-l 
1 (452-2P+2-n-o)(nt-2P+R-u)P 1/Z 

4 [ (P+2) 1 
1 “2 

[P+l,P] [P+2,P+l] P+l (4Q+2P+14-n-c)(n-2P-o)(P+5) 
-4 

[ (P+3) 1 
1 

[ (40-2P+2-n-u)(n-2P-o) 1 1’2 

[P+l.P] [P+l,P+l,l]P+1 
-2 

2(P+2)(P+3) 

[P. p.11 [P,P-11 P-l 
1 (452+2P+lO-n-v)(n+2P+8-o) “* 

? [ 2(P+ l)(P+ 2) 1 
[P. p.11 

[P-l.P-l,l]P-1 

1 (4Q-2&‘+6-n-u)(n+2P+8-o)(P-l) 1’2 
4 

[ (P+l) 1 
[P,P.ll [P+l,P+l,l]P+l -4 

(4ti+2P+lO&n-cr)(n-2P-v)(P+4) “* 

(P+2) 1 

IfLl [fal 7 (IIA+ll) 

[P.P-11 [P-l.P-21 
P-l 

1 (4ti-2/‘+6-n-v)(n+2~‘+8-u)(P-l) “* 
4 

[ (P+l) 1 
[P,P-11 [PPll P-l 

(4Q+2P+lO-n-o)(n+2P+8-o) 1’2 

2(P+l)(P +2) 1 

[P,P- 11 [P+l,P] 
1 -(4Q+2P+lo-n-v)(n-2P-L~)(P+-4) “2 

p+l -4 I (P+2) 1 

[P+l.P+l,l] [P+l.P] 
p+l 

1 (4Q-2P+2-n-v)(n-2P-o) I’* 

-2 [ 2(P+2)(P+3) 1 
[P+l,P+l,l] [PPl] f-l 

1 (4Q-2P+2-n-o)(n+2P+8-o)P 1’2 

4 [ (P+2) 1 
[P+l,P+l.l] [P+2,P+2,1] P+l -4 

(40+2P+14Gn-o)(n-2P-u)(P+5) I” 

(P+3) 1 
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TABLE l-continued 

Cue 4: (pp’p”) = (100); u = 2, [/,I = [l*], u = 6[f,,] = [2212]. 

L/L]“) [ftxl”) P ( IIA+ll) 

[P+1,P,1][P+2,P+1,1]P+1 -$ 

1 
[P+l,P.l][P,P-1.11 P-l 

4 

(452+2P+12-n-o)(n-2P-u)(P+3)(+‘+5) I’* 

(P+2)(P+4) 1 
(40-2P+4-n-u)(n+2P+8-o)(P-1)(/‘+1) I” 

P(P+2) I 

“) For remaining [/,J, [fR] see sect. 3. 

Cue 5: (pp’p”) = (111); o = Z[f,] = [2], o = 6[f,,] = 1317, 

[fLl [/RI P (IIA+ll) 

[P+2,P] [P+l,P-l] P-l 

[P+2,P] [P+3,P+l] P+l 

[P+2,P] [P+2,P+l,l]P+l 

[PP21 [P-l.P-1,2]P-1 

[ PP21 [P+l,P+1,2]P+l 

[PP21 If, P- 1.11 P-l 

[P+l,P,l][P+l,P-1] P-l 

[P+1,P,1][P+1,P+1,2]P+1 

[P+l.P,1][P,P-l,l] P-l 

[P+l,P,l][P+2,P+l,l]P+l 

(452-2P-n-u)(n+2P+X-o)P I’* 1 
(p+7-) I 

(452+2P+16-n-u)(n-2P-u)(P+6) 1’2 

(P+4) 1 
(4s2P-n-c)(n-2P-o) 

I 

I,? 

(P+2)(P +4) 

(452-2P+E-n-o)(n+2P+8-o)(P’2) I” 

P 1 
(40+2P+E-n-v)(n-2P-~~)(P+4) I/’ 

(P+2) I 
(452+2P+E-n-a)(n+2P+E-rr)1”’ 

P(P+ 2) 1 
1r3(4Q+2P+12-n~o)(n+2P+8-(,)11” 

I 

1 

“* 

1 

[ 

(4&2P+4-n-o)(n+2P+E-u)(P-l)(P+3) 1’2 

4 (P+2) 1 
1 

- 4 [ 

(4L?+2F’+12-n-u)(n-2P-~)(P+l)(~+5) I” 

(P +2f 1 
Since the SU(4) Racah coefficients are not widely tabulated, specific results are 

given in table 1 for some of the cases of greatest applicability for the orbital seniority 

scheme. [These include as special cases results given for the simple u = 0 and u = 1 

states in ref. 14); but note that a different phase convention is used in ref. 14). A small 

printing error from table 4 of ref. 14) has also been corrected.] 

3. The case with multiplicities 

For SO@) representations and states for which the labels P are not uniquely 

specified by n and the Wigner-supermultiplet quantum numbers of the n-particle 
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state the ~~ operator is best represented in matrix form, as in eq. (27). Its matrix 

elements can again be evaluated recursively from the matrix form of eq. (26): 

~[A~i~,,(~~P,[f,l)-n,i,“(~-2,P,[f,l)] 
-- 

~(mol ~~~~l1~fLlIIzl,~-~I~f,l wvollM). (31) 
The required square root of the K2 operator and its inverse can then be taken if ~~ is 

diagonalized via 

~Oi;1(K2)ppO~j==h,S;j, (32) 
P7 

where O,i is an orthogonal matrix since all terms of eq. (31) are real. The SU(4) 

reduced matrix elements of At are then given by 

XKBk -lb - xf,l). (33) 

The representation u = 2[f,,] = [ll] is the simplest and yet very useful case where a -- 
2-fold multiplicity occurs. States of the type [[ll] x [PP]][P + 1, P, 11 are still 

l-dimensional, with P = P only. For these, iteration of eq. (28) gives 

K2(U=2[11];n[P+1,P,1])= 
Q(sz - 2)!(Q + 2)! 

(52-P-a-l)!(D+2-a)! 
(34) 

with n = 2P + 2 + 4a. -- 
States of type [[ll] x [PP]][PP], however, have a 2-fold multiplicity, with p = P f 

1. In this case the recursive solution of eq. (31) leads to 

(K*(U=2[11];n[PP])),,= 
(52-2)!(9+ l)! 

(p+2)(52-P-k)!(0+2-k)! 

2[52*+(4-k)0-4k] 

+P[L’*+(4-k)&22k] I 
2[P(P+4)k(P+2+k)]“* 

29(9+2-k) 

+P(O+2)(52-2-k) 

- p*(s;! + 2) i 

(35) 
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TABLE 2 

SU(4) Racah coefficients U([ll][ PP][ PPl[lll: [fi21[& I) 
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MA+*,1 [P+l,P+l] [P -l,Ppl] [P+ l.P.11 

2 
[P+l,P+l] 

[P(P+4)]“* 2 P I/Z 
___ - 

(P+l)(P+2) (P+ 2) [ 1 (P+l) Pt2 

[P(P+4)]“2 2 2 Pt4 I/? 
[P-l,P-1] 

(P+2) (P+2)(P +3) [ 1 (P+3) P+2 

2 P 

[ 1 I/* 2 P+4 */* 
[P+ l.P.11 

[ 1 (P’+4P-1) 

(P+l) P+2 (P+3) P+2 (P+l)(P+3) 

with n = 2P + 4k. Here P(P) = P + 1 and P - 1 correspond to the 1st and 2nd row 

(column) of the matrix, respectively. Note that with k = 0, p = P - 1 only, and the 

K 2 matrix becomes l-dimensional, with the simple value K~( u = 2[lI]; n = 2 P[ PP]) 

= (D - 2)!/(9 - P - l)!. It should also be noted that at the boundary of Pauli- 

allowed values, when n = 452 - 2P (or k = 52 - P) the 2 X 2 matrix has zero 

determinant, leading to one zero eigenvalue A, as required by the fact that these 

states at the periphery of the Pauli-allowed region must be l-dimensional. Even so, 

the expansion of the single allowed state in terms of the U(4)-coupled state vectors 

will involve states with both of the two possible U(4) collective labels p = P + 1. 

(e.g. the coefficient (p = P + 111) = Op+l,l, with 11) = Iallowed state), now has the 

value [ P( P + 4)( ti + 2)/{ P( P + 4)( D + 2) + 4( 52 - P)}]‘/2). In the general case eqs. 

(32)-(35) give the SU(4) reduced matrix elements of the pair-creation operators At. 

For the evaluation of the reduced matrix elements of z, the needed SU(4) Racah 

coefficients for the special case [f,,] = [ll] have the very simple form shown in 

table 2. 

The extended coherent state theory exhibited for the SO(8) 1 SU(4) quasispin 

group in the LST scheme leads to the SU(4) reduced matrix elements of the pair 

operators in a very simple way, even in cases of challenging seniority quantum 

numbers. In many of the more challenging cases, however, the SU(4) subgroup 

labels SM,TM, are insufficient to label the states within the Wigner-supermultiplet 

scheme. In such cases the SU(4) Wigner coefficients themselves are, in general, not 

known. The coefficients are needed to complete the construction of states in the 

orbital seniority scheme. If these coefficients can be evaluated it becomes possible to 

extend pairing theory in the LST scheme to include the effects of higher-seniority 

states. It is the purpose of the next section to exhibit a very general practical method, 

inspired by the coherent-state construction of this investigation, by which the 

calculation of SU(4) 1 [SU(2) X SU(2)] Wigner coefficients can be reduced to tracta- 

ble form. 
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4. The SU(4) 3 [SU(2) X SU(2)] Wigner coefficients 

For those irreducible representations where SM,TM, furnish a sufficient set of 

quantum numbers, the needed SU(4) 3 [SU(2) x SU(2)] Wigner coefficients are 

known in general algebraic form 17). Other special cases have also led to analytical 

expressions involving simple sums18). The general case is complicated by the 

problem of “missing” quantum numbers. Although this problem has been solved in 

principle 19,*0), and although projection techniques based on labels K,, K, have 

been developed ‘l) to define a complete basis, it is still a challenging task to calculate 

the Wigner coefficients in the general case. It is the aim of the present investigation 

to find a practical effective method to calculate these coefficients, independent of the 

actual method used to solve the problem of missing quantum numbers. 

Since the most general irrep of SU(4) can be constructed from the SU(4) product 

[ PP] x [y] + [P + x, P, y - x] where [y] is the totally symmetric representation, the 

most general SU(4) representation can be constructed from products of “collective” 

states, such as those of eq. (14) and “intrinsic” states belonging to the totally 

symmetric irrep of SU(4). It is useful to define the SU(2)-coupled state vectors 

X (S,M,psm,lSM,)(T,M,~tm,lTM,). (36) 

Note that t = s within the totally symmetric representation [y]. The SU(4) eigen- 

states can then be expanded in terms of this basis: 

I[flPSJwMT) 

(37) 

where /I distinguishes states with a multiple occurrence of a particular pair S, T. To 

ensure that the state (37) belongs to a particular SU(4) irreducible representation 

[f], it is sufficient to diagonalize the operator (cf. eq. (12a)): 

c - Cintr - cCOll = CUT) 4(zoav$3 + ‘rfiveoa) + 2(dintr. scol*> + 2(tintr ’ T,d)~ 

(384 

With [f] = [P + x, P, y - x], this must now have the eigenvalue 

(P+x-:y)(P+~-fy+4)+ty(~y+2)+(~-fy)~-P(P+4)-:y(y+4). 

(3gb) 

Since the operators (bintr. SC,,) and (tint, . Tco,,) are diagonal in the basis (36) with 
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trivial eigenvalues, it is sufficient to evaluate the matrix elements of (u~),a( z,,,v+ + 

z,~v,,) in this basis. Straightforward angular momentum coupling theory gives 

(PWM; [~~~'lSM,[~~s'l~~,l(a~)~P(z~~v~~+Z~~v~a) 
x JWI? bl; bl~~SPP4~~,) 

(39) 

where the double-barred coefficients are SU(4) 1 [SU(2) X SU(2)] reduced Wigner 

coefficients. For the representations [ PP] and [_Y] these are known in general 

algebraic form and can be read from tables A4.1 and A4.2 of ref. “). In those cases 

where the additional quantum number /3 is needed the diagonalization of the 

operator C - Cintr - CcOll leads to a set of d solutions, where d is the multiplicity of 

the state (p = 1,. . . , d). In a practical method of calculation it has been found most 

effective to choose these d solutions in some arbitrary way and convert the labeled 

states p to eigenstates of a physically interesting operator at the very last stage of the 

calculation. 

The u = 2 states which are of particular interest for LST pairing theory include 

the SU(4) irreps [P + 2, P], [P + 1, P, 11 and [ PP2], see table 1. These irreps all 

include possible 2-fold occurrences for certain S, T values and will be used as the 

prime example to illustrate the proposed method of calculation. Since the set of 

possible S,T, values of the basis (37) depends on the parity of S + T, the two cases 

P - S - T = even/odd must be treated separately. For the case P - S - T = odd, 

2-fold multiplicities can occur only in the representation [P + 1, P, 11. Diagonaliza- 

tion of C - Cintr - C&i, leads to the set of expansion coefficients c[flB shown in table 

3. The two independent solutions for [f] = [P + 1, P, l] have been chosen arbi- 

trarily; in this case, by setting one of the c’s equal to zero for the state labeled j? = 1. 

For convenience, the states p = 1 and 2 have been made orthogonal to each other; 

but it is not necessary to orthogonalize the basis at this stage of the calculation. To 

convert the states labeled p = 1 and 2 to a more meaningful basis, it is now 

straightforward to find the eigenvectors of the operators D and @ proposed by 

Moshinsky and Nagel”), or some other set of operators. For the states of table 3. 

the operator s2 is sufficient. It can be expressed in terms of intrinsic and collective 

operators: 
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In the basis (36) it has the matrix elements 

([PPIJYI; [~~s’]~M,[~~~‘]~~,(~,(~~~l~~Yl~~s,~l~M,~T,~l~~,) 

= &sp~ T,AT, s,,!+(Y+2)[S,(S,+l)-S(S+l)+T,(T,+l)-T(T+l)] 

+U(SS,s’l;sS,)U(TT,s’l;sT,)[S,(S,+1)T,(T,+1)]1’2 

205 

(41) 

where the needed double-barred coefficients can again be read from tables A4.1 and 

A4.2 of ref. “). For the irreducible representation [P + 1, P, l] and states with 

P - S - T = odd (see table 3) this leads to the simple eigenvalues 

1 

Gen= (P+l)(P+3) 

~(T(T+1)+s(s+1)~[[~(~+l)+s(s+1)]~ 

+4S(S+1)T(T+1)(P+l)(P+3)]1’2). (42) 

Despite the simple algebraic form of Lneigen, the eigenvectors of O,, have a more 

complicated algebraic structure than the states j3 = 1 and 2 of table 3. 

For the states with P - S - T = even, all three representations [P, P + 21, [P + 

1, P, 11, and [PP2] may now have 2-fold multiplicities. The c[flS for the two 

solutions p = 1 and /3 = 2 are now restricted by the relations 

[S(T+ 1)]1’2c,- [(S+ 1)T]1’2~11 

(2s + 1)(2T + 1) 
1,2 -(P+3-S+T) 

=C 
(P+3-S+T)(P+l+S-T) 

Ii 

(S-T) 

i (P+l+S-T) ’ 

[(S+ 1)T]1’2~,- [S(T+ 1)]1’2c11 

(2s + 1)(2T + 1) 
1,2 -(P+3+S-T) 

(P+3+S-T)(P+l-S+T) 
Ii 

-(S-T) 

(P+l-S+T) 
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- [STy2C, - [(s+ l)(T+ 1)]1’2cli 

(2S+1)(2T+ 1) 
i/2 -(P+2-S-T) 

=c__ 
[ (P+2-S-T)(P+2+S+T) 

II 

(S+T+ 1) 

i (P+2+S+T) ' 

-[(S+l)@+ l)]"2coo-[ST]1'2c,, 

I 

(2S+1)(2T+ 1) 
r/2 -(P+4+S+T) 

=c 
++ (P-S-T)(Pf4+S+T) 

Ii 

-(s+ T+l) ) (43) 

(P-S-T) i 

with the shorthand notation for the ~[~~~l#[/~~~~r: 

[~mwl 
%a = c[so]s,[ro]T~ 

~~~lbwl 
Cl1 = C[Sl]S,[T1]7-7 

LpplPl[fl 
c---t- c[s-l,l]s.[r+l.l]r~ etc. 

In eqs. (43) lines 1, 2, and 3 correspond to the irreps [P + 2, P], [P + 1, P, 11, and 

[PP2] in that order. Although it is possible to construct two independent solutions 

to eqs. (43) e.g. by choosing coo = 0 to construct the state to be labeled /? = 1, the 

algebraic structure of the resulting states is rather complicated. In practice, however, 

it is straightforward to find solutions to eqs. (43) which are also eigenfunctions of 

Sz, for any specific pair of S, T values, e.g. with P = 2, S, T = 1,l and [f] = [321], 

the two states with 

1**lPlP*rli = 1 
C[Zl]l, [Ol]l J- 2 ’ C[Ol]l,[21]1 

f2*1[*1[32111 = _ ; , 
$ 

[22][2][321]2 _ [22][2][321]2 = _3_ l/2 
C[lO]l,[lO]l - C[ll]l.[ll]l 10 7 [ 1 C[Ol]l ,[Ol]l 

WlPlP2112 = _ [ :] 1/2 ; 
(44) 

are eigenstates of Q2, with eigenvalues 2, & for p = 1 and 2. 

Once the c’s have been determined to define the state vectors ][f]PSM,TM,) in 

the SU(2)-coupled basis of eq. (37), it is straightforward to evaluate the needed 

SU(4) 2 SU(2) x SU(2) Wigner coefficients. For example, all the SU(4) Wigner 

coefficients needed for cases 5 of table 1 can be determined from the matrix 

elements of a unit tensor operator of collective type of rank [ll] with ST = 10 or 01. 

With ST= 10 this leads to 

with an analagous expression if [ll]lO is replaced by 

l;+$p*l]j, (45) 

r [ll]Ol. In eq. (45) the 
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double-barred SU(4) Wigner coefficients of the right-hand side are known in general 

algebraic form and can be read from table A2.1 of ref. 17). It may also be useful to 

use a unit tensor operator of intrinsic type and rank [l]; 3. which leads to 

=c [ppl[Yl~flP 
c[s,sls,[~,slr 

[~pl~Y+~luw’ 
c[&s’]s~,[T,s~17- 

SpTpSS’ 

where the double-barred coefficient of the right-hand side of eq. (46) can be read 

from table Al.4 of ref. 17). SU(4) Wigner coefficients with more complicated 

couplings can also be evaluated from those of eq. (46) by the buildup method 

employed in ref. 17). 

In conclusion, it can be stated that the generalized coherent-state techniques, used 

recently to great advantage for the very explicit construction of an orthonormal 

unitary basis for the noncompact groups Sp(2d, R) 3 U(d), can be used with equal 

facility for a complete construction of the matrix elements of the LST quasispin 

group. Since the needed SU(4) 3 [SU(2) X SU(2)] subgroup algebra is worked out in 

sufficient detail, this method leads to a more explicit construction of many-nucleon 

states in the orbital seniority scheme and a classification in terms of nucleon-number 

and Wigner-supermultiplet symmetry. Although extensions to more complicated 

noninvariance groups are possible and have many interesting nuclear physics appli- 

cations ‘l), very explicit constructions may be possible only in those cases where the 

Wigner-Racah calculus for the intrinsic subgroup can be worked out in sufficient 

detail. 
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