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Cognitive psychologists have characterized the temporal properties of human 
information processing in terms of discrete and continuous models. Discrete 
models postulate that component mental processes transmit a finite number of 
intermittent outputs (quanta) of information over time, whereas continuous 
models postulate that information is transmitted in a gradual fashion. These pos- 
tulates may be tested by using an adaptive response-priming procedure and anal- 
ysis of reaction-time mixture distributions. Three experiments based on this pro- 
cedure and analysis are reported. The experiments involved varying the temporal 
interval between the onsets of a prime stimulus and a subsequent test stimulus 
to which a response had to be made. Reaction time was measured as a function 
of the duration of the priming interval and the type of prime stimulus. Discrete 
models predict that manipulations of the priming interval should yield a family 
of reaction-time mixture distributions formed from a finite number of underlying 
basis distributions, corresponding to distinct preparatory states. Continuous 
models make a different prediction. Goodness-of-fit tests between these predic- 
tions and the data supported either the discrete or the continuous models, de- 
pending on the nature of the stimuli and responses being used. When there were 
only two alternative responses and the stimulus-response mapping was a com- 
patible one, discrete models with two or three states of preparation fit the results 
best. For larger response sets with an incompatible stimulus-response mapping, 
a continuous model fit some of the data better. These results are relevant to the 
interpretation of reaction-time data in a variety of contexts and to the analysis of 
speed-accuracy trade-offs in mental processes. 0 19x5 Academic PXSS, IK 
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In formulating theories of human information processing, an important 
goal is to characterize the temporal properties of mental processes such 
as stimulus encoding, memory retrieval, decision making, and response 
preparation. The characterization should address a number of related 
questions: What is the duration of each component process? How are the 
individual durations combined to determine the overall reaction time? Do 
processes start at the same moment or at different moments? Must one 
process finish before another can be initiated and/or completed? Does 
each process produce a single discrete packet of information as its output, 
or is the flow of information continuous? 

Efforts to answer such questions began with the birth of experimental 
psychology (e.g., Donders, 1969/1868- 1869) and have persisted ever 
since (e.g., Smith, 1968; Sternberg, 1969). One popular approach has been 
to measure reaction time, that is, the time taken by a subject to react 
overtly to a presented stimulus. It is commonly accepted that reaction 
times may reveal whether mental processes proceed sequentially or con- 
currently and whether they produce discrete or continuous outputs (Pa- 
chella, 1974). As a result, much has been learned regarding perception, 
memory, and cognition, but considerable uncertainty still remains about 
the temporal properties of human information processing (McClelland, 
1979; Ollman, 1977; Sternberg, 1969; Townsend, 1974; Townsend & 
Ashby, 1983; Wickelgren, 1977). 

The uncertainty stems partly from the fact that reaction times provide 
only indirect reflections of the durations of component mental processes. 
Because these durations are not directly observable, patterns of factor 
effects on reaction times are open to multiple theoretical interpretations. 
For example, Sternberg (1969) has argued that if two experimental factors 
affect reaction time additively, then one may infer that there are at least 
two temporally separate, discrete stages of processing. This logic formed 
the basis of his well-known additive-factor method, which has been ap- 
plied in a variety of psychological domains. However, McClelland (1979) 
has shown that under some plausible circumstances, two or more factors 
can affect reaction time additively even though they influence simulta- 
neously active processes whose outputs are continuous. He has also 
shown that two factors can have interactive effects on reaction time even 
though they do not influence the same process. The latter demonstration 
conflicts with a corollary of the additive-factor method, which asserts 
that if two factors affect reaction time interactively, then they influence 
at least one processing stage in common. Given such conflicts, it is dif- 
ficult to reach tirm conclusions about the temporal properties of infor- 
mation processing.’ 

’ The difficulty is illustrated by the work of Meyer, Schvaneveldt, and Ruddy (1973, 
who reported that lexical (word-nonword) decisions were faster for pairs of semantically 
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The difficulty is aggravated by possible speed-accuracy trade-offs 
(Pachella, 1974). Subjects may reduce their reaction time at the expense 
of committing more errors, or they may reduce their error rates at the 
expense of taking more time to react. Without strong and perhaps unjus- 
tifled assumptions about the exact quantitative form of the trade-off, it 
becomes more complicated to evaluate how much the duration of a par- 
ticular process is affected by some factor and to determine the temporal 
relations among various processes. Increasing doubts have arisen about 
whether there even exists a “true” reaction time that corresponds to a 
moment when all information processing is finished after the onset of a 
test stimulus. This has led some investigators to suggest that conventional 
reaction-time procedures should be abandoned and that full speed-ac- 
curacy trade-off curves should be obtained instead (Ollman, 1977; Wick- 
elgren, 1977; cf. Schmitt & Scheirer, 1977).2 

Nevertheless, there are still efforts being made to study the temporal 
properties of mental processes by measuring reaction times. For example, 
we have combined preemptive response signals with a conventional reac- 
tion-time procedure to reach inferences about the time course of stimulus 
encoding and memory retrieval (Meyer & Irwin, 1981). Our results in- 
dicate that these processes may function as discrete stages during word 
recognition, supporting some previous conclusions (e.g., Meyer, Schva- 
neveldt, & Ruddy, 1975) made about the recognition process. Moveover, 
Miller (1982, 1983) has manipulated stimulus-response compatibility to 
reach conclusions about the time course of response preparation. He 
found evidence that the preparation process can start before other pro- 
cesses have completely finished, but that this process receives quanta1 
packets of partial information as inputs and proceeds through a finite 
sequence of intermediate states. The outcome of such efforts suggests 
that reaction times may continue to yield significant insights about infor- 
mation-processing dynamics. 

related words (e.g., BREAD-BUTTER) than for pairs of unrelated words (e.g., NURSE- 
BUTTER). More facilitation occurred when the second word of a pair was visually degraded 
than when it was displayed intact, producing a legibility-relatedness interaction. Following 
Sternberg’s (1969) additive-factor method, Meyer et al. (1975) inferred that stimulus legi- 
bility and semantic relatedness both influence an early discrete perceptual-encoding stage. 
McClelland (1979), on the other hand, argued that the legibility-relatedness interaction could 
be explained better in terms of separate factor effects on two functionally different, but 
simultaneously active, processes such as encoding and memory retrieval. 

2 For example, Wickelgren (1977, pp. 83-84) claimed that “In those cases where the 
focus is on testing theories regarding information processing dynamics, speed-accuracy 
tradeoff [SAT] experiments are far superior to reaction time experiments. . . . The increased 
power of [the SAT] method for deciding between theories of information processing dy- 
namics should be obvious the prospects of achieving cumulative scientific progress in 
quantitative studies of cognitive dynamics seems so much greater when one obtains the 
entire SAT function that such data should often be well worth the extra time and expense.” 
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The present article deals further with the temporal properties of mental 
processes that underlie response preparation. As in past research, mea- 
sures of reaction time constitute a principal source of evidence here. 
However, some useful extensions are introduced in collecting and eval- 
uating the data. Our approach incorporates an adaptive response-priming 
procedure and a quantitative analysis of entire reaction-time distributions 
(Meyer, Yantis, Osman, & Smith, 1984). With this procedure and anal- 
ysis, we specifically address the questions of whether component mental 
processes produce discrete or continuous outputs of information over 
time and whether response preparation involves a finite or infinite number 
of intermediate preparatory states.3 

In what follows, we first survey some relevant alternative models of 
information processing. Next we outline the basic steps of our response- 
priming procedure and reaction-time analysis. Then we report some il- 
lustrative experiments and results. Our aim is to demonstrate the poten- 
tial of this approach and to help stimulate future research on informa- 
tion-processing dynamics. The present results do not constitute definitive 
evidence about the temporal properties of human information processing 
under all circumstances, but they do place some additional constraints 
on viable models. For example,.it appears that the form of the outputs 
by the mental processes leading to response preparation and the number 
of intermediate preparatory states associated with them depend signif- 
icantly on the number of alternative responses, the difficulty of each 
response, and the compatibility of assigned stimulus-response mappings. 
A simple mapping with relatively few response alternatives may tend to 
induce discrete processing and limit how many intermediate preparatory 
states there are, whereas a complex mapping with numerous response 
alternatives may tend to induce continuous processing and more inter- 
mediate states. 

MODELS OF INFORMATION PROCESSING 

Two broad classes of information-processing models are most relevant 
here. One class consists of discrete finite-state models, and the other 
consists of continuous models. Each class incorporates a number of func- 
tionally distinct mental processes (e.g., encoding, retrieval, and decision), 
which accept inputs, transform information in various ways, and produce 

3 Our work also bears at least indirectly on the question of whether two or more com- 
ponent processes may be simultaneously active in a system. In particular, to the extent that 
information appears to be output continuously, this would suggest that both the source and 
the recipient of the information can function as simultaneous, although perhaps contingent, 
processes (McClelland, 1979). By contrast, if a set of component processes produces only 
a small number of discrete outputs and yields few or no intermediate preparatory states, 
then one might plausibly infer that the processes do not overlap in time (cf. Miller, 1982). 
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outputs to be used by other parts of the system (Smith, 1968). The pri- 
mary differences between the two classes concern their assumptions 
about how various processes are related temporally and what forms the 
outputs have. 

Discrete Models 

Discrete models assume that mental processes produce a finite number 
of distinct information outputs (quanta) over time. With this form of 
output, a processing system may enter and exit one or more intermediate 
preparatory states as information passes through the system, but the 
number of different states is limited. Here we discuss two representative 
cases in detail: the discrete stage model (Sternberg, 1969), and the asyn- 
chronous discrete-coding model (Miller, 1982, 1983). For other relevant 
examples, see Broadbent (1958, 1971), Donders (1969/1868-1869), and 
Schweickert (1978, 1983).4 

Discrete stage model. According to the discrete stage model, there is 
no temporal overlap among various mental processes. Rather, the pro- 
cesses occur in a strict sequence such that each process (stage) starts 
only after the immediately prior one has finished. It is further assumed 
that a stage of processing produces a single discrete quantum of infor- 
mation whose quality does not depend on how long the process takes to 
finish and that, correspondingly, there is only a finite number of inter- 
mediate preparatory states before the response to a stimulus occurs.s 

The discrete stage model has important implications for the interpre- 
tation of reaction-time data. If the model is correct, then the overall 
reaction time observed on a trial equals the sum of the durations of com- 
ponent mental processes (Donders, 1969/1868- 1869; Sternberg, 1969), 
and the effect of a factor on reaction time equals the total amount by 
which the factor changes those durations. It was these considerations 

4 It should be noted that the above informal dichotomy glosses over a third logically 
possible class of models, namely, ones with a countably infinite number of distinct outputs 
and intermediate preparatory states. While these additional models may be of some theo- 
retical interest, and are discrete in a technical sense, we cannot distinguish them empirically 
from members of the continuous class. Thus, in subsequent exposition, the term “discrete” 
is restricted to those cases with a relatively small number of distinct outputs and interme- 
diate states. 

5 There may be a positive correlation between the number of preparatory states and the 
number of stages in a system. For example, stage models of word recognition that include 
a process of tentative stimulus identification and a subsequent process of stimulus verifi- 
cation could yield at least two higher states of preparation following an initial unprepared 
state (Meyer & Irwin, 1981). The number of higher states would not necessarily equal the 
number of stages, however, because the outputs of some stages may not be sufficient by 
themselves to allow any useful changes in preparation for later events. Consequently, in 
some discrete stage models, as few as two distinct preparatory states are possible. 
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that motivated Sternberg’s (1969) development of the additive-factor 
method. Reasoning backward from them, he proposed that the existence 
of discrete, temporally separate, processing stages may be inferred when- 
ever two or more factors have additive effects on reaction time (Stern- 
berg, 1969, p. 282). This logic admittedly has loopholes, because conclu- 
sions based on affirming the consequent of an implication (i.e., if p,then 
q; q; therefore p) are not necessarily valid. However, it is plausible in 
that additive effects seem most likely to occur when two or more factors 
influence different discrete stages. 

The discrete stage model is also relevant for assessing and controlling 
speed-accuracy trade-offs. If subjects process information through a 
series of temporally separate stages, each of which produces a single 
discrete output, then they would have relatively few options available to 
trade accuracy and speed. Decision making and response preparation 
could not be readily based on partial outputs from early stages to generate 
better-than-chance responses before information processing is complete. 
This limits the form of the trade-off function to one involving a random 
fast guess or a deadline strategy (Ollman, 1966, 1977; Ollman & Bil- 
lington, 1972; Yellott, 1967, 1971). In particular, the trade-off might be 
either linear (Ollman, 1966; Yellott, 1967, 1971) or isomorphic to the cu- 
mulative distribution function of reaction times from trials on which 
guessing does not occur (Meyer & Irwin, 1981; Schmitt & Scheirer, 1977). 
The resulting constraint would facilitate inferences about the duration of 
completed processing, leading to better measures of “true” reaction time 
(cf. Pachella, 1974). Thus, it is especially important to determine when, 
and under what circumstances, discrete stage models may hold in pref- 
erence to other alternatives that impose weaker constraints. 

Asynchronous discrete-coding model. Another member of the discrete 
class is Miller’s (1982, 1983) asynchronous discrete-coding (ADC) model. 
Like the discrete stage model, it assumes that mental processes produce 
intermittent quanta of information, yielding a finite number of interme- 
diate preparatory states. However, the ADC model relaxes some of the 
basic assumptions of the discrete stage model. 

According to the ADC model, a component process may produce more 
than one output as a stimulus is evaluated over time, and two or more 
processes may be simultaneously active, even though one’s output pro- 
vides the other’s input. “Partial information about a stimulus can be 
transmitted . . . when the information is complete with respect to an 
internal perceptual code” (Miller, 1982, p. 292). In particular, Miller 
(1982) proposed that the process of response preparation receives mul- 
tiple inputs from processes that start before it but that do not finish until 
after some preparation has already occurred. This proposal implies that 
the overall reaction time would not be the sum of the durations of the 
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underlying component processes, contrary to the discrete stage model. 
Nor would the observed amount by which a factor affects reaction time 
necessarily reflect how much that factor increases or decreases the total 
duration of those processes, contrary to Sternberg’s (1969) additive-factor 
method. 

Miller’s (1982) ADC model also imposes fewer constraints than the dis- 
crete stage model does on the possible form of the speed-accuracy trade- 
off. With multiple outputs from intermediate processes, a subject might 
trade accuracy for speed not only by making random fast guesses but 
also by making more-sophisticated guesses based on available partial 
information. The increased flexibility would diminish the prospects of 
measuring “true” reaction times associated with complete processing of 
a stimulus, although not as much as continuous models do. 

Continuous Models 

Continuous models assume that information is transmitted between 
component mental processes in a gradual fashion.6 The transmission in- 
volves more than just a finite or countably infinite sequence of intermit- 
tent discrete packets. Response preparation may therefore vary smoothly 
over time as other processes that provide inputs to it progress from start 
to finish. 

Consequently, prototypical members of the continuous class differ from 
the discrete stage model to an even greater extent than does the ADC 
model. There are no implications that reaction time should equal the sum 
of the durations of underlying component processes or that overall factor 
effects on reaction time should reflect the total amount by which a factor 
changes the duration of those processes. Under a continuous model, sub- 
jects may have virtually unlimited flexibility in trading speed and accu- 
racy as a function of personal preferences and/or task demands (Ollman, 
1977; Wickelgren, 1977). Any level of intermediate output could be used 
to generate sophisticated guesses, depending on the relative importance 
of fast reaction times versus low error rates. Strong empirical evidence 
of a continuous information flow would constitute a severe blow to ex- 
perimenters who seek a measure of “true” reaction time (Pachella, 1974). 

Cascade model. An illustrative member of the continuous class is the 
cascade model (McClelland, 1979). According to this model, a sequence 
of functionally distinct but simultaneously active processes leads from 

6 Specifically, the change must have the formal properties of a continuous mathematical 
function that relates the information output (dependent variable) to the length of time since 
processing started (independent variable). It is not necessary that the change involve a strict 
monotonic increase. Periods of time could occur during which the output remains constant. 
In at least some well-known cases, however, there is strict monotonicity (e.g., the cascade 
model; McClelland, 1979). 
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stimulus input to response output. The flow of information between these 
processes is represented quantitatively by a negatively accelerated acti- 
vation curve with an exponential rate parameter and a positive asymp- 
tote. The current output of a process determines the asymptote that can 
be reached by its immediate recipient. When a stimulus is presented, 
activation levels of all processes increase gradually until a threshold is 
crossed in a final response unit, evoking an overt response. 

The cascade model provided a concrete theoretical framework for 
McClelland’s (1979) criticisms of the additive-factor method. He noted 
that if two factors influence the rate parameters of two different processes 
in the model, then they could have additive effects on observed reaction 
time, even though the processes overlap temporally. It would not be 
justified to infer that there are nonoverlapping, discrete stages. Also, if 
one factor influences the rate parameter of some process in cascade, but 
another factor influences the asymptote parameter of a different process, 
then the two factors could have interactive effects on reaction time, even 
though they still influence functionally distinct processes. It would not 
be justified to infer that the effects occur within the same process (stage).’ 
Thus, before applying the additive-factor method or dismissing possible 
artifacts due to speed-accuracy trade-offs, an investigator should have 
some principled theoretical or empirical bases for assessing the cascade 
model, as we consider here. 

Other examples. There are also other influential examples of the con- 
tinuous class that merit attention. These include concurrent-contingent 
models (Eriksen & Schultz, 1979; Turvey, 1973), random-walk models 
(Edwards, 1965; Link, 1975; Ratcliff, 1978; Stone, 1960), and logogen 
models (Morton, 1969). Perhaps the most general case is the interactive- 
activation model (McClelland & Rumelhart, 1981). It allows information 
to be transmitted continuously in multiple directions through a processing 
system, so that functionally superordinate processes can send concurrent 
feedback to subordinate processes and receive feedforward from them. 
The amount of interaction in this model extends beyond what is possible 
even under the cascade model. 

EMPIRICAL APPROACH 

Our empirical approach to testing discrete versus continuous models 
builds on previous studies of stimulus and response-priming effects. A 

’ In essence, this account violates the uniform-quality assumption of the discrete stage 
model and the additive-factor method, which presume that the quality of the output by a 
process does not depend on the process’s duration. Thus, it is not surprising that the 
rationale of the additive-factor method fails to hold under the cascade model (Stemberg, 
1969, p. 283). 
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number of investigators have demonstrated that prime stimuli can signif- 
icantly affect the latency of responses to subsequent test stimuli. Facili- 
tation or inhibition may occur because a prime stimulus alters temporal 
uncertainty about when a test stimulus will appear (Bertelson, 1967), 
spatial uncertainty about where the test stimulus will appear (Posner, 
Snyder, & Davidson, 1980), and conceptual uncertainty about what the 
identity of the test stimulus will be (LaBerge, Van Gelder, & Yellot, 1970; 
Meyer & Schvaneveldt, 1971, 1976; Neely, 1976, 1977; Posner & Snyder, 
1975). The prime stimulus can also provide specific information to pro- 
gram a required response, influencing the selection of the effector, direc- 
tion, and extent of a movement (Leonard, 1958; Miller, 1982, 1983; Ro- 
senbaum, 1980; Rosenbaum & Kornblum, 1982). Typically, such effects 
approach an asymptote as the temporal interval between the onsets of 
the prime and test stimuli increases (Bertelson, 1967; Leonard, 1958; 
Neely, 1976; Posner & Snyder, 1975). 

An Adaptive Response-Priming Procedure 

Mindful of these findings, we have developed an adaptive response- 
priming procedure for determining if and when information processing is 
discrete or continuous (Meyer et al., 1984). This procedure incorporates 
a series of reaction-time trials on which a subject is presented with an 
informative prime stimulus followed by a test stimulus. Overt responses 
are required to the test stimulus but not to the prime stimulus. Reaction 
time is measured as a function of the type of prime stimulus, the type of 
test stimulus, and the length of the interval between the onsets of the 
prime and test stimuli. A staircase tracking algorithm adjusts the priming 
interval (stimulus onset asynchrony; SOA) to maximize the diagnosticity 
of the results. Hence, the procedure is termed “adaptive.” 

The experiments reported below included three basic priming condi- 
tions: unprimed, partially primed, and completely primed, which differed 
with respect to the duration of the priming interval and/or type of prime 
stimuli being used. In the completely primed condition, the prime stimuli 
provided valid predictive information about the subsequent test stimuli 
and responses, and the priming interval was long enough to allow full 
processing of the primes. In the partially primed condition, the prime 
stimuli were valid, but the priming interval had a medium duration, per- 
mitting only an intermediate amount of processing to be achieved before 
the onset of the test stimulus. In the unprimed condition, we presented 
the valid primes for a very short duration or replaced them with neutral 
primes, which provided no information about the test stimuli and re- 
sponses. Across the three priming conditions, the subjects’ degree of 
preparation thus varied systematically, ranging from highly prepared to 
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unprepared. Observed performance was compared against alternative 
quantitative predictions derived from discrete and continuous models, 
thereby assessing whether or not processing of the prime stimulus in- 
volves a small finite set of distinct preparatory states. 

Ancillary Assumptions 

This application of the adaptive response-priming procedure requires 
certain assumptions about subjects’ strategies in processing the prime 
and test stimuli. We assume that any available partial information derived 
from a valid prime stimulus is used to prepare for the subsequent test 
stimulus. However, processing of the prime is assumed to stop at the 
onset of the test stimulus. It is also assumed that if no partial information 
becomes available from processing a prime stimulus, then at the onset of 
the test stimulus, the processing of the test stimulus starts from scratch, 
as if no prime had been presented at all. Our experiments were designed 
to help ensure the validity of these assumptions, and some support for 
them may be found in the obtained results. 

PREDICTIONS OF THE MODELS 

The major predictions examined here concern mixture distributions of 
reaction times. Because of their simplicity and elegance, such distributions 
have already played a significant role in theoretical descriptions of visual 
masking, memory search, and binary choice-reaction time (Eriksen & 
Eriksen, 1972; Falmagne, 1965, 1968; Sternberg, 1973; Theios & Smith, 
1972; Townsend & Ashby, 1983). Our analyses broaden this role to more 
general tests of discrete and continuous models. 

Mixture Distributions 

Mixture distributions are produced by sampling probabilistically from 
a set of underlying basis distributions (Everitt & Hand, 1981). For ex- 
ample, suppose that we have two normal distributions with means kl and 
p2 and that independent observations are drawn with probability 7~~ from 
the first of these distributions and with probabilty nTT2 from the second, 
where nTT1 + 7~~ = 1. Then the overall set of observations will have a 
mixture distribution with the two original normal distributions as the 
bases. More generally, a mixture distribution may have a total of n basis 
distributions (n * 2) with probabilistic sampling weights (nTTi; i = 1, 2, 
. . * ) n) that are nonnegative and sum to one. 

The relevance of mixture distributions for present purposes is straight- 
forward. Discrete models predict that the unprimed, partially primed, and 
completely primed conditions of the adaptive response-priming procedure 
should yield reaction times that have mixture distributions with a finite 
number of bases. Under these models. each basis distribution corre- 
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sponds to a different state of response preparation. There may be an 
unprepared state, a fully prepared state, and other distinct intermediate 
preparatory states. Manipulating the length of the priming interval and 
the type of prime stimuli affects the probability of achieving a particular 
state. The state of preparation achieved on a trial then uniquely deter- 
mines the distribution from which a subject’s reaction time comes, thus 
constraining the data in a quantitatively specifiable fashion. 

At least some continuous models make an alternative (nonmixture) 
prediction. According to them, manipulating the interval between a prime 
and test stimulus should produce gradual changes in a subject’s degree 
of preparation over time, reflecting the extent to which information con- 
veyed by the prime stimulus has been processed before the test stimulus 
appears. The reaction times observed in the unprimed, partially primed, 
and completely primed conditions would not come from a family of mix- 
ture distributions based on a finite number of preparatory states. Instead, 
the various priming conditions would yield reaction times whose distri- 
butions have a different relation to each other, as discussed below. 

To illustrate these predictions, we focus closely on two extreme cases: 
a two-state version of the discrete stage model (Sternberg, 1969) and a 
prototypical version of the cascade model (McClelland, 1979). These 
models exemplify the marked differences in predictions by some mem- 
bers of the discrete and continuous classes. We also briefly consider 
predictions by other specific models. However, it will not be possible to 
deal with all individual cases at length, since each class contains many 
members. Rather, our intent is to treat them at the most general level 
possible. 

Two-Stutr Discrete Stage Model 

According to the two-state discrete stage model, the processing of a 
prime stimulus includes discrete stages like encoding, retrieval, and de- 
cision, which lead to a discriminative output about the identity of the 
prime. This output then serves as an input to a response-preparation 
stage that adjusts the information-processing system for a rapid response 
to a subsequent test stimulus. Here preparation functions as a unitary all- 
or-none process that either places the system in a fully prepared state or 
leaves the system entirely unprepared. Essentially, this model embodies 
the theoretical proposals that some investigators (e.g., Meyer et al., 1975; 
Sternberg, 1969) have made about the performance of word-recognition 
and memory-search tasks.8 

* Of course, other discrete stage models might also be applicable under our procedure. 
One could instead postulate several substages of preparation, each with its own individual 
output, such as various perceptual adjustments for processing the stimuli and motor ad- 
justments for selecting the effector, the direction, and the extent of movement (e.g., Ro- 
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FIG. 1. Distributions of reaction times predicted by the two-state discrete stage model for 
the unprimed (top panel), partially primed (middle panel), and completely primed (bottom 
panel) conditions of the adaptive response-priming procedure. The distribution in the middle 
panel is a 50-50 mixture of those in the top and bottom panels. 

Some predictions derived from the two-state discrete stage model are 
illustrated in Fig. 1. The figure shows theoretical distributions (prob- 
ability-density functions) of reaction times expected in the unprimed, 
partially primed, and completely primed conditions of the adaptive re- 
sponse-priming procedure. Although the distributions for the unprimed 
and completely primed conditions have shapes similar to translated gam- 
ma distributions, this is not essential to the illustration. Instead, our con- 
cern is mainly with how the relative locations of these distributions and 
their shapes are related to the distribution for the partially primed con- 
dition. 

senbaum, 1980). Nevertheless, the two-state discrete stage model is useful for illustrative 
purposes (cf. Footnote 5). 
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Given the assumptions discussed earlier, the two-state discrete stage 
model implies some systematic relationships among the reaction-time dis- 
tributions for the unprimed, partially primed, and completely primed con- 
ditions. The unprimed condition places a subject in the unprepared state, 
yielding a distribution of relatively slow reaction times. The completely 
primed condition places the subject in the fully prepared state, yielding 
a distribution of relatively fast reaction times. It is assumed that the dis- 
tributions associated with these two distinct states are unique to these 
states. However, on a trial of the partially primed condition, the subject 
may be in either one or the other of the two possible states when the test 
stimulus appears, depending on the speed with which the prime stimulus 
happens to be processed on that trial; the moment of transition between 
states is a random variable. This will yield a mixture distribution of slow 
and fast reaction times, the bases of which are the distributions from the 
unprepared and fully prepared states, respectively. The effect of manip- 
ulating the duration of the priming interval is to vary the amount of time 
available for fully processing the prime stimulus, thereby determining the 
exact mix of the two states in the partially primed condition. 

The mixture prediction of the two-state discrete stage model can be 
expressed more precisely in terms of Eq. (1): 

f,(fld) = ddlf,(~) + 11 - ~Wlf,W. (1) 

Here f,(t) and f,(r) denote the probability-density functions of the un- 
primed and completely primed reaction times, respectively, and f,(tld) 
denotes the probability-density function of the partially primed reaction 
times given a medium priming interval of duration d. The constant ~44 
is a mixture parameter. It represents the probability that the subject fin- 
ishes processing a valid prime stimulus and preparing the anticipated 
response before the test stimulus appears in the partially primed condi- 
tion. The duration of the medium priming interval determines the value 
of I by influencing the proportion of trials on which a transition occurs 
from the unprepared to the prepared state. As the medium interval in- 
creases, there will be more and more trials on which the subject is fully 
prepared, yielding an increase of the mixture parameter and a decrease 
of the mean reaction time. 

From Eq. (l), several interesting properties of f,(tld) follow directly. 
The mean M,(d) and variance V,(d) off,(tld) in the partially primed con- 
dition must satisfy the following equations: 

V,(d) = n(d)V, + 11 - dd)lV,, + dd)ll - dd)lW, - MC)‘, (3) 
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where M, and M, are the means of f,(t) and f,(t), respectively, and V, 
and Vu are the corresponding variances. Thus, M,(d) has to fall between 
MC and Mu, because the latter two means are weighted by the fractions 
n(d) and 1 - a(d>, respectively. In contrast, V,(d) can be larger than 
both V, and V, because it is inflated by the factor n(d)[l - n(d)](M” - 
Mc)2, which is relatively large when n(d) has a value close to one-half 
and MC differs significantly from M,. For a derivation of Eq. (3) and 
related expressions, see Appendix 1. 

The two-state discrete stage model also makes some other interesting 
predictions. Iff,(t) andf,(t) intersect at some value oft, then&(t]d) must 
intersect them at that value too, forming a confluence of the three prob- 
ability-density functions. Falmagne (1968) has called this the “fixed-point 
property” of mixture distributions. Similarly, the tails of f&Id) should 
overlap entirely with those of f,(t) and f,(t), satisfying what Sternberg 
(1973) has called the “short-RT” and “long-RT” properties.9 Further- 
more, the partially primed distribution of reaction times may have two 
separate modes, even though the unprimed and completely primed dis- 
tributions have only one.‘O 

Of the preceding predictions, the basic mixture prediction [Eq. (1)] is 
strongest. All of the ancillary predictions stem directly from it. Our sub- 
sequent analyses therefore test the mixture prediction primarily and refer 
back to the others only in passing. 

Higher-Order Discrete Models 

This application of mixture distributions can be extended to charac- 
terize other members of the discrete finite-state class, such as Miller’s 
(1982, 1983) ADC model and higher-order stage models (i.e., ones with 
three or more preparatory states). For example, suppose that there are 

9 The short-RT property, which derives from Sternberg’s (1973) analysis of self-termi- 
nating search processes, states that for all f, F&rid) 2 n(d)F,(f). where a(d) is the mixture 
parameter of the two-state discrete model. If a “short” reaction time is defined to be any 
time t such that t c T,, and if the probability of a short time in the completely primed 
condition is y. [i.e., yCs = F,(T,)], then according to the short-RT property, the probability 
y,,(6) of a short reaction time in the partially primed condition must be at least n(d)y,,. 
The long-RT property is a complement of this. It states that for all t, F,(tld) C F,(t); con- 
sequently, the probability of a reaction time less than T, in the partially primed condition 
cannot exceed the corresponding probability in the completely primed condition [i.e., r,,(d) 
c yo]. In fact, an even stronger property can be formulated for our situation. According 
to it, [l-F,(@)] 2 [1 - n(d)][l-F,(t)] for all t. The probability of a reaction time greater 
than T, in the partially primed condition must therefore be at least I ~ ~(4 of the corre- 
sponding probability in the unprimed condition. 

to For example, if ,f,(t) and f=(t) are normal distributions whose standard deviations both 
equal S, and if ~(4 equals one-half, then&(#) will have two modes whenever IM, - MCI 
> 2S [Everitt & Hand, 1981, Eq. (2.4)]. 
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II distinct states of preparation (n B 3), including an initial unprepared 
state, followed by n - 2 intermediate preparatory states, and a final state 
of full preparation. Suppose also that n;(d) (i = 1, 2, . . . , n) denotes 
the probability of being in the ith state after a medium priming interval, 
and that J;:(t) denotes the probability-density function of reaction times 
associated with this state. Then the probability-density function of the 
partially primed reaction times should satisfy the following equation: 

fpCf14 = i Ti(4.fj(r). (4) 
i=l 

Here the functionf,(r) is analogous to the unprimed density functionf,(t) 
of Eq. (l), and the function f,(r) is analogous to the completely primed 
density function f,(t). Moreover, as shown in Appendix 1, the mean, 
M,(d), and variance, V,(d), off,(tld) would be 

V,(d) = i Tj(d)Vj + i Ti(d)[Mi - Mp(d)12, (6) 
i= I i= I 

where Mi and Vi are the mean and variance, respectively, of the proba- 
bility-density function associated with the ith preparatory state. 

Equations (4) through (6) generalize the mixture prediction of the two- 
state discrete stage model. Given this generalization, the mean of the 
partially primed reaction times [M,(d)] must again fall between the means 
of the unprimed and completely primed reaction times (M, and M,). Also, 
the variance [V,(d)] of the partially primed reaction times can again ex- 
ceed those of the unprimed and completely primed reaction times. When 
the mixture parameters n,(d) and n,Jd) are both positive, f,(t]d) will in- 
clude nondegenerate contributions from the unprimed and completely 
primed density functions If,(t) and f,(t)], causing the partially primed 
density function to have upper and lower tails that overlap entirely with 
those of the other functions, as required by Sternberg’s (1973) short-RT 
and long-RT properties (cf. Footnote 9). However, the partially primed 
reaction times do not have to constitute a perfect mixture of times ob- 
tained in the unprimed and completely primed conditions, because&(@) 
may include contributions from one or more of the basis distributions 
associated with the intermediate preparatory states V;:(t); i = 2, 3, . . . 
n - 11. 
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FIG. 2. A prototypical cascade model for deriving predictions about performance in the 
adaptive response-priming procedure. 

Cascade Model 

Some alternative predictions by a prototypical cascade model may be 
derived in terms of Fig. 2. The figure illustrates the growth of activation 
over time for our adaptive response-priming procedure, assuming that 
both the prime and test stimuli activate a common response-preparation 
unit. Activation is depicted as starting to grow at some moment shortly 
after the onset of a prime stimulus and continuing throughout the priming 
interval (lower left solid curve) until the onset of the test stimulus. The 
latter event terminates the growth of activation induced by the prime, but 
then the growth resumes again in response to the test stimulus (upper 
right solid curve), progressing on from its previously attained level toward 
a higher asymptotic level. When a threshold (dashed line) is crossed, a 
response is initiated, leading eventually to an overt movement (e.g., key- 
press). Reaction time is measured as the duration of the interval between 
the onset of the test stimulus and the occurrence of the movement. l1 This 
yields a priming effect whose magnitude depends directly on how long 
the priming interval is. An increase of the priming interval from short to 
long would gradually reduce the measured reaction time because, in es- 
sence, the processing of the prime stimulus decreases the amount of time 
that it takes for the test stimulus to induce enough activation to cross the 
threshold. 

” In McClelland’s (1979) formulation of the cascade model, the time increment from the 
threshold crossing until the overt movement was treated as a constant (e.g., 100 ms). Thus, 
variability in reaction times, and the effects of factors on those times, would arise solely 
from the processes that take place before the threshold crossing. 
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The form of the activation-growth curves shown here follows previous 
statements of the cascade model (Ashby, 1982; McClelland, 1979). We 
assume that the activation, A&T), associated with processing the prime 
stimulus has a time course that corresponds approximately to a delayed 
exponential approach to a limit: 

b 0 d T < ATE 
A&T) = 

i 
b;’ + a,{1 - exp[ -Y&T - AT,)]}, AT, G T c d (7) 
A,(d), T>d 

where T is time measured from the onset of the prime stimulus, 6, is the 
initial base level of prime activation, AT,, is the “dormant time” (delay) 
between the onset of the prime stimulus and the moment when activation 
starts to rise significantly above its base level, Y,, is the rate of increase 
in the activation after it starts rising, up is the asymptotic activation level, 
and d is the length of the priming interval. As McClelland (1979, p. 296) 
demonstrated, the period of dormant time between the onset of a stimulus 
and the initial rise of activation would depend mainly on the rates of the 
relatively fast component processes (i.e., ones with steep transfer func- 
tions) in a cascaded system. If there are many such processes, then the 
dormant time could be substantial.12 By contrast, once the activation 
starts to rise significantly, its rate of increase would depend mainly on 
the rate of the slowest process in the system, and its ultimate asymptote 
(upper bound) would depend jointly on the asymptotes of all the system’s 
processes (McClelland, 1979). We assume similarly that the additional 
activation induced by a subsequent test stimulus involves a delayed ex- 
ponential approach to a limit. The specific parameters (i.e., delay, rate, 
and asymptote) of the latter growth may, however, differ from those in- 
volving the prior prime stimulus, as expressed by Eq. (8): 

a {I b - exp[ - y (t - 5 At )]} s 1 
;; f,’ At5 (8) 

H b 

where t is time measured from the onset of the test stimulus, and At,, 
r,, and a, are, respectively, the dormant time, activation rate, and asymp- 
totic activation associated with processing the test stimulus. 

Within this context, the cascade model has two distinct ways of gen- 
erating reaction-time distributions for a test stimulus that follows a con- 
stant priming interval. One way is to treat the base level and/or asymptote 
parameters of activation as random variables. Stochastic fluctuations of 

I2 In particular, suppose that there are n relatively fast processes whose rate parameters 
r, (i = 1,2,. . .,n) each exceed the rate of the slowest process by a factor of 4 or more. 
Then, according to McClelland (1979, p. 296), the dormant time wzuld approximately equal 
the sum of the reciprocals of these rate parameters (i.e., ATE = Z 

i= I 
T,~‘). 
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these parameters would cause the moment at which the activation-growth 
curve crosses the response-threshold criterion to vary randomly over 
trials, yielding a distribution of reaction times. Such an approach has 
been pursued by Ashby (1982), who derived specific probability-density 
functions with the model, using straightforward analytical techniques. 
Another way of generating reaction-time distributions is to treat the rate 
parameters of the component processes in a cascaded system as random 
variables. Again this would cause the threshold crossings to vary ran- 
domly over trials, but unfortunately, it does not allow any easy mathe- 
matical solutions for the resultant distributions of reaction times; instead 
the problem becomes rather intractable, and is more readily attacked 
through stochastic simulation techniques (Ashby, 1982). The present ar- 
ticle therefore focuses most heavily on the first (random base level and/ 
or asymptote) approach, and considers the second (random rate) ap- 
proach only as an ancillary possibility. 

Random base level andlor asymptote parameters. Some representative 
distributions of reaction times predicted by a prototypical cascade model 
for our adaptive response-priming procedure appear in Fig. 3. We ob- 
tained these distributions by extending Ashby’s (1982) mathematical anal- 
ysis directly to the situation where response activation from a test stim- 
ulus grows on top of activation from a prior prime stimulus, and the 
asymptotes and/or base level of the growth curves may vary randomly 
over trials. The top, middle, and bottom panels of the figure illustrate 
individual reaction-time distributions corresponding to unprimed, par- 
tially primed, and completely primed conditions, respectively. For a 
formal derivation of the equations used to generate these densities, see 
Appendix 2. 

Several facts should be noted about the predicted reaction-time distri- 
butions. As under the two-state discrete stage model, there is a substan- 
tial priming effect. The completely primed density function [f,(t)] includes 
faster times than does the unprimed density function Vu(t)]. However, 
the partially primed density function Vp(tld)] is not a perfect mixture of 
these other functions. The variance off,(tld) is intermediate to the vari- 
ances of f,(t) and f,(t), rather than being larger than both of them, and 
the tails of the partially primed function do not overlap much with those 
of the unprimed or completely primed functions. All three functions have 
similar shapes. Hence, this pattern provides a strong contrast to the pre- 
dictions made by the two-state discrete stage model (cf. Fig. 1).13 

I3 Some other members of the continuous class make predictions similar to those of the 
prototypical cascade model. For example, Ratcliff’s (1978) random-walk diffusion model 
assumes that response strength moves gradually toward one or the other of two decision 
criteria, yielding an overt output when a criterion threshold is crossed. The information 
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FIG. 3. Distributions of reaction times predicted by a prototypical cascade model for the 
unprimed (top panel), partially primed (middle panel), and completely primed (bottom panel) 
conditions of the adaptive response-priming procedure. See Appendix 2 for the parameters 
used to generate these densities. Also, note that the top and bottom panels in Fig. 1 are 
the same as those here. 

More generally, one might conjecture that a prototypical cascade model 
yields reaction times whose distributions are not exactly consistent with 
any finite-state discrete model. Although we do not have a formal proof 
to support such a conjecture, it seems at least intuitively plausible. Re- 

provided by a prime and test stimulus could be combined to determine the overall response 
strength. This would yield reaction-time distributions qualitatively like those in Fig. 3. 
Similar predictions are also made by related random-walk models (Edwards, 1965; Link, 
1975; Stone, 1960), logogen models (Morton, 1969), contingent-concurrent models (Eriksen 
& Schultz, 1979; Turvey, 1973), and interactive-activation models (McClelland & Rumel- 
hart, 1981). 
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sponse activation under the cascade model increases continuously during 
the priming interval. If the model is correct, then there must be a non- 
countable infinity of different preparatory states, each with its own 
unique intermediate activation level from which to proceed toward the 
final response-threshold criterion. This, in turn, should yield an infinity 
of distinct basis distributions of reaction times, which vary as a function 
of how long the priming interval is, whereas discrete models involve only 
a limited number of underlying preparatory states and basis distributions. 

Random rate parameters. The situation appears more complex, how- 
ever, when some more atypical versions of the cascade model are pursued 
further. For example, suppose that variability of reactions times is attrib- 
uted to random fluctuations of the rate parameters of component pro- 
cesses in a cascaded system, not merely to random fluctuations of the 
base level and/or asymptote parameters (cf. Ashby, 1982). Suppose also 
that the activation rates of these processes are extremely high, and that 
there are many (e.g., dozens) of such fast processes in the system. Then 
the cascade model can, in principle, mimic the predictions of even a two- 
state discrete stage model to any desired degree of approximation. The 
approximation depends primarily on the number of processes in the 
system and on the rate of the slowest process. As more and more pro- 
cesses are added to the system, and as the rate of the slowest process 
increases, the resultant activation-growth curve will approach a step func- 
tion with a relatively long dormant time (i.e., period of inactivity after 
stimulus onset) followed by a sharp transition from a low level of response 
preparation to a high level (cf. McClelland, 1979). This will yield essen- 
tially just two distinguishable preparatory states, as the discrete stage 
model does. Also, random fluctuations of the rate parameters will cause 
the moment of transition to vary from trial to trial, yielding a virtually 
all-or-none mechanism of preparation at the onset of a test stimulus in 
the partially primed condition, and producing quasi-mixture distributions 
of reaction times based on which preparatory state a subject happens to 
achieve. 

Theoretical Caveats 

These considerations thus call for some theoretical caveats in testing 
discrete versus continuous models of information processing. Given 
enough parameters and sufficient flexibility, a continuous model may be 
difficult or impossible to distinguish from even a simple discrete model. 
The degree of separability hinges on what assumptions are made about 
the rates of continuous change from one level of preparation to another. 
A particular data set will never allow all conceivable continuous models 
to be rejected in favor of a discrete model, unless parsimony or some 
other criteria are taken into account (cf. Wickelgren, 1977). 
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Conversely, discrete models can, with selected ancillary assumptions, 
mimic the properties of continuous models to any desired level of ap- 
proximation. The approximation will be more or less good, depending on 
the number of distinct processes placed in a system and on the “grain 
size” of the intermittent information packets produced by each process 
(Miller, 1982). As more and more processes are added, and as the gran- 
ularity of the outputs is decreased, an apparently smooth transition may 
result among preparatory states indistinguishable from what a prototyp- 
ical cascade model implies (e.g., Fig. 2). The state of affairs is analogous 
to ones sometimes encountered in physics and other natural sciences, 
where empirical phenomena do not always allow discrete processes to 
be distinguished easily from continuous processes, and either class of 
model may tit observed data quite closely.i4 

Nevertheless, there are still some reasonable goals for us to pursue. 
One of these goals involves developing informative methodological and 
analytical techniques that reveal how well a particular discrete or contin- 
uous model, having a specific set of parameter values, fits reaction-time 
distributions from subjects’ performance of a given cognitive task. An- 
other goal involves assessing how the relative goodness-of-tit achieved 
by alternative models varies across different tasks. This pursuit could 
provide investigators with ways of deciding, for their own purposes, 
which members of what theoretical classes are most suitabIe to adopt in 
interpreting observed magnitudes of reaction times, patterns of factor 
effects, and speed-accuracy trade-offs. It might also provide insights 
about how the temporal properties of mental processes vary systemati- 
cally as a function of changing task demands. 

GOODNESS-OF-FIT TESTS 

To test the goodness-of-fit for discrete versus continuous models, we 
have developed a new iterative maximum-likelihood statistical technique 
(Smith, Meyer, Yantis, & Osman, 1982).15 The technique produces max- 
imum-likelihood estimates of the mixture parameters, ITS, and reaction- 
time frequency ,distributions associated with the bases [i.e., A(r), i = 1, 
. . . ) n] of a general n-state discrete model (n > 2). These estimates are 

I4 Tests of discrete versus continuous models of information processing are also compli- 
cated in other respects. A theoretical distinction can be drawn between the activity within 
a stage of processing and the form of output produced by that stage (Miller, 1982). The 
stage itself might involve continuous growth of internal activation, but might hold its output 
until an asymptotic level is reached, transmitting the ultimate product discretely. Available 
experimental procedures, including the present one, are not powerful enough to evaluate 
such models separately from other discrete and continuous ones (cf. Footnote 4). 

I5 Copies of the paper that describes this technique may be obtained from .I. E. Keith 
Smith, Dept. of Psychology, University of Michigan, Ann Arbor, MI 48104. 
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constrained to satisfy the model’s mixture prediction [Eq. (4)] exactly. 
In addition, the technique produces a x2 statistic that quantifies the extent 
to which an observed set of empirical frequency distributions of reaction 
times deviates from the mixture prediction. 

Figure 4 illustrates how this analysis works. Here we assume, for pur- 
poses of simplicity, that there are empirical frequency distributions of 
reaction times from three conditions: unprimed, partially primed, and 
completely primed, as discussed previously. The distributions are de- 
noted, respectively, asf#, f&t)& and f$). In this example, each distri- 
bution is divided into three frequency bins, which correspond to “fast” 
(e.g., less than 200 ms), “moderate” (e.g., between 200 and 400 ms), and 
“slow” (e.g., greater than 400 ms) reaction times. The axes of the three- 
dimensional space in the left panel of Fig. 4 represent the three bins, and 
the vectors represent the proportions of reaction times that each distri- 
bution has in each bin [e.g., .2, .3, and .5 forfU(t)]. Because the propor- 
tions of fast, moderate, and slow times must sum to 1, these vectors have 
endpoints on an oblique two-dimensional plane in the three-dimensional 
space. 

When a two-state discrete model is to be tested, we seek three collinear 
points that fall on the two-dimensional plane and that come closest in an 
overall maximum-likelihood sense to the vector endpoints of the empirical 
frequency distributions of reaction times. The results of such a search are 
illustrated by the dashed line and solid points in the right panel of Fig. 
4. The individual collinear (solid) points closest to f,(t), $r(rjd), and&(t), 

intermediate slow 

inter&dids 

FIG. 4. An illustration in which the iterative maximum-likelihood statistical technique 
(Smith et al., 1982) is applied to test the goodness-of-fit of the two-state discrete stage 
model. 
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respectively, constitute the estimates of the unprimed, partially primed, 
and completely primed distributions of reaction times according to the 
model’s mixture prediction. Furthermore, in this context, the estimated 
mixture parameter IT(~) equals the ratio of two quantities: (i) the distance 
between the collinear points found for the unprimed and partially primed 
distributions, and (ii) the distance between the collinear points found for 
the unprimed and completely primed distributions. The two-state model, 
which involves a weighted linear combination of probability-density func- 
tions [Eq. (l)], implies that these collinear points should all coincide 
perfectly with the vector endpoints of the empirical distributions of reac- 
tion times, if the data were not noisy. When the data are noisy, but the 
model is valid, then the tit should still be relatively good, and our statis- 
tical technique would produce a test statistic that has an approximate x2 
distribution with 1 degree of freedom in the present case. Values of this 
statistic beyond the usual Type I error cutoffs of a x2 distribution would 
constitute evidence against the model. 

Tests of general n-state discrete models (n 2 2) can be obtained by 
extending the illustration in Fig. 4. The extension requires empirical reac- 
tion-time distributions from at least II + 1 different priming conditions, 
including one unprimed condition, n - 1 partially primed conditions, and 
one completely primed condition. Each distribution must be divided into 
at least n + 1 separate bins, ranging from relatively fast to relatively slow 
reaction times. Our maximum-likelihood statistical technique yields a set 
of estimated basis frequency distributions that satisfy Eq. (4), a corre- 
sponding set of mixture parameters, and a test statistic whose value in- 
dicates the n-state model’s goodness-of-tit. If the model holds, and if 
an experiment includes a total of P priming conditions (P 2 II + 1) 
together with B bins per empirical distribution (B 2 n + I), then this 
statistic will have an approximate x2 distribution with (P - n)(B - n) 
degrees of freedom. 

It is possible to specify the power of our tests of n-state discrete 
models (n 3 2) versus continuous models when the number of priming 
conditions (P) and bins (B) per distribution both exceed IZ. For example, 
when we tested the mixture prediction of a two-state discrete stage model 
[Eq. (l)] against the distributions of reaction times expected from a pro- 
totypical cascade model (Fig. 3), a highly significant x2 statistic emerged 
[x2(8) = 31.0, p < .001].i6 This result clearly violates the two-state model, 
helping to gauge how sensitive the experiments are. 

i6 In this test of power, 10 bins were created to span the reaction-time distributions 
predicted by the prototypical cascade model for the unprimed, partially primed, and com- 
pletely primed conditions. The number of bins was similar to those used in analyzing our 
actual data, which, given the present experimental sample sizes, would closely approximate 
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In general, the power of the goodness-of-fit tests depends on the pa- 
rameters of the models at hand (cf. Theoretical Caveats), the magnitude 
of the overall priming effects, and the variances of the unprimed and 
completely primed distributions. This can be seen intuitively by looking 
at Eq. (3) for the variance of the partially primed reaction times [V,(d)]. 
As the overall priming effect (MU - MC) increases and/or the variances 
of the unprimed and completely primed distributions (Vu and V,) de- 
crease, the relative impact of the inflation factor n(d)[l - 7~(d)](M” - 
MC)* on performance increases, making it easier to discriminate the two- 
state discrete stage model from members of the continuous class. Like- 
wise, the discriminability is increased by selecting a medium priming 
interval for which the distribution of partially primed reaction times has 
an intermediate mean. With an intermediate mean, M,(d), the term I@)[ 1 
- IT(~)] of the inflation factor reaches a maximum, further increasing its 
relative impact under the two-state model. We will have more to say later 
about the power of our tests against various alternatives (see General 
Discussion). 

SELECTION OF PRIMING INTERVALS 

The selection of durations for the short and long intervals between the 
prime and test stimuli is relatively easy. We typically use a short interval 
of 0 ms which corresponds to no visible presentation of a valid prime 
stimulus and allows no useful response preparation. The duration of the 
long interval can be based on results from tasks in which speeded re- 
sponses are made directly to stimuli like the primes. In past lexical de- 
cision experiments, for example, our subjects have usually taken about 
500 ms to discriminate words from nonwords (Meyer et al., 1975). Thus, 
with words and nonwords as prime stimuli, we use long priming intervals 
of about 750 ms for the present experiments, which should be enough for 
subjects to finish preparatory activities completely before a test stimulus 
occurs. 

Selecting a medium priming interval is more problematic. The partially 
primed reaction-time distribution should fall about midway between those 
obtained with the short and long intervals, because this maximizes the 
power of our statistical tests. However, the medium interval that best 
yields partial priming could depend on many factors, including the type 
of prime and test stimuli, the particular subjects being tested, the amount 
of practice, the alertness of the subjects, and so forth. We have therefore 

the distributions in Fig. 3, if the model were correct. Of course, the exact result of the test 
only applies to the particular parameter values that we chose in the illustration. More 
general information about the power of our tests with respect to a larger parameter space 
appears in the General Discussion. 
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relied on a staircase tracking algorithm to adjust this interval. The algo- 
rithm is designed to converge on an ideal medium interval in a relatively 
small number of trials, much like staircase tracking in standard psycho- 
physical paradigms (Levitt, 1971). 
Staircase Tracking Algorithm 

In implementing our staircase tracking algorithm, samples of reaction 
times are first obtained from trials on which the valid prime stimuli pre- 
cede the test stimuli by either short or long priming intervals. The initial 
samples let us estimate theoretical distributions of unprimed and com- 
pletely primed reaction times. We denote the cumulative distribution 
functions of these times as F,(Z) and F,(T), respectively [i.e., F,(T) = 
P(t 6 Qro priming), and F,(Z) = P(t 6 acomplete priming), where t is 
reaction time, and T is any specified temporal value]. As before, the 
probability-density functions for these distributions aref,(t) andf,(t), 
which correspond to the derivatives of the cumulative distribution func- 
tions. 

Next we estimate a temporal cutpoint, TX, midway betweenf,(t) and 
f,(t) in the sense that the estimated proportion of f,(t) above TX equals 
the estimated proportion of f,(t) below TX. The cutpoint is intended to 
satisfy the following equation: 

F,(T,) = 1 - FJT,). (9) 

When F,(T) and F,,(T) are continuous strictly increasing functions whose 
probability densities overlap each other, there will be a unique T,. The 
staircase tracking algorithm then seeks an ideal medium priming interval, 
di, for which the distribution of partially primed reaction times If,(tld)] 
has a median equal to TX. For more details about how this works, see 
Appendix 3. 

Psychometric Priming Function 

An instructive way of representing the objective of the staircase 
tracking algorithm appears in Fig. 5. This figure illustrates what we call 
a “psychometric priming function,” denoted q(d), which is analogous to 
psychometric functions from sensory psychophysics. The psychometric 
priming function has qualitative properties like a plot of mean reaction 
times and/or mean priming effects versus the duration of a prime stimulus 
(e.g., Meyer et al., 1972; Neely, 1976; Posner & Snyder, 1975; Sabol & 
DeRosa, 1976; Yellott & Hildreth, 1969), but its quantitative properties 
are somewhat different and more useful for our purposes. 

Given each possible duration, d, of the interval between the prime and 
test stimuli, ‘P(6) specifies the probability that a reaction time obtained 
with that interval will fall below the temporal cutpoint, T,. The lower 
bound of V(d) equals the area under the unprimed reaction-time distri- 
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b 

PfflMNG IN%ER”AL (d) 

FIG. 5. A psychometric priming function that relates the duration, d, of a priming interval 
to the probability, q(d), that a reaction time obtained with this interval will fall below the 
temporal cutpoint TX. The parameter di is the ideal medium priming interval for which the 
psychometric priming function equals 0.5 and the median of the partially-primed density 
function, f,(tldg), equals TX. 

bution to the left of the cutpoint [i.e., F&Y,)]. This bound will be low to 
the extent that the unprimed condition produces few relatively fast reac- 
tion times. The upper bound of P(d) equals the area under the completely 
primed distribution of reaction times to the left of the cutpoint [i.e., 
F&J,)]. This bound will be high to the extent that the completely primed 
condition produces many relatively fast reaction times. The tracking al- 
gorithm converges on an ideal medium priming interval d; that corre- 
sponds to the 50% point on the psychometric priming function. As we 
indicate more fully later (see General Discussion), W(d) may also bear on 
other important theoretical considerations concerning the two-state dis- 
crete stage model. 

OVERVIEW OF EXPERIMENTS 

Three experiments are reported here to demonstrate our approach in 
testing discrete versus continuous models. For each experiment, the test 
stimuli were arrows, and the responses were keypresses by designated 
fingers. We used words and nonwords as the valid prime stimuli. Neutral 
primes (uninformative rows of X’s) were also included. Whenever the 
prime stimulus was a word, it accurately cued the subject that the sub- 
sequent test stimulus would require a response with a particular hand 
and/or finger, and whenever the prime stimulus was a nonword, it ac- 
curately cued the subject that a response with another hand and/or finger 
would be required instead. The subjects practiced extensively on the 
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experimental task. The number of alternative test stimuli and responses, 
and the compatibility of the mapping between them, changed from ex- 
periment to experiment. Furthermore, the number of priming conditions 
and our instructions regarding speed-accuracy trade-offs varied. 

The design of the experiments was intended to satisfy three general 
requirements. First, we wanted to obtain reasonably powerful tests from 
our maximum-likelihood statistical technique. Using valid, easily pro- 
cessed prime stimuli helped us in this respect, because it yielded rather 
large priming effects. I7 Giving subjects extended practice also helped, 
because it reduced the variance of the obtained reaction-time distribu- 
tions, making them more easily discriminabie from each other. Second, 
we wanted to obtain some data in support of both discrete and continuous 
models, thus starting to build a taxonomy for determining which models 
fit best under what circumstances. The present manipulations of stim- 
ulus-response compatibility and speed-accuracy trade-off strategies 
served this purpose, in that they seemed likely to have marked qualitative 
effects on the temporal properties of information processing (Fitts & 
Seeger, 1953; Ollman, 1977; Swensson, 1972). Third, we wanted to build 
on past research regarding discrete versus continuous models. In partic- 
ular, much of McClelland’s (1979) argument for the cascade model and 
against Sternberg’s (1969) additive-factor method dealt with data and pro- 
cesses related to word recognition. This provided additional motivation 
for our selection of the words and nonwords as prime stimuli. The chosen 
stimulus-response mappings were likewise appropriate in that they fol- 
lowed studies by Leonard (1958), Miller (1982), and Rosenbaum (1980), 
who gave subjects preliminary information about which hand and/or 
finger to use in making manual responses. 

We should emphasize that the present experiments did differ in signif- 
icant respects from some previous studies of priming and word recogni- 
tion. Because words and nonwords do not have strong a priori associa- 
tions with arrows or keypress responses, the effects of prime stimuli on 
reaction times observed here may involve “controlled” rather than “au- 
tomatic” priming (cf. Neely, 1976, 1977; Posner & Snyder, 1975). This 

” Unlike some previous research (e.g., Neely, 1976; Posner & Snyder, 1975), our exper- 
iments did not include any invalid primes, because they might discourage subjects from 
paying attention to the valid primes (but see Yantis, 1985). Also, we used test stimuli and 
responses difficult enough that subjects would benefit significantly from the valid primes. 
There were no extremely compatible stimulus-response combinations, which might place 
reaction times on a floor level even without any priming (Fitts & Seeger, 1953; Leonard, 
1959). However, higher compatibility existed between the test stimuli (arrows) and re- 
sponses (keypresses) than between the prime stimuli (words and nonwords) and responses. 
This compatibility difference encouraged subjects to switch from processing the prime 
stimuli to processing the test stimuli as soon as they appeared, consonant with our ancillary 
assumptions. 
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could have important implications for theoretical interpretations of our 
results and comparisons of them with those of other investigators, who 
have examined automatic priming processes (see Experiment 1, Discus- 
sion) . 

EXPERIMENT 1 

Experiment 1 included two test stimuli and two responses. The test 
stimuli were right and left arrows, and the responses were keypresses by 
the right and left index fingers. Word and nonword primes provided valid 
information about which key would have to be pressed (word = right, 
nonword = left). There were three priming conditions: unprimed, par- 
tially primed, and completely primed, which corresponded to short, me- 
dium, and long priming intervals, respectively. (For a brief summary of 
this study, see Meyer et al., 1984.) 

Method 
Subjects. Four undergraduate students at the University of Michigan participated as paid 

subjects. They were sampled from a pool of volunteers maintained by the Human Perfor- 
mance Center. Three (B.C., S.R., and N.Y.) were females and the other (J.F.) male. Each 
subject received approximately $4 per session, including a salary of $1.75 plus a bonus for 
good performance. 

Apparatus. The subjects sat at a table in a moderately illuminated sound-attenuating 
booth. A minicomputer (Digital Equipment Corporation PDP-1 l/34) presented the stimuli 
and recorded the responses. Warning signals, prime stimuli, test stimuli, and feedback 
appeared on a display terminal (Hewlett-Packard 2621A). Responses were made on the 
terminal’s keyboard, which was placed so that the subjects’ arms rested comfortably on 
the table. 

Stimuli. Sets of 120 English words and 120 pronounceable nonwords, each having four 
letters, were used as prime stimuli. The frequency of the words in normal text equaled or 
exceeded 32 occurrences per million (Kucera & Francis, 1967). The nonwords were con- 
structed by altering individual letters of the words without violating English orthographic 
rules (Venezky, 1970). All of the primes appeared in uppercase characters. Each character 
subtended about 0.35” of visual angle in width and 0.5” in height at a viewing distance of 
35 cm. The test stimuli were left and right arrows, which subtended a horizontal visual 
angle of 1.05”. 

Design. For each subject, the experiment was divided into four l-h sessions conducted 
on separate days within a l-week span. The first and second sessions provided instructions 
and practice on various aspects of the adaptive response-priming procedure. The third and 
fourth sessions were used to collect the reported data. 

Session 1 began with three different blocks of 30 instruction trials. During the first block, 
subjects had to make lexical decisions about whether strings of letters were words or 
nonwords. The events on these trials were similar to those in subsequent blocks, except 
that no arrows were presented as stimuli, and responses occurred directly to the letter 
strings. During the second block, the subjects performed a pure arrow-discrimination task 
for which keypress responses were made to right and left arrows without the benefit of any 
informative prime stimuli. The third block introduced the adaptive response-priming pro- 
cedure with a combination of valid primes (words and nonwords) and test stimuli (arrows). 
Following these instruction blocks, there were seven additional practice blocks of 72 trials 
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with the priming procedure. Session 2 replaced the initial three instruction blocks with a 
warmup block of 20 trials involving the priming procedure, but was otherwise similar to 
Session 1. 

Sessions 3 and 4 began with a warmup block of 20 trials followed by seven test blocks 

of 72 trials. Seventy-five percent of the trials per block were “regular” ones on which a 
test stimulus actually appeared. The other 25% were “catch” trials on which there was no 
test stimulus (right or left arrow). We included the catch trials to monitor and discourage 
premature responses (anticipations). The unprimed, partially primed, and completely 
primed conditions each occurred with one-third probabilities during the regular trials and 
during the catch trials. On the regular trials, right arrows always followed the word primes, 
and left arrows always followed the nonword primes. Each type of test stimulus had a 
probability of one-half, as did each type of prime. Given these constraints, the order of the 
trials was randomized. All of the words and nonwords were used at least once over the 
course of a session. This yielded a total of 504 trials (i.e., 378 regular and 126 catch) per 
session to be analyzed for each subject.‘* 

Procedure. On each regular trial, four pound signs (####) first appeared in the center 
of the display screen as an initial warning signal. This signal had a duration of 500 ms, 
which was chosen to maximize the subjects’ level of alertness, based on previous studies 
of general foreperiod effects (Bertelson, 1967; Posner & Boies, 1971). When the trial in- 
volved the partially primed or completely primed condition, the pound signs were replaced 
by a valid prime stimulus (word or nonword) for a variable duration (priming interval). 
When the trial involved the unprimed condition, no prime was displayed, in effect yielding 
a priming interval of zero. Next the display was erased, and two dashes appeared for 85 
ms in the positions reserved previously for the second and third characters of the prime 
stimulus. The dashes served as a final warning signal that helped to equalize subjects’ 
alertness regardless of the duration of the priming interval.t9 After the final warning signal, 
the two center dashes changed into an arrow (i.e., test stimulus) that abruptly moved one 
character position to the right or left. Specifically, a left arrow appeared as a less-than sign 
to the left of two dashes in character positions 1 and 2 (<- -), and a right arrow appeared 
as a greater-than sign to the right of the two dashes in character positions 3 and 4 (- ->). 
The arrow remained visible until either a response was recorded or 1500 ms elapsed. Re- 

Is A number of other ancillary trials were also included in each of these blocks. At the 
start of each block, three warm-up trials occurred to get the subject in a state of equilibrium 
before the ensuing test trials. Moreover, an extra recovery trial was inserted after each 
incorrect response, allowing subjects to regain their composure before proceeding. 

I9 The effectiveness of the final warning signal is demonstrated by results of a control 
study run with four other subjects (Meyer et al., 1984). In the control study, the procedure 
was the same as for Experiment 1, except that all of the prime stimuli were uninformative 
(i.e., “neutral”) rows of four X’s rather than informative (valid) words and nonwords (cf. 
Neely, 1976; Posner & Snyder, 1975). The priming interval was short, medium, or long. A 
final warning signal (two centered dashes) immediately preceded the onset of each test 
stimulus for 85 ms. Despite the variable duration of the neutral prime, the mean reaction 
times were relatively constant. A difference of only 16 ms emerged between the means 
obtained with the short and long priming intervals. While the difference was statistically 
significant [t(3) = 4.6, p < .05], it was much less than the 77 ms effect obtained with the 
valid primes in Experiment 1. This demonstrates that the present priming effects cannot be 
attributed only to general foreperiod effects and fluctuations of subjective alertness (cf. 
Bertelson, 1967; Posner & Boies, 1971). Other evidence against the presence of general 
foreperiod effects appears in Experiments 2 and 3. 
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sponses were made using the 2 and slash (0 keys of the terminal keyboard. The subject 
pressed either the slash key with the right index finger for a right arrow, or the Z key with 
the left index finger for a left arrow. Subjects were instructed to use the prime stimuli for 
preparing fast responses to the test stimuli. However, they were also instructed that when 
an arrow appeared, they had to stop processing the prime and proceed with responding to 
the arrow. It was emphasized that producing a fast accurate response had highest priority. 
The catch trials were similar to the regular trials, except that the final warning signal 
persisted for an additional 750 ms, and did not change into an arrow. Subjects had to 
withhold their responses on catch trials. 

After each trial, there was a feedback period followed by a l-s intertrial interval. If the 
subject made an error on a regular trial, the message INCORRECT appeared for 500 ms. 
If an anticipation occurred on a catch trial, the message PLEASE RESPOND ONLY 
WHEN ARROWS APPEAR was displayed for 500 ms. If any key other than the Z or slash 
key was depressed, the message PLEASE USE Z OR / KEYS ONLY appeared.20 

After each trial block, a chart was displayed to summarize the total correct responses, 
the number of errors, the mean reaction time, and the bonus point score for the block. 
Each correct response earned 100 points, each incorrect response lost 300 points, and each 
10 ms of reaction time on a trial lost 1 point in a subject’s overall score. For example, a 
correct response that took 500 ms earned 50 points. Subjects received a payment propor- 
tional to their net total of bonus points. The bonus points were converted to cash at a rate 
of le per 100 points. A typical bonus score for a session equaled about $2 to $2.50. There 
was a 1-min rest period between trial blocks, and an additional break of 3 min halfway 
through each session. 

Priming intervals. As mentioned previously, the priming interval in the unprimed con- 
dition was set to zero by proceeding directly from the initial warning signal to the final 
warning signal, without displaying a valid prime stimulus (word or nonword). This precluded 
any specific priming effect, giving us an unprimed distribution of reaction times. 

The completely primed condition involved a long priming interval of 805 ms. The long 
interval consisted of 720 ms for the presentation of the prime stimulus, plus another 85 ms 
for the final warning signal. We assume that subjects processed the prime stimulus fully 
during this interval, and that they were highly prepared when the test stimulus appeared, 
producing a completely primed distribution of reaction times. This is consistent with pre- 
vious lexical-decision research, where responses to words and nonwords have taken about 
500 ms (Meyer et al., 1975). 

The partially primed condition involved a medium priming interval that was set by the 
staircase tracking algorithm (Appendix 3). Starting with the third instruction block of Ses- 
sion 1, initial estimates of the ideal medium interval dz and temporal cutpoint T, between 
the theoretical unprimed and completely primed distributions of reaction times were ini- 
tialized at 200 ms and 350 ms, respectively. The initial cutpoint estimate was used as the 
tracking algorithm began adjusting the duration of the medium interval. On each subsequent 
block of Session 1, a new estimate of the cutpoint replaced the old one. The new estimate 
equaled the overall mean reaction time from the immediately preceding block. 

At the start of each block in Sessions 2 through 4, the cutpoint was reestimated by taking 
the unprimed and completely primed reaction times from the immediately preceding five 
blocks and finding a value of T, such that Eq. (9) held. The cutpoint estimate was updated 

*O This feedback was supplemented by additional information during the warm-up and 
practice trials. If the subject was correct on them, then the message CORRECT was dis- 
played for 500 ms. Also, bonus points were displayed after each of these trials, allowing 
subjects to learn the benefit of speed and cost of errors. 
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regularly, accommodating any changes in subjects’ performance due to practice effects. We 
replaced old samples off,(t) and&(t) with new ones after each trial block, keeping a backlog 
of data from the last 60 trials for estimation purposes. For example, the cutpoint on Block 
2 of Session 3 was calculated from data on Block 1 of Session 3 combined with data from 
previous blocks of Session 2. 

Concurrently, the duration of the ideal medium priming interval, d$ was estimated on a 
trial-by-trial basis as outlined in Appendix 3. The tracking algorithm was applied separately 
to data obtained with word primes and with nonword primes, using reaction-time cutpoints 
(TX) derived separately for each of the two prime types. This allowed possible differences 
in performance for the different primes to be accommodated. 

Subjects’ reaction times typically stabilized by the end of the second session. Across 
subjects and trial blocks, the ideal medium priming intervals averaged 185 ms for word 
primes and 203 ms for nonword primes. The difference between these averages is consistent 
with results from previous research on lexical decisions, which have revealed slower pro- 
cessing times for nonwords than words (Meyer & Schvaneveldt, 1971). 

Data analysis. Our analysis focused on data from Sessions 3 and 4. For the correct 
responses in those sessions, the means, standard deviations, and distributions of reaction 
times were estimated. We employed the maximum-likelihood statistical technique (Smith 
et al., 1982) discussed earlier to test the mixture predictions of the two-state discrete stage 
model and a three-state model [Eqs. (1) and (4)]. We also examined the rates of errors on 
regular trials and anticipations on catch trials. An error consisted of pressing the wrong 
key after the onset of the test stimulus. An anticipation consisted of pressing a key after 
the onset of the final warning signal but before the onset of a test stimulus. 

The data were analyzed for each combination of prime stimulus and priming condition. 
We treated individual subjects and sessions separately. The results below have been taken 
from each subject’s session for which the partially primed condition yielded mean reaction 
times closest to midway between the means obtained in the unprimed and completely 
primed conditions. This maximized the power of our statistical tests, which depend on the 
unprimed and completely primed distributions of reaction times being as far apart as pos- 
sible. Data collected during Sessions 1, 2, and the ancillary (i.e., warm-up and recovery) 
trials of Sessions 3 and 4 were not analyzed. The analysis also excluded latencies of in- 
correct responses. 

Results 

Table 1 shows the means and standard deviations of reaction times for 
correct responses on regular trials, the error rates on regular trials, and 
the anticipation rates on catch trials from each subject, prime type, and 
priming condition. Each row of the table includes contributions taken 
over 63 regular trials and 21 catch trials. Several general facts about the 
data should be noticed. The prime stimuli had significant facilitative ef- 
fects on reaction times for all subjects. When there was complete priming, 
the effects averaged 77 ms [t(120) 2 8.0, p < .OOl in all cases]. When 
there was partial priming, the effects averaged 38 ms, half of the mean 
for the completely primed condition, but still highly significant [t(122) 3 
3.3, p < .Ol in all cases]. Error rates on regular trials were low, never 
exceeding 4% and not varying significantly across subjects, prime stimuli, 
or priming conditions (p > .lO). There was no evidence of a speed- 
accuracy trade-off on regular trials. However, there were substantial 
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TABLE 1 
Results for Individual Subjects in Experiment 1 

Subject 
Prime Priming Mean RT u Errors Anticipations 
type condition Cm4 bs) m m 

B.C. Word 

Nonword 

S.R. Word 

Nonword 

J.F. Word 

Nonword 

N.Y. Word 

Nonword 

Unprimed 304 
Partial 255 
Complete 240 
Unprimed 297 
Partial 246 
Complete 234 

Unprimed 293 
Partial 262 
Complete 234 
Unprimed 295 
Partial 267 
Complete 231 

Unprimed 306 
Partial 271 
Complete 230 
Unprimed 298 
Partial 267 
Complete 196 

Unprimed 311 
Partial 267 
Complete 212 
Unprimed 313 
Partial 278 
Complete 223 

23 0.0 
56 0.0 
26 0.0 
23 0.0 
47 1.6 
35 0.0 

32 0.0 
43 3.2 
47 1.6 
34 0.0 
56 0.0 
36 1.6 

26 0.0 
29 1.6 
59 1.6 
23 0.0 
30 1.6 
64 1.6 

20 0.0 
36 0.0 
46 0.0 
20 0.0 
37 1.6 
42 0.0 

0.0 
19.0 
0.0 
0.0 
4.8 

14.3 

0.0 
9.5 
9.5 
0.0 
4.8 
4.8 

4.8 
0.0 

14.3 
0.0 
0.0 

23.8 

0.0 
4.8 

33.3 
0.0 
9.5 

33.3 

numbers of anticipatory responses on catch trials. The overall anticipa- 
tion rate increased significantly @ < .05) with the degree of priming, 
averaging 0.6, 6.6, and 16.6% across subjects for the unprimed, partially 
primed, and completely primed conditions. Anticipations always occurred 
at least 100 ms after the onset of the final warning signal, during the 
period when there would have been a test stimulus if the trial were a 
regular one. Thus, anticipations could not be detected as such on regular 
trials. 

Some intriguing differences also occurred between the results of the 
individual subjects. Two of them (J.F. and N.Y.) made significantly more 
anticipatory responses than did the other two (B.C. and S.R.), especially 
in the completely primed condition (26.2% vs 7.2%; z = 4.25, p < X101). 
Likewise, the high-anticipation subjects had larger overall priming effects 
on reaction times than did the low-anticipation subjects [92 ms vs 63 ms; 
t(6) = 4.2, p < .Ol]. This pattern of individual differences has potentially 
interesting theoretical implications, as we discuss later. 
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Subject B.C. Figure 6 shows the distributions of reaction times pro- 
duced by subject B.C. when the prime stimuli were words. The top, 
middle, and bottom panels contain results from the unprimed, partially 
primed, and completely primed conditions, respectively. Solid histograms 
represent observed relative frequencies of reaction times, and dashed 
curves represent maximum-likelihood estimates of the best-fitting fre- 
quency distributions derived from the mixture prediction [Eq. (I)] of the 
two-state discrete stage model (cf. Goodness-of-Fit Tests). 

B.C.‘s reaction times for the word primes look very similar to the 
mixture distributions illustrated in Fig. 1, supporting the two-state model. 

UNPRIYED 

3.. CDMPLETELY PRIMED 

8.. ,,’ ‘, 

6 : / 
: : 

S+ 4 
0 loo Ri%TION %E (msz) 500 600 

FIG. 6. Distributions of reaction times produced by subject B.C. in Experiment 1 when 
the prime stimuli were words. The top, middle, and bottom panels show the data obtained 
in the unprimed, partially primed, and completely primed conditions, respectively. Solid 
histograms represent relative frequencies of observed times, and dashed curves represent 
best-fitting frequency distributions that satisfy the mixture prediction of the two-state 
discrete stage model. 
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In the partially primed condition, the empirical distribution was flatter 
and wider than those in the unprimed and completely primed conditions. 
The lower tail of the partially primed distribution overlapped entirely with 
the lower tail of the completely primed distribution, and the upper tail of 
the partially primed distribution overlapped entirely with the upper tail 
of the unprimed distribution. Combined deviations of the fitted frequency 
distributions (dashed curves) from the actual data (solid histograms) were 
not statistically significant [x2( 13) = 21.5, p > .05].*l The estimated value 
of the mixture parameter IT(~) was .64. This pattern is not consistent with 
the one expected from a prototypical cascade model (Fig. 3), raising 
doubts about whether the processing here involved a continuous growth 
of response activation over time. 

The distributions of reaction times produced by B.C. when the prime 
stimuli were nonwords had a pattern similar to that for word primes (Fig. 
7). The deviation of these distributions from the mixture prediction was 
insignificant [x*(13) = 16.5, p > .20], and the mixture parameter IT(~) 
equaled .66. 

Support for the mixture prediction is also evident from the reaction- 
time variances (Table 1). B.C. produced greater variances in the partially 
primed condition than in the unprimed and completely primed conditions. 
This is consistent with Eq. (3), which includes the inflation factor rr(d)[l 
- n(d)](M, - M,)* for the variance, V,(d), expected under the medium 
priming interval. 

Subject S.R. The results of S.R. followed the same pattern as those of 
B.C. Her reaction times had approximately equal or greater variances in 
the partially primed condition than in the unprimed and completely 
primed conditions (Table 1). The lower and upper tails of the partially 
primed distribution of reaction times overlapped entirely with those of 
the completely primed and unprimed distributions, respectively. Further- 
more, the mixture prediction of the two-state discrete stage model was 
well fit for both word primes [x2(6) = 4.6, p > .25] and nonword primes 
[x2(6) = 6.7, p > .25]. In these goodness-of-fit tests, the mixture param- 
eter n(d) had estimated values of .57 and .61, respectively. 

Subject J.F. However, quite different results emerged in the case of 
subject J.F. There were three distinctive characteristics of the observed 
data. First, the variance of the reaction times increased monotonically as 
the degree of priming increased; partial priming did not yield the largest 

21 The goodness-of-tit is especially compelling because hidden artifacts may spuriousiy 
inflate the calculated x2 values, which are sensitive to certain types of nonindependence 
that violate multinomial probability assumptions. For example, if the mixture parameter 
n(d) varies across experimental trials, or if the density functions of the basis distributions 
[i.e., f,(t) andfc(t)] vary from trial to trial, then this could decrease the apparent goodness- 
of-tit of the two-state discrete stage model, even though the model is actually valid. 
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FIG. 7. Distributions of reaction times produced by subject B.C. when the prime stimuli 
were nonwords. 

variance. Second, the completely primed distribution had two separate 
peaks. The left peak contained a substantial number of reaction times 
faster than 200 ms, contrasting with the data of subjects B.C. and S.R., 
who produced no such times, whereas the right peak contained times 
more like the ones of those subjects. Third, the partially primed distri- 
bution was not well tit by a mixture of the unprimed and completely 
primed distributions [x*(13) = 36.7, p < .Ol], contrary to the two-state 
model. 

Furthermore, J.F.‘s data for the nonword primes were similar to his 
data for the word primes. A monotonically increasing variance of reaction 
times again occurred as the degree of priming increased (Table l), and 
the completely primed distribution had two separate peaks. Most of the 
reaction times under the left peak were less than 200 ms, whereas the 
right peak contained times greater than 200 ms. The partially primed 
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distribution had only a single peak, and it violated the mixture prediction 
of the two-state discrete stage model [x2(13) = 43.8, p < .Ol]. 

This pattern of results is inconsistent with a prototypical cascade model 
as well as the two-state discrete stage model. Although the cascade model 
does not make a finite-mixture prediction, it lacks any easy way of ex- 
plaining the observed trend in the variances of the reaction times and the 
bimodality of the completely primed distribution. 

Subject N. Y. The results from subject N.Y. looked much like those of 
J.F. Her reaction-time distributions in the partially primed condition did 
not have the largest variances (Table 1). Instead, the largest variances 
occurred with complete priming, and the completely primed distributions 
were bimodal. The left peaks of those distributions contained many times 
less than 200 ms, whereas the right peaks contained times comparable to 
those of subjects B.C. and S.R. in the completely primed condition. Sig- 
nificant deviations again emerged when we tested the mixture prediction 
of the two-state model.against these data [x2(11) = 38.2, p < .OOl, for 
word primes; x2(11) = 36.8, p < .OOl for nonword primes]. 

Test of the three-state model. Although the results from J.F. and N.Y. 
are not consistent with the two-state discrete stage model, a three-state 
model may fit them reasonably well. The possible existence of three 
distinct preparatory states is suggested, in particular, by the bimodality 
of these subjects’ completely primed distributions of reaction times. Left 
peaks of the latter distributions, which include many very fast (i.e., less 
than 200 ms) times, could correspond to an extremely high state of prep- 
aration. Right peaks could correspond to a more moderate state that lies 
between the extremely high state and the unprepared state that is re- 
flected by the reaction-time distributions in the unprimed condition. If 
J.F. and N.Y. experienced all three states, depending on the length of the 
interval between the prime and test stimuli, but B.C. and S.R. experi- 
enced only the unprepared and moderately prepared states, then this 
would perhaps account for the differences observed between these two 
pairs of subjects. 

One way of testing for three preparatory states would involve exam- 
ining reaction-time distributions obtained under four or more different 
priming conditions (e.g., based on a short, a long, and two medium 
priming intervals). As outlined earlier, our maximum-likelihood statistical 
technique allows the mixture prediction of an n-state discrete model 
to be assessed whenever 12 + 1 empirical distributions of reaction times 
are available (n 3 2). However, Experiment 1 included only three priming 
conditions (i.e., unprimed, partially primed, and completely primed), 
which makes it impossible to evaluate a three-state model for subjects 
J.E and N.Y. using this approach. 

We have therefore taken a somewhat different approach toward ana- 
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lyzing their data further. As part of the subsequent analyses, the com- 
pletely primed distributions of reaction times were divided into two parts, 
based on an assumed correspondence between each part and a distinct 
underlying preparatory state. This division, together with the distribu- 
tions of reaction times from the unprimed and partially primed conditions, 
gave us additional leverage for testing a three-state discrete model despite 
our original use of only three priming conditions. 

Figure 8 shows how the analysis worked in the case of J.F. when the 
prime stimuli were words. Here we divided the completely primed dis- 
tribution (solid histogram, lower panel) into one part that contained reac- 
tion times faster than 200 ms (left peak) and another part that contained 
times greater than 200 ms (right peak). A value of 200 ms was used as a 
dividing point because of two related considerations. First, the minimum 

G 
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FIG. 8. Application of a three-state discrete model for the reaction-time distributions pro- 
duced by subject J.F. when the prime stimuli were words. 
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of the partially primed distribution (middle panel, solid histogram) fell at 
about the same point, midway between the two peaks of the completely 
primed distribution, suggesting that 200 ms might represent a lower bound 
for a moderate state of preparation. Second, the reaction times of antic- 
ipations on catch trials had a maximum of about 200 ms, and their dis- 
tribution appeared similar to the faster part (left peak) of the completely 
primed distribution on regular trials. 22 This suggested that the selected 
point of division might represent an upper bound for an extremely high 
state of preparation. 

After dividing the completely primed distribution in this way, we nor- 
malized each of its two parts to have frequencies equal to one. Then a 
three-state discrete model was fit to these parts along with the partially 
primed distribution and unprimed distribution (top panel, solid histo- 
gram), testing a generalized mixture prediction [Eq. (4)] for them. The 
dotted curves in Fig. 8 represent the best-fitting frequency distributions 
that are consistent with the three-state model. Combined deviations of 
the fitted distributions from the data were not statistically significant 
[x2(13) = 20.7, p > .05], unlike in the case of a two-state model. For 
example, the observed distribution under the partially primed condition 
appeared to closely match a mixture of the distributions associated with 
the unprimed condition and the right peak of the completely primed con- 
dition. 

Other evidence of three discrete states of preparation emerged from a 
parallel analysis of J.F.‘s reaction-time distributions for nonword primes 
(Fig. 9). Here again a value of 200 ms was used to divide the completely 
primed distribution into two parts, corresponding to its right and left 
peaks. Then we fit a three-state discrete model to these different parts 
along with the unprimed and partially primed distributions. Deviations 
from a generalized mixture prediction were not statistically significant 
[x2(13) = 20.9, p > .05]. It appeared that the two parts of J.F.‘s distri- 
bution for nonword primes in the completely primed condition came from 
two distinct states of preparation, only one of which (i.e., a moderately 
prepared state) was entered during trials with a medium priming interval. 

The results of subject N.Y., who also had relatively large priming ef- 
fects and many anticipatory responses, can be analyzed in the same way. 

22 The mean and standard deviation of .J.F.‘s anticipatory reaction times induced by the 
word primes on catch trials in the completely primed condition were 169 and 13 ms, re- 
spectively. On regular trials, the corresponding mean and standard deviation of the reaction 
times from the faster part (i.e., left peak) of the completely primed distribution (Fig. 8, 
bottom panel, solid histogram) were 133 and 24 ms, respectively. The similarity of these 
means and standard deviations is consistent with an assumed equivalence between the 
preparatory states that led to the anticipations on catch trials and the extremely fast re- 
sponses on regular trials. 
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FIG. 9. Application of a three-state discrete model for the reaction-time distributions pro- 

duced by subject J.E when the prime stimuli were nonwords. 

The mixture prediction of a three-state model provided a good fit to 
N.Y.‘s reaction-time distributions for the nonword primes [x*(10) = 17.0, 
p > .05], and a somewhat improved fit for the word primes [x*(9) = 27.5, 
p < .Ol]. As in J.F.‘s case, N.Y. apparently dealt with the test stimuli 
from either an unprepared, moderately prepared, or extremely prepared 
state, depending on the length of the interval between the presentation 
of the prime and test stimuli. 

Discussion 

Theoretical implications. The results of Experiment 1 illustrate the 
ability of the adaptive response-priming procedure to provide interesting 
insights about the time course of human information processing. We 
found clear evidence of a limited number of discrete preparatory states 
whose probabilities of occurrence varied as a function of the length of 
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the priming interval. Two of the subjects (B.C. and S.R.) produced data 
consistent with the mixture prediction of the two-state discrete stage 
model, and the other two (J.F. and N.Y.) produced data consistent with 
a three-state model. There was no evidence to support a prototypical 
cascade model or other members of the continuous class that assume 
gradually increasing preparation over time. It appears, in particular, that 
the processing of words and nonwords as priming stimuli did not induce 
a continuous growth of response activation under the present circum- 
stances. This outcome raises doubts about the generality of arguments 
against discrete stage models for word recognition (cf. McClelland, 1979). 

Of course, our results must be interpreted cautiously. Experiment 1 
involved a relatively restricted type of priming situation. The absence of 
additional preparatory states may have occurred here because of idio- 
syncrasies in the connections between the prime stimuli, test stimuli, and 
responses. Word primes do not ordinarily cue the impending occurrence 
of right arrows or right index-finger keypresses, and nonwords do not 
ordinarily cue the impending occurrence of left arrows or left index-finger 
keypresses. Perhaps this precluded the kind of automatic, as opposed to 
controlled, priming commonly associated with continuous activation 
mechanisms (e.g., see Neely, 1976). The apparent number of preparatory 
states may also have been limited by the relative ease of the simple arrow 
discrimination task (Swensson, 1972). More research is needed to deter- 
mine exactly what constraints cause component mental processes to pro- 
duce discrete or continuous outputs. 

Nevertheless, in several respects, Experiment 1 sets the stage for such 
research, and constitutes an initial step toward a more general taxonomy 
of information-processing tasks. One of our subsequent studies (Experi- 
ment 3) is designed to take us a next step along that way. Another study 
(Experiment 2) focuses more closely on the nature of the three discrete 
states of preparation that we have discovered already in looking at the 
results from subjects J.F. and N.Y. 

Interpretation of the three preparatory states. A possible interpretation 
of the three inferred preparatory states follows from certain facts about 
J.F. and N.Y.‘s anticipatory responses on catch trials in the completely 
primed condition. The relative frequencies of their anticipations averaged 
.26, roughly equaling the relative frequencies of their reaction times that 
were less than 200 ms on regular trials in the completely primed condition. 
Also, their anticipations usually embodied the information conveyed by 
the prime stimuli. For example, when the prime stimuli on catch trials 
were words, the subsequent anticipations were almost invariably right 
keypresses, indicating expectations of a right-arrow test stimulus. On the 
other hand, nonword primes induced a strong tendency toward left key- 
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presses. These facts suggest that the fastest responses by J.F. and N.Y. 
in the completely primed condition were executed independently of the 
test stimuli, but took the identities of the prime stimuli into account. 

Specifically, J.F. and N.Y. may have sometimes adopted a deadline 
strategy after fully processing the prime stimuli, if the priming interval 
was long enough. Under such a strategy, the termination of prime stim- 
ulus processing would start an internal timing mechanism that functions 
as an alarm clock for generating overt responses (Ollman & Billington, 
1972). The timer would generate an interrupt after a predetermined lag, 
regardless of subsequent external stimulus events, leading to a response 
based on the identity of the prime stimulus (i.e., right keypresses for 
words and left keypresses for nonwords). No evaluation of the test stim- 
ulus would occur once the timing mechanism starts. 

The deadline strategy accounts nicely for several aspects of J.F. and 
N.Y.‘s performance. It explains why they produced approximately equal 
relative frequencies of very fast responses during regular and catch trials 
in the completely primed condition, because once the timing mechanism 
starts, further control of behavior due to the test stimulus is relinquished. 
If the occasional use of this mechanism were combined with a prior two- 
state process of preparation, as described by the two-state discrete stage 
model, then we should see evidence of three preparatory states, just as 
we did. The three states would include an unprepared state, a moderately 
prepared state in which the subject has programmed a response to a test 
stimulus through a discrete priming process but not relinquished control 
to the internal timer, and an extremely prepared state in which the timer 
has taken control of response production following the second state. Fur- 
thermore, this interpretation allows the results of B.C. and S.R. to be 
reconciled with those of J.F. and N.Y., assuming that the former subjects 
seldom if ever passed beyond the second (i.e., moderately prepared) 
state, yet otherwise performed much in the same way as the latter sub- 
jects (cf. Meyer et al., 1984). 

The bias of some subjects toward anticipatory responses in Experiment 
1 comes as no great surprise. Our instructions were specifically to “use 
the prime whenever possible to speed up the response to the test atrow.” 
We discouraged errors on regular trials, but did not emphasize the im- 
portance of avoiding anticipations. Thus, it seems natural that at least 
some subjects (e.g., the more impulsive ones) would strive for an extreme 
state of preparation, not just a moderate one (Dickman, in press). Faced 
with a ratio of 75% regular trials to 25% catch trials, and reinforced by 
a substantial number of bonus points for fast regular-trial reaction times, 
the best way of maximizing the achieved point score might be to enter 
an extremely prepared state. 
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EXPERIMENT 2 

Experiment 2 was designed as a further test of the preceding ideas 
about the three discrete states of preparation revealed by Experiment 1. 
During the second experiment, we emphatically instructed subjects to 
avoid anticipations on catch trials. The negative feedback for committing 
such responses was increased accordingly. If a deadline strategy mediated 
the extremely prepared state found previously, then these more potent 
reinforcements against anticipations should reduce the apparent number 
of preparatory states, and all subjects’ performance should accord more 
closely with the mixture prediction of the two-state discrete stage model. 

To compensate for a decrease of the priming effects that might arise 
because of the altered instructions in Experiment 2, we made some other 
changes as well. In particular, the stimulus-response mapping for the 
adaptive response-priming procedure was modified. Subjects had to re- 
spond with their right index lingers when the test stimuli were right ar- 
rows, and with their right middle fingers when the test stimuli were left 
arrows. This mapping increased the spatial incompatibility between the 
test stimuli and responses, and it also increased response complexity by 
requiring keypresses with fingers on the same hand rather than homolo- 
gous fingers on different hands. Both of these increases should tend to 
raise the latencies of unprimed responses (Fitts & Seeger, 1953; Shulman 
& McConkie, 1973), thus magnifying the potential benefit that the valid 
primes provide.23 

We also increased the power of our statistical tests by including four 
priming conditions instead of just three. In Experiment 2, the conditions 
were unprimed, partially primed,, partially primed*, and completely 
primed. For the trials with partial and complete priming, words and non- 
words again served as the valid primes, cuing which responses should be 
made to the subsequent test stimuli. These two partially primed condi- 
tions involved different medium priming intervals. The first one had a 
medium, interval with a relatively short duration, and the second one had 
a medium, interval with a relatively long duration. This gave us greater 
potential for testing a three-state discrete model, should the need arise 
(cf. Experiment 1). 

23 With a relatively incompatible stimulus-response mapping, more complex processes 
are required to translate the test stimulus into an appropriate response, thereby increasing 
the observed reaction time when there is a neutral prime. However, the incompatibility of 
the mapping may not affect the reaction times when there is a valid prime and a long priming 
interval. Valid primes allow the translation between the test stimulus and response to be 
short circuited, yielding times no greater than would occur with a compatible mapping. 
Thus, the difference between the unprimed and completely primed reaction times should 
be greater. 
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Finally, another aim of Experiment 2 was to monitor and evaluate sub- 
jects’ average level of alertness more precisely. We sought further evi- 
dence that the effect caused by manipulating the duration of the priming 
interval was not due mainly to variations in subjective alertness (cf. Ber- 
telson, 1967; Posner & Boies, 1971). Between the initial and final warning 
signals in the unprimed condition, a neutral prime (row of four X’s) was 
therefore displayed for a period of time that equaled either the medium,, 
medium,, or long priming interval on the trials with valid (i.e., word and 
nonword) primes. If there are substantial fluctuations of alertness over 
the priming interval, then manipulating the duration of the neutral prime 
should yield large reaction-time differences. By contrast, if the final 
warning signal eliminates general foreperiod effects, as we argued pre- 
viously (Footnote 19), then the distributions of unprimed reaction times 
should not depend on the duration of the neutral prime. Also, the un- 
primed reaction-time distributions should have the same form as those 
obtained with the valid primes in the partially primed conditions when 
subjects happen to remain entirely unprepared. 

Method 
Subjects. Four University of Michigan undergraduates served as paid subjects. Two of 

them (W.M. and J.G.) were males, and the other two (A.M. and S.M.) females. Each subject 
received approximately $4 per session. None had been in Experiment 1. 

Apparatus and stimuli. The apparatus and stimuli were identical to those in Experi- 
ment 1. 

Design. The design was similar to that of Experiment 1 except for those changes needed 
to accommodate the four priming conditions and neutral prime stimulus. Four sessions were 
again run per subject, with the same number of trial blocks as before. During each test 
block, there were 64 trials, including 75% regular trials and 25% catch trials. A quarter of 
the trials were unprimed, a quarter were completely primed, and a half were partially 
primed. We used the medium, and medium, priming intervals on alternate blocks. Thus, 
over the course of a session, each of the four priming conditions occurred 25% of the time. 
The two types of test stimulus (i.e., right and left arrows) each had relative frequencies of 
.5 on the regular trials, and varied orthogonally with the duration of the priming interval. 
No test stimuli occurred on catch trials. Valid primes (i.e., words and nonwords) appeared 
equally often after the medium,, medium,, and long intervals. In the unptimed condition, 
the neutral prime always appeared instead. The duration of the neutral prime varied from 
trial to trial. On half of the unprimed trials, its duration was the same as for the valid 
primes presented with the medium interval assigned to that block. On the other half of the 
trials, the neutral prime had the same duration as the valid primes presented with the long 
priming interval. As before, word and nonword primes always cued the presentation of 
right and left arrows, respectively. Right and left arrows each followed the neutral prime 
on half of the trials, rendering it totally uninformative. 

Procedure. The procedure was similar to that of Experiment 1. Responses were made 
with the index and middle fingers of the right hand, using the period and slash keys of the 
terminal keyboard. Subjects had to press either the slash key with their right middle finger 
when a left arrow appeared, or the period key with their right index finger when a right 
arrow appeared. Thus, the stimulus-response mapping was relatively incompatible (Fitts 
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& Seeger, 1953). The instructions and feedback strongly discouraged anticipations on catch 
trials. 

Priming intervals. The long priming interval for the completely primed condition was 
again set at 805 ms. It included a duration of 720 ms for the display of the prime stimulus, 
plus 85 ms for the final warning signal. The two medium intervals for the partially primed 
conditions were set by the staircase tracking algorithm (Appendix 3). Across subjects and 
trial blocks, the medium, intervals used with word and nonword primes averaged 209 ms 
and 198 ms, respectively. The corresponding medium, intervals averaged 341 and 351 ms, 
respectively. 

Data analysis. In analyzing the data, we first examined the reaction times for the un- 
primed condition to determine whether the duration of the neutral prime intluenced perfor- 
mance through general foreperiod effects. No substantial differences emerged, indicating a 
reasonably constant level of subjective alertness. 24 Results in the unprimed condition were 
therefore combined across the various priming intervals used with the neutral primes. 

The rest of the data analysis was similar to that of Experiment 1. We tit the mixture 
prediction of the two-state discrete stage model [Eq. (l)] to empirical distributions of reac- 
tion times from the unprimed, partially primed,, partially primed,, and completely primed 
conditions. For each subject, the fitted distributions came from the session that yielded 
partial-priming effects most appropriate (i.e., ones whose mean RTs fell midway between 
those from the extreme conditions) for maximizing the power of the goodness-of-fit tests. 
Because the fits were quite good, it was not necessary to test a three-state model, even 
though the total of four priming conditions used here would have allowed such tests. 

Results 

Table 2 shows mean reaction times and standard deviations of correct 
responses on regular trials, error rates on regular trials, and anticipation 
rates on catch trials for each subject, type of prime stimulus, and priming 
condition. The mean reaction times decreased as the degree of priming 
increased. Overall, the priming effects averaged 25, 62, and 83 ms in the 
partially primed,, partially primed,, and completely primed conditions, 
respectively. The approximately equal separations among these effects is 
a successful product of the staircase tracking algorithm, which adjusted 
the medium, and medium, priming intervals to yield intermediate priming. 

Statistical tests of the priming effects for each subject yielded highly 
significant outcomes. Out of 24 cases, there were 16 that reached the .OOl 
significance level [t(90) 2 3.91. Another 4 cases reached the .Ol level 
[t(90) > 3.21. Of the 3 cases that failed to reach the .Ol level, all occurred 
in the partially primed, condition, where we would expect the degree of 
priming to be relatively small, and the effects there still went in the right 
direction. 

24 Across subjects, the reaction times obtained with the neutral primes averaged 374,370, 
and 373 ms when the priming interval was medium,, medium,, and long, respectively. 
Furthermore, the length of the priming interval did not markedly affect the error rates on 
regular trials or the anticipation rates on catch trials. The error rates averaged 0.8, 2.3, and 
3.1% for the medium,, medium,, and long intervals, respectively; there were no anticipatory 
responses regardless of which interval was used. 
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TABLE 2 
Results for Individual Subjects in Experiment 2 

Subject 
Prime Priming Mean RT u Errors Anticipations 
type condition hs) (ms) (%) (%I 

A.M. Word 

Nonword 

S.M. Word 

Nonword 

W.M. Word 

Nonword 

J.G. Word 

Nonword 

Unprimed 375 84 6.2 0.0 
Partial, 358 75 2.1 0.0 
Partial, 333 72 6.2 0.0 
Complete 283 67 2.1 12.5 
Unprimed 378 56 0.0 0.0 
Partial, 340 63 2.1 0.0 
Partial, 316 62 2.1 6.2 
Complete 286 50 0.0 12.5 

Unprimed 343 46 2.1 0.0 
Partial, 319 35 0.0 0.0 
Partial, 293 46 0.0 6.2 
Complete 277 54 0.0 0.0 
Unprimed 372 47 0.0 0.0 
Partial, 363 65 6.2 0.0 
Partial, 342 55 2.1 0.0 
Complete 308 64 0.0 6.2 

Unprimed 426 57 2.1 0.0 
Partial, 396 63 0.0 0.0 
Partial, 350 71 0.0 0.0 
Complete 306 80 0.0 0.0 
Unprimed 427 53 0.0 0.0 
Partial, 388 56 2.1 0.0 
Partial, 335 77 0.0 0.0 
Complete 335 78 0.0 0.0 

Unprimed 324 36 6.2 0.0 
Partial, 290 51 0.0 0.0 
Partial, 269 38 2.1 0.0 
Complete 263 39 0.0 6.2 
Unprimed 333 50 0.0 0.0 
Partial, 325 71 2.1 0.0 
Partial, 287 43 0.0 0.0 
Complete 258 45 0.0 0.0 

Error rates on regular trials were very low, averaging 2. I, 1.8, 1.6, and 
0.3% in the unprimed, partially primed,, partially primed,, and com- 
pletely primed conditions, respectively. A positive correlation was ob- 
served between the mean reaction times and error rates, indicating an 
absence of any substantial speed-accuracy trade-off. The anticipation 
rates on catch trials were also very low, exceeding zero only in the par- 
tially primed, and completely primed conditions, where they averaged 
1.6 and 4.7%, respectively. This is a marked change from Experiment 1, 
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TABLE 3 
Goodness-of-Fit Tests for the Mixture Prediction of the Two-State Discrete Stage Model 

in Experiment 2 

Subject 

A.M. 

SM. 

W.M. 

J.G. 

Prime 
type 

Word 
Nonword 

Word 
Nonword 

Word 
Nonword 

Word 
Nonword 

4d,,,,) ~(d,,,2) x2 d! P 

.32 

.45 

.oo 

.ll 

.08 

.29 

.55 

.ll 

.43 

.70 

.52 

.56 

.51 

.91 

1.00 
.55 

15.9 14 >.30 
15.5 14 >.30 

21.7 16 >.lO 
11.8 14 >.50 

16.8 16 >.30 
21.5 16 >.lO 

18.1 14 >.20 
15.9 16 >.30 

where some subjects (i.e., J.F. and N.Y.) had much stronger tendencies 
toward anticipations in the completely primed condition (Table 1). 

Table 3 shows goodness-of-tit tests for the mixture prediction of the 
two-state discrete stage model, which was applied to the reaction-time 
distributions from each subject. There are eight tests, corresponding to 
the various combinations of subjects and prime types. Unlike some of 
the tests in Experiment 1, none in Experiment 2 yielded a statistically 
significant deviation from the two-state model [x2(14) s 21.7, p 2 .I0 in 
all cases], and most of the tits were quite good. The completely primed 
condition did not induce bimodal reaction-time distributions, and fewer 
than 1% of the responses on regular trials were faster than 200 ms, 
whereas such times had been occasionally prominent before (cf. Fig. 8 
and 9).*j 

25 In some cases, the estimates of the mixture parameters [a(d,,,,) and T(d,,,J] did have 
rather extreme values (i.e., close to zero or one), which is not desirable because it creates 
a degenerate situation for testing the mixture prediction. We therefore reran the goodness- 
of-tit tests shown in Table 3, including only those combinations of subjects and priming 
conditions for which the mixture parameters fell between 0.2 and 0.8. This raised the 
obtained significance levels somewhat, but still there were no statistically reliable deviations 
@ > .lO), further supporting the two-state discrete stage model. It should also be noted 
that the variances of reaction times in the partially primed conditions were not always larger 
than those in the unprimed and completely primed conditions (Table 2), which may appear 
to somewhat weaken the support for the two-state model. However, the model does not 
necessarily predict that the partially primed conditions should yield the largest variances, 
because the variances there depend on exactly what the values of the mixture parameters 
and means of the basis distributions are [Eq. (3)]. Some values of these parameters could 
lead the variances in the partially primed conditions to be intermediate (see Appendix 1). 
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Discussion 

Like the two conservative subjects in Experiment 1 (B.C. and S.R.), 
each subject in Experiment 2 avoided anticipatory responses on catch 
trials and adhered to the mixture prediction of the two-state discrete stage 
model. The reaction-time data support the hypothesis that, in Experiment 
1, the third state of extreme preparation exhibited by the two other sub- 
jects (J.F. and N.Y.) may have arisen through an anticipatory deadline 
strategy used on some trials of the completely primed condition. When 
we discouraged such anticipations, the third state disappeared and, in- 
stead, subjects took advantage of the prime stimuli in a more limited 
fashion, becoming either moderately prepared or else remaining entirely 
unprepared. There was no evidence that response preparation increased 
gradually during the priming interval, contrary to what a prototypical 
cascade model and some other members of the continuous class would 
predict. 

Although the subjects in Experiment 2 did not enter an extremely high 
state of preparation, their priming effects were still relatively large. The 
average effect of complete priming was 83 ms for A.M., S.M., W.M., and 
J.G., whereas the conservative subjects of Experiment 1 exhibited an 
average effect of 63 ms. A larger priming effect presumably occurred here 
because the stimulus-response mapping was less compatible and thus 
allowed the valid prime stimuli to be more beneficial (Footnote 23). It is 
noteworthy that the decreased compatibility did not appear to induce a 
continuous process of preparation. This outcome, as we will discuss later, 
may help to interpret results of studies in which preparatory processes 
do seem to be more nearly continuous (Experiment 3). 

What we found under the unprimed condition is also relevant to some 
other concerns surrounding the use of neutral prime stimuli. Based on an 
assumption that neutral primes neither facilitate nor inhibit subjects’ per- 
formance, some investigators have estimated the “benefit” (facilitation) 
and “cost” (inhibition) of priming by comparing reaction times obtained 
with valid and invalid primes against those obtained with neutral primes 
(e.g., Neely, 1976, 1977; Posner & Snyder, 1975). Such cost and benefit 
estimates may reflect the relative contributions of controlled and auto- 
matic mental processes. However, critics have questioned whether the 
estimates are really meaningful (Antos, 1979; de Groot, Thomassen, & 
Hudson, 1982; Fischler & Bloom, 1979; Jonides & Mack, 1984; Schuberth 
& Eimas, 1977). Experiment 2 helps assuage these concerns. The distri- 
butions of partially primed reaction times obtained here conformed to an 
essentially perfect mixture of the unprimed and completely primed reac- 
tion times. It therefore appears that the neutral primes and the valid 
primes presented for a medium interval induced essentially the same ini- 
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tial unprepared state. This is what one would expect if, and only if, 
neutral primes are truly “neutral.” 

EXPERIMENT 3 

The purpose of Experiment 3 was to investigate the temporal properties 
of information processing in a somewhat more complex context than did 
Experiments 1 and 2. We again used the adaptive response-priming pro- 
cedure, but increased the number of alternative test stimuli and re- 
sponses. The relationship between the prime and test stimuli was also 
modified. These changes let us further assess the extent to which prep- 
aration is an all-or-none process as implied by the two-state discrete stage 
model. 

The test stimuli for Experiment 3 consisted of upward vertical arrows 
presented at each of four different locations on a display screen. The 
responses consisted of keypresses made by the index and middle fingers 
of the right and left hands. We assigned the responses to the test stimuli 
through a mapping that was compatible in some respects and incompatible 
in others, as described below (see Method). This increased the magnitude 
of obtained priming effects, thereby enhancing the power of our good- 
ness-of-fit tests. 

Three priming conditions were included as in Experiment 1. For valid 
primes in the partially primed and completely primed conditions, we again 
used words and nonwords. The words cued responses by fingers on the 
right hand, and the nonwords cued responses by fingers on the left hand, 
but these primes were no longer completely informative about exactly 
what the test stimulus or response would be. There were also uninfor- 
mative neutral primes, which we used in the unprimed condition. Because 
the prime stimuli never indicated exactly which test stimulus or response 
would occur, subjects could not fully prepare their responses ahead of 
time. This deterred anticipatory responses, allowing us to omit catch 
trials from the design. 

Experiment 3 extends previous research by Rosenbaum (1980) and 
Miller (1982), who primed subjects with respect to response parameters 
such as the effector, the direction, and the extent of a movement. In their 
studies, there were four to eight test stimuli, with a different response 
assigned to each. Valid priming information was presented before (Ro- 
senbaum, 1980) or as part of (Miller, 1982) the test stimuli. The results 
revealed that subjects could partially prepare the effector that would 
make a movement, even though certain aspects of the movement (e.g., 
its direction and/or extent) had not been completely determined yet. 
Miller (1982) found specifically that the hand used for making a manual 
response may be programmed before the selection of the type of finger 
(e.g., index or middle) that will produce the response. It was not clear 
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from his data, however, whether this hand preparation involves an all- 
or-none or a continuous process. The present procedure, which resembles 
Miller’s (1982) in its ensemble of responses, helps resolve this issue. If 
the partially primed distributions of reaction times obtained here approx- 
imate perfect mixtures of the unprimed and completely primed distribu- 
tions, then we would have evidence that hand preparation is a two-state 
discrete process. On the other hand, failure of the mixture prediction 
would implicate either a higher-order n-state (n > 2) discrete process 
or a continuous process. 

Method 
Subjects. Three University of Michigan undergraduates served as paid subjects. Two of 

them (L.K. and B.N.) were females, and the other (B.Z.) was male. Each subject received 
a payment of $4 per session. None had been in Experiments 1 or 2. 

Apparatus. The apparatus was the same as before. 
Stimuli. The prime stimuli were identical to those in Experiment 2. The test stimuli were 

arrowheads formed from two vertically aligned carets (a) on the display screen. Each test 
stimulus appeared above one of four adjacent locations arranged horizontally across the 
screen, with a separation of about 0.4” of visual angle between locations. The stimuli 
mapped in a crisscross fashion onto the four alternative keypress responses. Given this 
mapping, the left exterior and left interior test stimuli corresponded to movements of the 
right index and right middle lingers, respectively, whereas the right exterior and right in- 
terior test stimuli corresponded to movements of the left index and left middle lingers. 

Design. The design was similar to those of Experiments 1 and 2. The relevant factors 
were priming condition (unprimed, partially primed, and completely primed), type of prime 
stimulus (word, nonword, and neutral), and response type. Each priming condition had a 
relative frequency of one-third. In the partially primed and completely primed conditions, 
half of the trials involved word primes, and the other half involved nonword primes. When 
the prime stimulus was a word, the subsequent test stimulus had a 3 probability of being 
a vertical arrow in the right exterior position, and a 5 probability of being a vertical arrow 
in the right interior position. When the prime stimulus was a nonword, the subsequent test 
stimulus had a .5 probability of being a vertical arrow in the left exterior position, and a 5 
probability of being a vertical arrow in the left interior position. Thus, as mentioned earlier, 
the valid primes indicated which hand but not which specific finger to use for responding. 
In the unprimed condition, the prime stimulus was always neutral (i.e., a row of four X’s). 
Each of the four types of test stimuli (arrows) and associated responses followed the neutral 
prime equally often, making it entirely uninformative. There were no catch trials. 

Procedure. The procedure was similar to that of Experiment 2. On each trial, an initial 
warning signal (pound signs) appeared for 500 ms. Next a four-character prime stimulus 
was presented. The duration of the prime depended on the priming condition. To terminate 
the priming interval, the prime stimulus was removed, and four dashes (- - - -) were 
displayed in a horizontal row for 85 ms where the characters of the prime had been. The 
dashes served as a final warning signal and as a set of fixation markers. After the final 
warning signal, one of the four dashes changed abruptly into a test stimulus. Subjects 
responded by pressing either the Z, X, period (.), or slash (0 key on the terminal keyboard, 
which rested under the left middle, left index, right index, and right middle fingers, re- 
spectively. 

Priming intervals. For half of the trials in the unprimed condition, the neutral prime had 
a duration equal to the medium priming interval, and for the other half, it had a duration 
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equal to the long priming interval. The long interval, which was also used with valid primes 
in the completely primed condition, equaled 805 ms. The medium interval was set through 
the staircase tracking algorithm (Appendix 3). Separate medium intervals were tracked for 
each possible combination of prime stimulus and response type. The durations of the me- 
dium intervals averaged 361, 330, 284, and 313 ms across subjects for the left index, left 
middle, right index, and right middle fingers, respectively. There was a moderate effect of 
the prime type (i.e., word vs nonword) on the duration of the medium priming intervals. 
Word primes yielded medium intervals that were 47 ms less on the average than those for 
nonword primes, consistent with previous results (Experiment 1). 

Data analysis. The data were analyzed as in Experiments 1 and 2. We again checked 
whether the duration of the neutral primes in the unprimed condition affected performance. 
No significant differences emerged. 26 Thus as part of subsequent analyses, results from , 
the medium and long priming intervals of the unprimed condition were combined for com- 
parisons with results from the partially primed and completely primed conditions. 

Results 

Tables 4, 5, and 6 summarize the mean reaction times and standard 
deviations of correct responses and the error rates for subjects B.Z., 
B.N., and L.K., respectively. Table 7 contains the goodness-of-fit tests 
used to compare these subjects’ empirical reaction-time distributions 
against the mixture prediction of the two-state discrete stage model. 

Before examining the results of individual subjects in more detail, sev- 
eral general facts should be highlighted. Error rates were very low, av- 
eraging 0.8, 1.4, and 0.4% in the unprimed, partially primed, and com- 
pletely primed conditions. The mean reaction times decreased as the 
degree of priming increased, being 450, 389, and 350 ms, respectively, 
under the three conditions. The priming effects averaged 61 and 100 ms 
in the partially primed and completely primed conditions, and they were 
generally consistent across the individual subjects [t(77) 3 2.0, p < .05, 
in all but one case, i.e., subject L.K. for the partially primed condition 
involving nonword primes]. From each subject’s reaction-time distribu- 
tions, an interesting pattern may be induced. In particular, the goodness- 
of-fit between the two-state discrete stage model and the data appears to 
depend systematically on which combinations of test stimuli and re- 
sponses are considered. 

Subject B.Z. For subject B.Z., the two-state model’s mixture predic- 
tion was supported when the test stimuli required responses by either of 
the two index fingers (Table 7). The tit in the case of the right index finger 
did not yield significant deviations [x2(6) = 5.6, p > .30], and a similarly 
good tit occurred in the case of the left index finger [x2(6) = 7.8, p > 

26 Across response types and subjects, reaction times averaged 452 and 448 ms, respec- 
tively, when the duration of the neutral prime was medium and long. Errors occurred on 
less than 1% of the trials in the unprimed condition regardless of how long the priming 
interval was. There were no anticipatory responses. 
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TABLE 4 
Results for Subject B.Z. in Experiment 3 

Prime 
type 

Response 
type 

Priming 
condition 

Mean RT 
(ms) 

IJ 
(ms) 

Errors 
(%I 

Word ri 

rm 

Unprimed 441 67 0.0 
Partial 385 76 0.0 
Complete 339 65 0.0 
Unprimed 549 80 0.0 
Partial 432 92 2.4 
Complete 368 96 0.0 

Nonword li Unprimed 475 65 0.0 
Partial 399 73 2.4 
Complete 363 72 0.0 

lm Unprimed 531 101 0.0 
Partial 430 79 0.0 
Complete 368 128 2.4 

Note. ri = right index; rm = right middle; li = left index; lm = left middle. 

.20]. Figure 10 illustrates this outcome. It shows B.Z.‘s unprimed, par- 
tially primed, and completely primed reaction times (solid histograms) 
together with best-fitting frequency distributions (dashed curves) when 
the test stimulus was a left exterior arrow and the response was a key- 
press by the right index finger. The pattern is similar to what happened 
for subjects B.C. and S.R. in Experiment 1 (e.g., Figs. 6 and 7). 

TABLE 5 
Results for Subject B.N. in Experiment 3 

Prime 
type 

Response 
type 

Priming 
condition 

Mean RT 
(ms) 

cl 
bs) 

Errors 
(%I 

Word ri 

rm 

Unprimed 390 39 2.4 
Partial 329 48 0.0 
Complete 304 47 0.0 
Unprimed 362 92 0.0 
Partial 329 87 0.0 
Complete 287 60 0.0 

Nonword Ii 

lm 

Unprimed 375 67 0.0 
Partial 336 39 0.0 
Complete 330 35 0.0 
Unprimed 401 98 2.4 
Partial 331 68 9.5 
Complete 272 63 2.4 

Note. ri = right index; rm = right middle; li = left index; lm = left middle. 
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TABLE 6 
Results for Subject L.K. in Experiment 3 

Prime 
type 

Response Priming 
type condition 

Mean RT 
(ms) 

(T Errors 
(ms) (W 

Word ri Unprimed 511 80 0.0 
Partial 434 88 0.0 
Complete 399 64 0.0 

rm Unprimed 517 48 0.0 
Partial 456 84 0.0 
Complete 406 77 0.0 

Nonword li Unprimed 425 72 0.0 
Partial 415 89 2.4 
Complete 379 37 0.0 

lm Unprimed 422 83 4.8 
Partial 394 49 0.0 
Complete 383 65 0.0 

Note. ri = right index; rm = right middle; Ii = left index; lm = left middle. 

In contrast, the two-state model fit B.Z.‘s reaction times much less 
well for the middle-finger keypresses. For example, Figure 11 shows what 
happened when the test stimulus was a right interior arrow and the re- 
sponse was a keypress by the left middle finger. Here the deviation of 
the actual data from the best-fitting frequency distributions that satisfy 
the model’s mixture prediction was highly significant [x2(6) = 30.6, p < 

TABLE 7 
Goodness-of-Fit Tests for the Mixture Prediction of the Two-State Discrete Stage Model 

in Experiment 3 

Prime Response 
Subject type type 44 x2 df P 
B.Z. Word ri .59 5.6 6 >.30 

Nonword iim 
.72 13.5 6 <.05 
.72 7.8 6 >.20 

lm .I0 30.6 6 <.OOl 

B.N. Word ri .85 9.5 6 >.I0 
rm .83 11.8 6 <.lO 

Nonword li .78 4.0 6 >.50 
lm .28 21.6 6 <.Ol 

L.K. Word ri .74 7.5 6 >.20 
rm .70 17.8 6 <.Ol 

Nonword li .21 4.7 6 >.50 
lm .35 1.5 6 >.50 

Note. ri = right index; rm = right middle; Ii = left index; lm = left middle. 
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FIG. 10. Observed distributions of reaction times (solid histograms) and best-fitting fre- 
quency distributions based on the two-state discrete stage model (dashed curves) for subject 
B.Z. in Experiment 3 when the responses were keypresses by the right index finger and 
the condition was unprimed (top panel), partially primed (middle panel), or completely 
primed (bottom panel). 

.OOl]. A significant deviation also occurred when the responses were right 
middle-finger keypresses [x*(6) = 1.35, p < .051. 

It should be stressed that these deviations differ markedly from the 
failures of the two-state discrete stage model found for the less conser- 
vative subjects of Experiment 1 (i.e., J.F. and N.Y.). The middle-finger 
reaction times of B.Z. do not suggest a three-state discrete model of 
preparation (cf. Figs. 8 and 9). Instead, there is a pattern that appears to 
fit better with what a prototypical cascade model or other member of the 
continuous class would predict (e.g., Fig. 3). B.Z.‘s partially primed dis- 
tributions for the middle fingers had relatively small variances, were 
shaped similarly to those of the unprimed and completely primed distri- 
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FIG. Il. Subject B.Z.‘s observed reaction-time distributions and best-fitting frequency dis- 
tributions for a two-state model when the responses were keypresses by the left middle 
finger. 

butions, and did not overlap entirely with them. No strong evidence of 
bimodality occurred in any of the distributions for his middle fingers. 

Subjects B.N. and L.K. An analogous pattern of good and bad fits to 
the two-state discrete stage model appears in the data of the other two 
subjects (Table 7). When they responded with the right and left index 
fingers, the data did not deviate significantly from the mixture prediction 
of the two-state discrete model. However, when they responded with the 
right and left middle fingers, considerably larger deviations emerged [x2(6) 
2 11.8, p < .IO, in 3 of 4 cases]. Again the deviations tended toward 
what would be expected from a prototypical cascade mode1.27 

*’ Only L.K.‘s left middle-finger responses failed to follow the pattern of significant de- 
viations exhibited by the other two subjects [x*(6) = 1.5, p > 501. This may have happened 
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Discussion 

Experiment 3 produced some striking results. In all, there were six 
goodness-of-fit tests based on reaction-time distributions for index-finger 
responses. Every one gave relatively small x2 values (p > .lO), indicating 
a reasonably good fit to the mixture prediction of the two-state discrete 
stage model, and supporting the hypothesis of all-or-none preparation. 
For five of these tests, the fit was quite good @ > .20). However, four 
of six tests based on reaction-time distributions from middle-finger re- 
sponses produced rather large x2 values (p < .OS>, failing to satisfy the 
mixture prediction, Three of these tests were highly significant (p < .Ol). 
The middle-finger responses appeared to be more in line with predictions 
derived from a prototypical cascade model. They produced partially 
primed reaction-time distributions with single modes, moderate vari- 
ances, and tails that did not extend as far as those of the unprimed and 
completely primed distributions, suggesting a form of continuous rather 
than all-or-none preparation. 

This pattern cannot simply be attributed to differences in the lexical 
status of the prime stimuli or to the incompatibility of the stimulus- 
response mapping. Word and nonword primes each yielded some evi- 
dence for the two-state discrete model as well as some against it. Thus, 
another factor presumably modulates if and when preparation is a dis- 
crete as opposed to continuous process. That factor seems to depend on 
more than just a variation of stimulus-response compatibility, since a 
relatively incompatible mapping was also used in Experiment 2, but no 
violations of the mixture prediction occurred there. 

A possible clue to understanding the present results stems from the 
fact that Experiment 3 included four alternative responses and partially 
informative, rather than completely informative, prime stimuli. For ex- 
ample, suppose that subjects try to simultaneously prepare responses by 
both the index and middle fingers of a hand, based on the cues extracted 
from such primes. Suppose also that the preparation process has limited 
capacity, and that readying each response consumes some of the available 
resources (cf. Gopher & Sanders, 1984). Then it might be relatively diffi- 
cult, even impossible, to have more than one response completely pre- 
pared at a given moment. Perhaps preparation is easier if at least some 
responses are activated gradually, as postulated by a prototypical cascade 
mode1.28 

because those responses enjoyed the smallest complete-priming effect (39 ms) in the entire 
data set of Experiment 3, resulting in relatively low power for our maximum-likelihood 
statistical technique. 

” Given the above account, the choice of exactly which responses to prepare in an all- 
or-none fashion and which to prepare gradually could depend on additional factors. Ana- 
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In this vein, it is interesting to recall that Experiment 2 also included 
both middle-finger and index-finger responses. However, only two re- 
sponses (i.e., right index and right middle) were required there, and the 
prime stimuli were completely informative, cuing a single response on 
each trial. The results supported the mixture prediction of the two-state 
discrete stage model for each type of finger, unlike in Experiment 3. Such 
an outcome implies that middle-finger responses do not necessarily pre- 
clude all-or-none preparation, when only one response has to be prepared 
at a time. Further research is therefore needed to determine exactly what 
the capacity requirements of preparing various finger movements are. 

GENERAL DISCUSSION 

Experiments 1 through 3 together document the complexity of human 
information-processing dynamics. Our observations based on the adap- 
tive response-priming procedure suggest that discrete preparatory states 
may occur under some circumstances but not others. We have tried ini- 
tially to specify what some of the relevant determinants are. They include 
the number of alternative responses to be prepared and the speed-ac- 
curacy trade-off strategies of individual subjects, which influence biases 
toward or away from anticipatory responses. Some groundwork has thus 
been laid for moving beyond the present application of our procedure to 
a more general consideration of priming phenomena and their time 
course. 

As intended, the present results bear on the issue of when it is appro- 
priate to use conventional reaction-time methods for studying informa- 
tion-processing dynamics. We have reported evidence of discrete pre- 
paratory states when subjects must contend with only two response al- 
ternatives. A two-state discrete stage model holds fairly well there, 
especially if subjects refrain from producing anticipatory responses. This 
bolsters the argument that measurements of reaction times and additive- 
factor analyses (Sternberg, 1969) are useful when an experimental task 
involves a limited number of responses. However, the argument now 
seems less persuasive for tasks that incorporate greater numbers of re- 
sponses. With nonbinary choice-reaction tasks, there may be a stronger 
tendency toward continuous rather than discrete processing, which would 
increase the likelihood of complex speed-accuracy trade-offs and de- 

tomi& studies suggest that the execution of the middle-finger responses may require more 
complex muscular control than does the execution of index-finger responses (Marble, l!%O). 
As a result, more capacity might be needed to prepare responses by the middle fingers than 
to prepare responses by the index fingers. Perhaps these different requirements bias subjects 
toward using an all-or-none preparation process for the index fingers and a continuous 
process for the middle fingers. 
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crease the potential applicability of conventional reaction-time methods. 
Speed-accuracy trade-off methods could have more utility where mul- 
tiple responses are required (cf. Wickelgren, 1977). 

Power of the Statistical Analyses 

Another issue still of importance concerns the power of our statistical 
analyses. In Experiments 1 and 2, we obtained a good fit between a two- 
state discrete stage model and the data of some subjects, whereas the 
data of other subjects were fit better by a three-state model. In Experi- 
ment 3, we again obtained a good fit of the two-state model for certain 
subsets of data (i.e., those produced when subjects responded with their 
index fingers), but the cascade model seemed to fit better for others (i.e., 
those produced when subjects responded with their middle fingers). This 
indicates that our analyses were sufficiently powerful to discriminate be- 
tween interesting alternative models, given the amount of data collected 
here. Nevertheless, it would be helpful to further assess the degree of 
power. 

We have therefore performed some stochastic computer simulations 
with a continuum of models that range from a two-state discrete model 
to a prototypical cascade model. 29 These simulations built on our pre- 
vious efforts to compare and contrast the predictions of the cascade 
model with those of the two-state model (Figs. l-3). They provide a 
firmer basis for specifying exactly how much power the present data 
analyses had against various members of the discrete and continuous 
classes. Such a specification is particularly important in light of our pre- 
vious exposition of the two classes, where we pointed out that some cases 
of continuous models may be able to closely mimic the properties of 
discrete models, and that conversely, some cases of discrete models may 
be able to closely mimic the properties of continuous models (see Theo- 
retical Caveats). By finding the “twilight zone” where one class fades 
into the other from a standpoint of empirical discriminability, one can 
judge whether or not a set of experiments has enough power for one’s 
intended purposes. 

Figure 12 outlines how our simulations worked. As before (Fig. 2), we 
began with a prototypical cascade model in which the presentation of a 
prime stimulus caused activation to grow in an exponential approach from 
an initial base level b, to an asymptote up. This growth is represented by 
the leftmost continuous curve of the figure, whose parameters are similar 
to those chosen previously. We further assumed that on top of the prime 

29 A simulation approach was followed because straightforward analytical solutions do 
not currently exist for predictions by the cascade model when the rate parameters of the 
activation-growth curves vary randomly (Ashby, 1982). 
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activation, the test stimulus caused additional activation to arise. The 
test-stimulus activation, which is not shown in Fig. 12, had the same 
general form as in Fig. 2. “Reaction time” was defined to be the amount 
of time from the onset of the test stimulus until the overall activation 
crossed the final response threshold. The value of the asymptotic acti- 
vation, up, induced by the prime stimulus fluctuated randomly in a Gaus- 
sian fashion from one simulated trial to the next, yielding reaction-time 
distributions rather than just constant times. 

Next we let the form of the activation due to the prime vary in other 
respects. A random fluctuation occurred in the total amount of time, ~,s, 
between the onset of the prime stimulus and the moment when its acti- 
vation-growth curve reached 90% of asymptote. Also, there was a pa- 
rameter 8 that represented a ratio of two quantities: (i) the amount of 
dormant time during which activation remained at the base level after the 
onset of the prime, and (b) the time 7.s taken for prime activation to reach 
90% of asymptote, measured from when the prime was presented. For 
example, the middle prime-activation growth curve in Fig. 12 has a value 
of 9 equal to one half. 

The parameter 8 may be viewed as a quantitative indicator of the degree 
to which a particular model along the simulated continuum is quasi-dis- 
crete or quasi-continuous. As 8 approaches 1, the prime-activation 
growth curves become more and more like a step function, mimicking 
the all-or-none preparation associated with the two-state discrete stage 

TIME 
FIG. 12. Schematic representation of the stochastic computer simulation used to assess the 

statistical power of the reported goodness-of-fit tests. 
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model. Models for which the values of 0 are relatively near to 1 have a 
marked quasi-discrete quality for two reasons. First, the large amount of 
dormant time incorporated in them constitutes a period during which the 
processing system lacks partial information for all practical purposes, just 
as in the two-state model. Second, as 8 approaches 1, the rate of growth 
in prime activation (T,,) becomes extremely large, approaching an instan- 
taneous transition from the initial base level to the asymptote. By con- 
trast, models for which the values of 0 are near 0 have a marked contin- 
uous quality. 

The simulations let us assess the effect of the priming interval on the 
form of the obtained reaction-time distributions as a function of 8. Spe- 
cifically, our aim was to see how well the mixture prediction of the two- 
state discrete stage model would fit the simulated data, given different 8- 
values and samples of simulated reaction times with approximately the 
same means, coefficients of variation, and numbers of observations (N 
= 100) per distribution as in Experiments 1 through 3. To the extent that 
the mixture prediction can be rejected by the present goodness-of-fit tests 
for values of 0 greater than 0, this would demonstrate high power against 
a range of instantiations of the cascade model. 

Figure 13 shows the results of the simulations. On the horizontal axis 
is 0. On the vertical axis is a measure of power, B, the probability of 
rejecting the mixture prediction of the two-state discrete model. When 8 
equals 0, which corresponds to a complete absence of dormant time, the 

,.dTr-+ 
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FIG. 13. A power curve that shows the probability (fi) of rejecting the mixture prediction 
of the two-state discrete stage model as a function of the parameter 8, which represents 
the relative amount of dormant time before activation starts to grow after the onset of a 
prime stimulus under the cascade model (cf. Fig. 12). 
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power is very high (p > .99), indicating high discriminability between the 
two-state model and a prototypical cascade model. The power continues 
to remain relatively high (p > S) until 8 exceeds S. When 8 reaches .7 
or greater, representing a large amount of dormant time, the power has 
dropped to about the .05 significance level associated with a Type I error 
[i.e., rejecting the null (two-state) hypothesis when it is true]. In this 
region, (.7 s 0 < l), we cannot discriminate various instantiations of the 
cascade model from the two-state model. However, the lack of power is 
not especially troublesome here. Matters would have to be stretched 
considerably to claim that cases with 6 greater than .7 preserve much of 
the original spirit of the cascade model. Our confidence in the strength 
of the present tests is therefore enhanced. 

Criticisms of the Adaptive Response-Priming Procedure 

Of course, some criticisms may be directed against the response- 
priming procedure. To apply the procedure for our purposes, certain as- 
sumptions were needed about how subjects process the prime and test 
stimuli under the imposed task demands. These assumptions were not 
completely justified beforehand, and their validity could be questioned. 
This limits possible conclusions from the reported experiments, but we 
believe that the limitations are not too severe, and that there are some 
counterarguments to help disarm the criticisms. 

Self-termination of prime processing. One assumption made earlier 
concerns the self-termination of prime processing. According to this as- 
sumption, subjects begin processing each prime stimulus immediately 
when it is presented, and persist until the onset of the test stimulus, at 
which moment the processing of the prime stops. In retrospect, the as- 
sumed self-termination has some firm basis. On roughly half the trials in 
the partially primed condition of Experiments 1 and 2, subjects performed 
the same as in the completely primed condition, but on the other half, 
performance was about the same as in the unprimed condition. This 
seems most likely to have happened because the processing of the prime 
stopped as soon as the test stimulus appeared. If the processing of the 
prime extended beyond the onset of the test stimulus, then subjects would 
fail to exhibit an unprepared state like the one observed in the partially 
primed condition. 

Utility of partial information. A related point concerns the utility of 
partial information extracted before a prime stimulus has been completely 
processed. Our theoretical development assumed that subjects could and 
would use whatever partial information became available from pro- 
cessing a prime stimulus during the priming interval, even though their 
attention had to be shifted to the test stimulus as soon as it appeared. 
Some of the results from Experiment 3 support this assumption. Evidence 



DISCRETE VS CONTINUOUS MODELS 505 

emerged there against a two-state discrete stage model for the preparation 
of responses by the middle fingers (Fig. 11). The reaction-time distribu- 
tions of middle-finger responses were more in line with what a prototyp- 
ical cascade model would predict. If partial information were generally 
ignored or unavailable, then such an outcome should not have occurred, 
given that partial information is part and parcel of the cascade model. 

Directions for Future Research 

There are a number of potentially fruitful directions for future research 
with the adaptive response-priming procedure and analysis of reaction- 
time mixture distributions. 

Valid versus invalid prime stimuli. Although we have used only valid 
prime stimuli in our experiments, the adaptive response-priming proce- 
dure may be easily extended to investigate the processing of invalid 
primes. As mentioned previously, some theorists have proposed that in- 
valid primes inhibit subjects’ ability to deal quickly with subsequent test 
stimuli (Neely, 1976, 1977; Posner & Snyder, 1975). This inhibition could 
involve different mechanisms than does the facilitation produced by valid 
primes. For example, “controlled” mechanisms could underlie inhibi- 
tion, while “automatic” mechanisms underlie facilitation. It is not yet 
known for certain which of these mechanisms produce discrete outputs 
and which produce continuous outputs. Our approach provides a natural 
way to pursue the matter further. 

Other substantive applications. The adaptive response-priming proce- 
dure may also have other substantive applications where theoretical con- 
troversies over information-processing dynamics remain unresolved. For 
example, some theorists have characterized mental imagery in terms of 
transformations (e.g., rotation and zooming) that gradually adjust the 
orientation or size of visual images from one setting to another (Kosslyn, 
Pinker, Smith, & Schwartz, 1979; Shepard, 1973, while others have char- 
acterized the transformation process as being discrete in nature (Just & 
Carpenter, 1976). These alternative accounts can be assessed by ob- 
serving how subjects perform with prime stimuli composed of visual 
forms in various orientations and sizes, testing for the presence of reac- 
tion-time mixture distributions (Goldberg, Meyer, Yantis, & Langolf, 
1985). 

Similarly, this approach may be applied to issues regarding the nature 
of selective visual attention and spreading activation in semantic memory. 
Some models of attention and spreading activation have postulated con- 
tinuous processes and others have postulated discrete processes.30 As in 

3o Tsal (1983) has suggested that shifting attention from one spatial location to another is 
analogous to the movement of a spotlight sweeping continuously across a spatial region. 
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the case of mental imagery, these models may be tested by presenting 
appropriate prime stimuli through the adaptive response-priming proce- 
dure and analyzing the resultant reaction-time distributions for the pres- 
ence of predicted mixtures (Yantis, 1985). 

Tracing the psychometric priming function. Finally, it may be instruc- 
tive to trace the psychometric priming function, q(d), in more detail than 
we have done so far. By definition, q(d) represents the probability that 
a reaction time observed under conditions of partial priming will not 
exceed a temporal cutpoint, T,, when the interval between the prime and 
test stimuli equals d. We used ‘P(6) previously to illustrate the objective 
of our staircase tracking algorithm for determining the ideal medium 
priming intervals in the partially primed condition (Fig. 5). However, this 
function could have other uses as well. 

The detailed shape of ‘P(6) can reveal more about the way that a given 
prime stimulus is processed. Suppose, in particular, that a two-state dis- 
crete stage model holds under a selected set of priming conditions. Then 
the amount of time from the presentation of the prime to the transition 
between the unprepared and fully prepared states may be represented by 
a random variable T, which has a cumulative distribution function G(d) 
and a probability-density function g(d). Given this representation, several 
facts follow. First, the mixture parameter IT(~) associated with a medium 
priming interval d would simply equal G(d), because the probability that 
a subject enters the prepared state in the partially primed condition is 
determined strictly by whether or not the transition time 7 happens to 
have a value less than d. Second, the psychometric priming function 
would be linearly related to the distribution function G(d), as follows:3’ 

On the other hand, Shaw (1984) proposed a model of attention that can account for similar 
phenomena without appealing to the spotlight metaphor. Extant data do not provide a strong 
basis for choosing between these two alternatives. 

31 The derivations of Eqs. (10) and (11) are straightforward. From the definition of G(d), 
we have G(d) = n(d), where m(d) represents the mixture parameter associated with the 
two-state discrete model and a medium priming interval d. This relation together with Eq. 
(1) of the text yields the following equality: 

where t is reaction time and TX is the reaction-time cutpoint of the staircase tracking al- 
gorithm. Furthermore, by definition TV(d) = P(r < T,(d). Combining the latter two equalities 
and rearranging terms yields Eq. (10). Differentiating both sides of Eq. (10) with respect to 
d, we arrive immediately at Eq. (11) for the slope, W(d), of the psychometric priming 
function. Looking at Eq. (1 l), it can be seen that ‘P(d) depends directly on the difference 
between F,(T,) and F&T,), that is, onthe amount of separation between the unprimed and 
completely primed distributions of reaction times. As their separation increases, the slope 
of ‘P(d) increases, making it easier to accurately locate the ideal medium priming interval, 
di (Appendix 3). 
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‘W4 = F’,V,) - ~u(~x)IG(4 + F,U,), (10) 
where F,(T,) and F,(T,) are defined as before [Eq. (9)l. Third, the slope 
(first derivative) q’(d) of the psychometric priming function would be 
proportional to the probability-density function g(d), that is, 

q’(d) = F,(T,) - ~“U,Md). (11) 
With these equations, we can work backward from the observed shape 

of the psychometric priming function to infer the shape of the distribution 
of transition times for completely processing the prime stimuli. The tran- 
sition-time distribution g(d) would reveal details of how subjects encode 
a prime stimulus, use it to retrieve stored information, and prepare motor 
programs. Moreover, because the subjects do not have to respond overtly 
to the primes, the shapes of q(d) and G(d) could provide purer reflections 
of these initial processing stages than do ordinary reaction times, which 
include an additional response-execution component (Sternberg, 1969). 
Analysis of the shape of vt(d) therefore represents a significant comple- 
ment to standard reaction-time techniques (cf. Sabol & DeRosa, 1976; 
Yellott & Hildreth, 1969). An investigator may obtain data for this anal- 
ysis simply by varying the duration of the priming interval over a rea- 
sonably wide range. 

APPENDIX 1 

Derivation of Reaction-Time Variances for an n-State 
Discrete Model 

Suppose that x is a continuous random variable, y is a discrete random 
variable whose sample space consists of the set of elements {yi; i = 1, 
2 * * 3 n}, and z is a nonrandom variable. Suppose also that x is a 
s;ochastic function of y, and that y is a stochastic function of z. Then 
from the axioms of conditional probability theory, we have 

E(xlz) = i E(xIYi)P(yiIz), (1.1) 
i= 1 

V(XIZ) = E(X’Iz) - [E(xIz)12 = i E(~*lY@‘(YiIz) - [E(x~z)I~, 
L 1 (1.2) 

i=l 

where Efxlz) is the mean (expected value) of x given z, and V(xlz) is the 
corresponding variance. 

Now consider an n-state discrete model (n > 2). Let x be reaction 
time t, yi be preparation state i (i = 1,2, . . . , n), and z be the duration 
d of the medium priming interval in the partially primed condition of our 
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adaptive response-priming procedure. Then, by definition, M,,(d) = 
ECrlz), V,,(d) = W(z), Mi = E(xlyi), and pi = P(YilZ), where M&O, 
V,(d), Mi, and ni(d) are as in the text. Substituting these expressions into 
Eqs. (1.1) and (1.2) yields 

M,(d) = i nimbi, 
i=l 

5 n,(d)E(t2)state i) 1 - [Mp~412. 
i=l 

(1.3) 

(1.4) 

Equation (2) in the text is equivalent to Eq. (1.3) with II = 2. Moreover, 
E(t2Jstate i) = Vi + M$ where Vi is the reaction-time variance under 
state i. Thus, Eq. (1.4) can be rewritten as 

VP(d) = i ni(d)(Vi + MT) 
1 

- [M&412 
i=l 

i ~i(d)Vi + i ri(dMf 1 - [Mp(412* (1.5) 
i=l i= I 

The middle term in Eq. (1.5) may be rewritten as 

$, him? = i!TiC4iM, - M,(d) + Mp(412 

= ~~i(d)[M~ - Mp(d)12 + 2Mp(d) iri(d)[Mi - Mp(41 
i=l + ~~~~(d)[M,(d)l~ i=’ 

= iPi(d)[Mi - Mb;;]’ + [Mp(d)12, (1.6) 
i=l 

where the last line of this equation results from applying Eq. (1.3). Sub- 
stituting Eq. (1.6) into Eq. (1.5) gives 

V,(d) = i ~i(d)Vi + i ni(d[Mi - M~(~12~ (1.7) 
i=l i= 1 

which is the same as Eq. (6) in the text. 
Eq. (3) in the text is simply a special case of Eq. (1.7) with n = 2. To 

see this, note that with 12 = 2, we have IT&@ = IT(~), I, = [l - IT(~ 
and 

M, - M,(d) = M, - h(d)M, + [1 - dd)lM,I 
= [l - 4d)lW~ - M,), (1.8) 
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M2 - M,(d) = M2 - bdd)M, + [l - +NMJ 
= -+Wf, - M,), (1.9) 

where n(d) is the mixture parameter of the two-state model. Substituting 
Eqs. (1.8) and (1.9) back into Eq. (1.7) yields 

V,(d) = 7~(d)V~ + [I - MiW2 + ~(d)[l - +412(M1 - &I2 
+ [l - ~~d)l[~(d)12~M, - %I2 

= 7~(d)V~ + [l - 7r(41V2 + n(d)[l - n(d,NM, - M2)2. (1.10) 

But V, = Vu, M, = Mu, V, = V,, and M, = MC. Thus, Eq. (1.10) is 
equivalent to Eq. (3) in the text. 

From Eq. (1. lo), we see that the variance of the partially primed dis- 
tribution under the two-state model may easily be larger than the vari- 
ances of the two basis distributions. For example, suppose that f,(t) and 
f,(t) have the same coefficient of variation, K, as defined by the following 
equation: 

K = S,IM, = SJM,, (1.11) 

where S, and S, are the standard deviations of the unprimed and partially 
primed distributions. Suppose also that S, < S,, which we expect because 
MC will generally be less than M,. Then V,(d) will be greater than max(V,, 
V,) whenever 

MC < [l - r(d) - K*]M,/[~ - ~(6) + K2]. (1.12) 

Inequality (1.12) means that with IT(~) = .5 and K = .15, V,(d) will exceed 
both Vu and V, whenever MC < .91M,, a common occurrence under our 
experimental conditions. 

The proof of the relationship between the coefficient of variation, mean 
reaction times, and reaction-time variances is straightforward. We wish 
to show that if Eq. (1.11) and inequality (1.12) hold, then VP > max(V,, 
V,) where max(V,, V,) = Vu. This may be done by manipulating in- 
equality (1.12). Specifically, inequality (1.12) implies that [l - n(d) + 
K~]M, < [l - n(d) - K~]M”, and rearranging the latter expression gives 

W, + M,h2 < [l - dd)lW, - &I. (1.13) 

Multiplying both sides of inequality (1.13) by T(~)(M” - MC) and sim- 
plifying the result leads to ~‘n(d)(Mf, - Mz) < n(d)[l - n(d)](M, - 
Mc)2, which may be rearranged to obtain 

K~T(~)M; < ~~n(d)hi’f + a(d)[l - n(d)](M, - MJ2. (1.14) 

Then adding [l - T(~)]K~M~ to both sides of inequality (1.14) and com- 
bining terms yields 

KIM; < IT(~)K’M~ + [l - ~r(d)]~~hf; + n(d)[l - T@)](M, - Mc>2. 
(1.15) 
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Because Eq. (1.11) stipulates that K’M~ = Vu and K*@ = V,, the left 
side of inequality (1.15) is the same as Vu, and, given Eq. (1. lo), the right 
side is the same as VP. Inequality (1.15) therefore implies VP > Vu = 
max(V,, V,), which is the claimed result. 

APPENDIX 2 

Derivation of Reaction-Time Distributions from a Prototypical 
Cascade Model 

Our derivation of the probability-density functions for reaction times 
predicted by a prototypical cascade model extends Ashby’s (1982) anal- 
ysis. We proceed by assuming that a prime stimulus is presented during 
a priming interval of duration d, and that the prime is then replaced with 
a test stimulus to which a response must be made. Reaction time t is 
measured from the onset of the test stimulus until a response threshold 
is crossed.32 

Given the preceding assumptions, the response activation A,(qd) at 
any time T after the onset of the test stimulus may be expressed under 
the model by the following set of equations (cf. Ashby, 1982; McClelland, 
1979): 

A,Vjd) = b, + apEp + @s(T), T 3 0 (2.1) 

~~~ = fi ‘pj 

j#i rpj - rpi ’ 

(2.2) 

(2.3) 

E,(T) = I - i K,iexp( - rsiT), 
i=l 

T 2 0 (2.4) 

(2.5) 

These expressions generalize Eqs. (7) and (8) of the text, which are sim- 
plified approximations to the response-activation functions. The integers 
I?Z and n denote the numbers of cascaded processes for dealing with the 
prime stimulus and the test stimulus, respectively. The terms rpi (i = 1,2, 

32 For simplicity, the present derivation treats response-execution time after the threshold 
crossing as zero (cf. McClelland, 1979). Our results can be easily generalized, however, to 
cases where the execution time equals any arbitrary positive constant. 
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. . . ) m) and rSi (i = 1,2, . . . , n) are fixed rrte parameters used in 
processing the prime stimulus and the test stimulus. Correspondingly, KPi 
and K,i are constant weighting parameters based on the relative magni- 
tudes of the rates associated with the different processes in cascade. The 
terms bP, up, and a, represent the base-level activation, asymptotic ac- 
tivation induced by the prime stimulus, and asymptotic activation induced 
by the test stimulus. It is assumed that they have normal distributions 
with respective means of 0, (I=~, and pas, and variances of u&,, a&, and 
afs. Thus, response activation A,(Tld) is also a normally distributed 
random variable with mean t~,,E,(d) + pJZ,(T) and variance cr& + 
~:,[qd)12 + &Lqm*. 

Now, conditional on the activation function exceeding the response 
threshold (Ashby, 1982), the cumulative distribution function of reaction 
times can be expressed as follows: 

F(qd) = P(t s T 1 dand t < ~0) = P[A,(l$f) 3 R 1 A,(@#) a R], (2.6) 

where t is reaction time. Furthermore, because A,(Tld) is a normal 
random variable, we can rewrite Eq. (2.6) as 

wq4 

where 

F(qd) = 

1 - &d --r 
i 

exp( -x*/2)& 

1 - Z(Y) 9 (2.7) 

and Z(Y) is the standard normal integral evaluated at Y. The quantity [l 
- Z( Y)] equals P(t < m). 

The probability-density function associated with F(@i) is obtained di- 
rectly by differentiating the left side of Eq. (2.7) with respect to T and 
evaluating the result for T = t. This yields 

V i KJ$xP(- rsiT) exP{ - [W(71412/21 
A44 = [ i=l 1 

m{l - z(y)}[a~p + u&)[E&# + c&[E,(T)]*]“* 3(2*8) 

where 

V = P.,,+& + ~&,(41*1 + &&U’M + CL&&OI. 
Equation (2.8) was used to generate the three density functions shown 
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in Fig. 3. For these functions, the mean base-level activation kbP equaled 
0.0, and the base-level variance c&, equaled 0.1. The asymptote of the 
prime-stimulus activation, up, had a mean pap of 2.0 and variance u& of 
0.2. The chosen values of d m the unprimed (top panel), partially primed 
(middle panel), and completely primed (bottom panel) conditions of Fig. 
3 correspond to the prime-stimulus activation reaching 0, 40, and 95% of 
its asymptotic value, respectively [i.e., E,(d) = 0.0, 0.4, and 0.951. The 
activation induced by the test stimulus involved four cascaded processes 
whose rates equaled 4, 16, 24, and 30, respectively. The asymptote of the 
test-stimulus activation, a,, had a mean p,aS of 10.0 and variance uz,‘, of 
1.0. The response threshold R was set at 7.0. The parameters used here 
were similar to ones selected for illustrative purposes by McClelland 
(1979) and Ashby (1982) in their studies of the cascade model. Note that 
with d = 0 and o&, = 1.0, Eq. (2.8) is identical to the density function 
derived by Ashby [1982, Eq. (4)].33 Our analysis extends his work by 
incorporating an additional contribution due to the presentation of a prime 
stimulus before the test stimulus. 

APPENDIX 3 

Details of Staircase Tracking Algorithm 

Experiments 1 and 3 

To select the duration of the ideal medium priming interval, d$ in 
Experiments 1 and 3, we began with an initial rough estimate, d,,,, chosen 
on an informal basis (e.g., 200 ms for word primes). This estimate was 
then adjusted iteratively over successive trials of the partially primed 
condition. Each reaction time, t, obtained with the medium priming in- 
terval was compared against the estimated cutpoint, TX, mentioned in the 
text. If t exceeded TX, then d, was increased by an increment 6 (e.g., 10 
ms). If t fell below TX, then d,,, was decreased by 6. In effect, the slower 
reaction times were treated as indicating too little priming, and the faster 
reaction times were treated as indicating too much priming. The medium 
interval was lengthened or shortened accordingly to produce an inter- 
mediate outcome. Eventually, the adjustment converged on the ideal, d,& 
which had the. property that there was a .5 probability of the partially 
primed reaction times exceeding the cutpoint, TX (Levitt, 1971). 

The rate at which this algorithm converges to the ideal medium priming 
interval depends on the relation between the probability-density functions 
of the unprimed and completely primed reaction times. Convergence is 

33 In part of his analysis, Ashby (1982) claimed that the cascade model predicts exceed- 
ingly large coefficients of variation (e.g., as large as .4) in reaction time. This claim stemmed 
from setting the base-level variance a& to unity. With smaller values of uf, the model 
predicts coefficients of variation more like what are typically observed in reaction-time 
experiments (e.g., .l to .2; cf. Fig. 3). 
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fastest and most accurate when f,(t) and f,(t) do not overlap with each 
other, allowing the psychometric priming function (Fig. 5) to range from 
zero to one. Disjoint density functions permit observed reaction times to 
be classified unambiguously as coming from one distribution or the other; 
in signal-detection terms (Green & Swets, 1966), no false alarms or misses 
occur then. To the extent that these density functions do overlap, the 
range of q(d) is compressed, requiring more reaction-time observations 
for the tracking algorithm to reach the ideal medium interval. It is there- 
fore desirable to have an overall priming effect as large as possible. 

Experiment 2 

We modified the tracking algorithm for Experiment 2, where there were 
two partially primed conditions, with medium, and medium, priming in- 
tervals, respectively. To track the ideal medium, priming interval, an es- 
timated duration (d,,) was initialized at 200 ms. Subsequently, the esti- 
mate was decreased by a decrement 6 whenever a trial with a medium, 
interval produced a reaction time less than the cutpoint, TX, which was 
defined as before. The estimate was increased by an increment 6 when- 
ever two successive trials with medium, intervals each produced reaction 
times greater than TX. We calculated the cutpoint TX as before [Eq. (9)]. 
The increments and decrements (? 6) equaled 10 ms each. This rule, 
which had a more stringent requirement for increments than for decre- 
ments, targeted the medium, interval on a shorter ideal duration, d,Z&, 
than did the one-up and one-down rule of Experiments 1 and 3. In par- 
ticular, whenever 1 - F,(T,) > .71, d& had the property that there was 
a .71 probability of the reaction times in the partially primed, condition 
exceeding TX (Levitt, 1971). By contrast, Experiment l’s rule yielded a 
corresponding probability of .5. 

To track the ideal medium, priming interval, we used the complement 
of the rule chosen for adjusting the medium, interval. The estimated du- 
ration (c&J was initialized at 350 ms. Whenever a trial with a medium, 
interval produced a reaction time greater than the cutpoint, TX, the esti- 
mate was increased by an increment 6. It was decreased by a decrement 
6 whenever two successive trials with medium, intervals both produced 
reaction times less than TX. This rule, which had a less stringent require- 
ment for increments than for decrements, targeted the medium, interval 
on a longer ideal duration, d&, than did the rule of Experiments 1 and 
3. In particular, whenever 1 - F,(T,) < .29, d& had the property that 
there was a .29 probability of the reaction times in the partially primed, 
condition exceeding TX (Levitt, 1971). 

Relation to Two-State Discrete Stage Model 
The performance of the staircase tracking algorithm is closely related 
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to the two-state discrete stage model. If the model holds, then in the 
limit, the tracking algorithm must satisfy the following equation: 

~p(T,ld~) = ~(d:)~,(T,ld~) + [l - ~W~)I~“(~,l43~ (3.1) 

where TX is the chosen temporal cutpoint, and F,(?jdi) is the cumulative 
distribution function of reaction times generated in the partially primed 
condition associated with the targeted ideal medium priming interval. 
This stems directly from Eq. (1) of the text involving the simple mixture 
prediction. Rearranging these terms, we have an expression for the mix- 
ture parameter: 

(3.2) 

Consequently, n(dz) may range anywhere from zero to one, depending 
on the amount of difference between FP (TX/d:) and F,(T,) relative to the 
amount of difference between F,(T,) and FJT,). If the probability-density 
functions of the unprimed and completely primed distributions do not 
overlap at all, then n(dz) would equal F,(T,Id~). 

In Experiments 1 and 3, for example, the algorithm was implemented 
such that F,(T,) = 1 - F,(T,), and F,(T,(dz) = S. Substituting these 
last equalities back into Eq. (3.2) yields a value of IT equal to a half. 
The algorithm was therefore set to produce a 50-50 mixture of the un- 
primed and completely primed reaction times in the partially primed con- 
dition, assuming that the two-state discrete stage model held. 

In Experiment 2, the tracking algorithm was implemented such that 
F,,(T,(d&) = .29 for the partially primed, condition, and Fp2(Tx(d&) = 
.71 for the partially primed, condition. The mixture parameter expected 
under the medium, interval was therefore .29 or less, and the mixture 
parameter expected under the medium, interval was .71 or greater. 

The up-and-down rule of the tracking algorithm can be changed to 
achieve other values of the mixture parameter as well. For example, 
suppose that we seek an ideal medium priming interval, d,f,, for which 
the mixture parameter v(dz) equals a specified probability p. Suppose 
further that we increase our estimate of dz by an increment p6 whenever 
the medium priming interval yields a reaction time greater than TX, and 
that we decrease our estimate of dz by a decrement (1 - p)6 otherwise, 
where the parameter p equals pF,(T,(d~) + (1 - p)F,(T,(d~), and TX is 
the same cutpoint as before [Eq. (9)]. Then the tracking algorithm would 
converge directly on the desired ideal. 

Moreover, the reaction-time cutpoint TX used in the algorithm has ad- 
ditional meaning under the two-state model. If the model is valid, and if 
the unprimed and completely primed distributions of reaction times have 
symmetric probability-density functions with equivalent shapes [i.e., f,(t 
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+ 4 = f,(r), t 2 0, where E is a positive constant of translation], then 
TX is the temporal value that satisfies Falmagne’s (1968) fixed-point prop- 
W [i.e., f,(T,.ld) = f&Q = f,U,)l. 
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