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A b s t r a c t - - W i t h  increasing frequency in shuttle operation, it is of interest to have more than one or two landing 
fields within the boundary of the reachable area of the reentry vehicle. This boundary, called the footprint, 
depends on the aerodynamic characteristics of the vehicle and is severely restricted by the deceleration and 
heating constraints imposed upon the atmospheric reentry trajectory. This paper gives a general assessment of 
the footprint as a function of various deceleration and heating constraints. The difficulties in the computation 
of the three-dimensional reentry trajectories with optimal modulation in both the angle-of-attack and the bank 
angle are alleviated by the following devices: (a) nondimensionalizing of the equations of motion and use of 
the density as the altitude variable; (b) use of the classical integrals of the motion; (c) transformation of the 
adjoint variables into physical variables; and (d) spherical rotation of the coordinates. 

l .  I N T R O D U C T I O N  

The lateral maneuver of a lifting reentry vehicle, ex- 
emplified by the space shuttle entry, is severely restricted 
by deceleration and heating constraints. By nature, the 
computation of optimal trajectories is very sensitive. Un- 
til now only purely numerical programs for specific ve- 
hicles have led to some meaningful results which arc, 
however, limited in scopell ,  21. This paper gives a gen- 
eral assessment of the footprint as a function of various 
deceleration and heating constraints. The difficulties in 
the computation of the three-dimensional reentry trajec- 
tories with optimal modulation in both the angle-of-attack 
and the bank angle are alleviated by the following de- 
vices: (a) nondimensionalizing of the equations of motion 
and use of the density as the altitude variable; (b) use of 
the classical integrals of the motion; (c) transformation 
of the adjoint variables into physical variables; and (d) 
spherical rotation of the coordinates. 

With the dimensionless equations of motion, it is pos- 
sible to specify just the maximum lift-to-drag ratio (L/ 

D) ..... as the sole physical characteristic of the vehicle. 
Hence the analysis applies to a whole class of vehicles 
having the same value for (L/D) ...... The integrals of the 
motion allow for the reduction of the order of the can- 
onical system. The transformation of the adjoint variables 
into physical variables makes the initial guess of unknown 
constants a much less arbitrary task. Finally, the rotation 
of the coordinates on a spherical earth reduces the corn- 
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putation of the footprint to a swept operation through a 
scanning parameter. The new technique removes the re- 
striction of equilibrium glide reported previously in the 
literature[3, 4]. The exact optimal three-dimensional tra- 
jectory for maximum lateral range is found by the use of 
a direct shooting method. Then, the optimal trajectory 
for the same purpose but obtained in a reduced phase 
coordinate system using the equilibrium glide assumption 
is compared with the exact optimal trajectory. Finally, 
the footprints with and without deceleration and heating 
constraints are constructed to show the effect of the con- 
straints on the size of the footprint. Several values of 
deceleration and thermal constraintsl5] arc imposed on 
the optimal trajectories leading to the footprints. The 
equilibrium glide assumption is again applied in order to 
reduce the numerical computation load. 

2. DECELERATION AND HEATING CONSTRAINTS 

During entry, the deceleration due to the aerodynamic 
force with coefficient C is 

dV pSV'-C 
a - - - -  ( 1 )  

dt 2m 

At the beginning of the entry the density p is negligibly 
small and hence a is small. As the density increases, the 
deceleration becomes larger. Near the end of the flight, 
the speed decreases to a very small value and again the 
deceleration is small. As a consequence, a passes through 
at least one maximum value, and for the comfort of the 
crew and passengers, this peak deceleration must be con- 
trolled to an acceptable level. 
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Thermal  control is another  factor of prime consider- 
ation. During entry,  the kinetic energy, V~V:. decreases 
from a high value to nearly zero. A fraction of this energy 
is converted into heat and absorbed by the vehicle. Sev- 
eral texts[6, 7] discuss the important  aspects of  heat flow 

into reentry vehicles.  Here we shall consider only the 
max imum temperature on a selected point of the vehicle. 
To control the temperature,  it suffices to control the heat- 
ing rate at that point. According to Lees[8], the heating 
rate at any point on a body is a fraction 

.f = q/q.  (2) 

of the heating rate q, at a stagnation point of radius of 
curvature R 
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where C* is the lift coefficient corresponding to the max- 
imum lift-to-drag ratio, E*. With given values of Ct,,, and 
K assumed constant  at hypersonic speed, we easily com- 
pute 

(3) 

where K is a constant ,  and p, and V, are the reference 
density and reference speed, respectively. The constant  
exponents  n and m depend on the type of boundary- layer  
flow. For laminar  flow, we have n = 1/2. Under  the 
assumptions that the viscosity coefficient varies as the 
square root of the absolute temperature and that the flow 
between the bow shock wave and the stagnation point is 
incompressible ,  we can use the value m = 3. 

C~: = ~ t~v '7 ' '  C* = 2C, .... E * -  2~--,,,)K'VC (6) 

The earth is assumed at rest and with a locally exponential  
a tmosphere 

dp 
- 13dr 

P 
(7) 

where 9 is the atmospheric density and 13, the reciprocal 
of the scale height,  is a function of the radial distance r. 
Its gravitational force field is the usual inverse-square 
force field 

g = s (8) 
r- 

where tx is the gravitational constant.  Without  loss of 
generality,  we can use the equatorial plane as the ref- 
erence plane. By introducing the fol lowing dimensionless  
variables: 

3. DIMENSIONLESS EQUATIONS OF MOTION 

The motion of the vehicle,  considered as a mass point, 
is defined by the six variables r, 0, (b, V, 3' and ~ as 
shown in Fig. I. Using a parabolic drag polar of the form 

C~, = C~),, + KC; ,  (4) 

we define the normalized lift coefficient 

X = ('~/ '( '~ (5) 

~ ' 7  . - / /  

Fig. I. Coordinate system and state variables: the longitude 0, 
the latitude d), the position vector ?, the heading angle ql, 

the flight path angle "¥, and the velocity vector V. 

,f- 

Ir V-" f ,  V cos 3' pSC* I v -~, = - - ,  s = dt (9} 
Z - 2m gr  , r 

we have the dimensionless  equations of  motion[4] 

d Z  
- k ' - Z  t a n  3 '  

ds 

dv k Z v ( l  + ,k-') 
- (2 - v) t an '¥  

ds E* cos 3' 

d3" k Z h  cos (r 1 
- - - +  I 

ds cos 3' v 

dO cos tb 

ds cos d) 

a+ 
- -  = s i n  

ds 

dO k Z h  sin (r 
- - -  c o s + t a n + .  

ds cos  2 

(10) 

The aerodynamic controls are in the form of the bank 
angle,  o', and the normalized lift coefficient,  X. Hence 
when X = 1 the flight is at max imum lift-to-drag ratio. 
The dimensionless  variable Z replaces the altitude and 
the dimensionless  kinetic energy v is a measure of  the 
speed. They are the modified Chapman ' s  variables, s is 
the dimensionless  arc length. 

The equations in (10) contain only two constant  pa- 
rameters which need to be specified. The first parameter,  
k 2 = 13r, is a characteristic of  the atmosphere.  For the 
computat ion,  we select the value k 2 = 900 for the earth. 
The second parameter ,  E*,  is thc max imum lift-to-drag 
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ratio and is a performance characteristic of  the vehicle.  
For the present numerical  example we shall take the value 

E* = 2. 
From eqn (1) and with the definit ion (9), the dimen-  

sionless decelerat ion corresponding to an aerodynamic 
coefficient  CL = C* is 

a 
= - = k Z v  ( 1 I ) 

g 

On the other  hand,  f rom eqn (3) we can construct the 

function 

"~ = N/'k Z"'-v 3'2, (12) 
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order to maximize  the cross range ~b~ for each prescribed 
01, we do not specify the arc length and the final heading 
%. Hence we have the transversali ty condit ions 

C,, = O, p./  ~ O, p+, = I. (17) 

For the remaining three adjoint variables Pz, P, and p~, 
we define the fol lowing three new adjoint variables 

P = k:Zpz,  N = vp,, Q = p ~ c o s 3 " .  (18) 

In t e r m s  o f  t h e s e  v a r i a b l e s ,  t h e  H a m i l t o n i a n  i n t e g r a l  b e -  

c o m e s  

representing the dimensionless  heating rate. 

4. VARIATIONAL FORMULATION 

The footprint  of  a reentry vehicle is defined as the 
curve l imit ing the reachable domain  on the surface of the 
earth when  the reentry point is specified. The two control 
variables in (10) are subject  to the constraints  

I~,1 -< x ..... I,~1 - <  o- . . . .  (13)  

These two controls are to be selected to bring the vehicle 
from a certain prescribed initial condit ion to a certain 
partially prescribed final condit ion,  such that the cross 
range is maximized  for each prescribed final longitudinal 
range O r . The  footprint  can then be constructed.  

Using  the max i mum  principle,  we introduce the adjoint 

vector  ~ to form the Hamil tonian 

H = - k 2 Z p z  tan 3' - p,  

[kZv( I  + h2) + (2 v) t an3 '  ] .  
× E* cos 3' 

o 

+ P~ L cos 3' + 1 - 

[cosq 
+ p, L c ° s + j  + p + s m t ~  + p+ 

[ k Z k  sin o- ] (14) 
× I_ cos: 3' cos t~ tan ~b . 

The components  of,~ are governed by the adjoint equa- 
tions 

dp., OH 
- x = Z , v ,  3",O, dp, O. (15) 

ds Ox'  

It has been shown that the system has four integrals 

H = C 0 

P0 = C~ 

p+ = C, s i n 0  - C ~ c o s 0  

p ,  = C~ sin qb + (C_, cos 0 + C3 sin 0) cos g, 

(16) 

where Co, C~, C2, and C are constants  of  integration. In 

where 

H = - 
kNZ( 1 + h:) kZh + - -  

E* cos 3' cos 2 3' 

× ( Q  c o s  o" + p+ s in  o )  

Q(I - v) [vp + (2 - v)N] 

v cos 3' 

× tan 3' + H, = 0 (19) 

H, = C, c o s ~ b c o s + - C 2  

× (sin + cos 0 cos ~ - sin 0 sin +) 

- C~ (sin ~b sin 0 cos + + cos 0 sin t~), 120) 

a function of the state variables. The new adjoint variables 
P, N and Q are governed by the system of differential 

equations 

NP _ k 2 ~ - H ,  + __Q(I - v) 
ds [ v cos 3' 

[vP + (2 - v)N] ] 
+ tan ~/ 

d N  2N  Q 
- tan  3' 

ds v v cos 3' 

dO O(I - v)  
- -  = 2H~ sin 3' - -  tan 3' 
ds v 

(1 - 2 sin" 3') 
[vP + (2 - v)NI 

V COS 3' 

kNZ( 1 + h 2) 
tan 3'. 

E* 

(21) 

The optimal solution to the problem is governed by eqns 
(10) for the state variables,  and eqns (21) for the adjoint 
variables. The integration requires six parameters C~, C, .  

C~, Po, No, and Q~, to satisfy the final and transversality 
condit ions,  where P, ,  No, and Q~ are the initial values of 
P, N, and Q, respectively.  The Hamil tonian integral, eqn 
(19), can be used to el iminate one of the parameters.  
During the integration, whenever  interior lift and bank 
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controls are used. we have 

cos cr X sin {r - 
2N cos y '  

E * ' ( Q  ~ + Pi,) )C 
4N:  cos ~ V 

E'p,!, 

2N cos y. 
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is the same as in eqns (211, except that now H, takes the 
form 

122) 

For maximum bank angle, (r = tr ....... with variable lift 
coefficient,  the normalized lift cuntml is[4] 

E .-t~ 
X - - -  (Q cos o" ...... + p,:, sin m,.,,). (23) 

2N cos 3' 

On the other hand. the variable bank angle used with a 

maximum lift coe f ic ien t ,  X = X ....... is obtained from 

P,b 
tan (r - --. (24) 

C) 

5. OP TIMAL TRAJECTORIES FOR MAXIMUM 

CROSS RANGE 

5.1 .  Exac t  so lu t ion  

in the problem of  maximum cross range, it is proposed 
to find the lift and bank modulation to maximize the final 
latitude 6~ while the final longitudinal range 0/ is free. 
For the numerical computation,  we use the initial con- 

dition 

(Z., v,,, y,,, 00, +~,, tO,,) 

= (0.0005, 1.. - 4  ° , O, 0, 0) (25) 

with the final condition at flee s, 

(Zt, Vt. Y,, 0,, ¢ , .  +~) 

- (30., 0.001, free, free, max. ,  free). (26) 

Then we have two more transversality conditions besides 

eqns (17), which are 

C, 0. p~ = O. (271 

p ,  and p+ can be determined by using eqns (16), (17), 

and (27), 

p+ - cos (0~ - 0) 

p ,  = cos + sin (0, 0). (28) 

It ,  - sin ¢ cos (0, 0) - sin c b cos tb sin (0, - 0). 

(30) 

In summary,  the optimal trajectory is obtained by in- 

tegrating the state equations,  eqns (10), and the adjoint 
equations, eqns (2[),  with H, given in eqn i30). from 

the initial condition,  using the optimal control laws of  
eqns (22), (23) and (24). This will require selecting three 
arbitrary parameters: the final value 0¢, and two of  the 
three initial values Po,  No, and Qo. One of  these three 
values can be obtained from the Hamiltonian integral, 
eqn (19), with H, given in eqn (30). At fl .... 0,. the 

conditions of  Z~, v t and Q, are used to adjust the values 
of the guessed parameters. 

In order to make the initial guess of  unknown param- 

eters a much less arbitrary task, we will change the pa 
rametcrs describing the adjoint variables. N, and Q.,  to 

physical parameters. From the first two equations of (22 l, 

since O,, 6 ,  = 0 we have P,t,. ~ sin 0, and 

E* sin 0, sin 0, 
N, Q, - {31) 

2X, sin ~r, cos y,," tan ~r 

where h,, and o-,, are the initial values of  the normalized 
lift coefficient and bank angle, respectively. Therefore,  
the initial guess is equivalent to making an initial guess 
on the new set of  parameters (0~, ~.,,, or,). All parameters 
in the new set with physical meaning and this provides 
us with a much easier assessment of  their values, q'he 
optimal trajectory for maximum cross range is solved 
with the set of  values (0~, h,,, (r,.) = (1.09452, 1.05331. 
59.9498°). Figure 2 presents the optimal trajectory and 
the variations of  the state variables and control variables. 
It can be seen that the flight path angle oscillates about 

and stays near the value of  0 °, and that the normalized 
lift coefficient oscillates about and stays near the value 
of 1.0, except near the end of  the trajectory where sub- 
stantial lift maneuver is made so that the final conditions 

can be met. 

5.2. Equ i l i b r ium g lMe solu t ion  

The so-called equilibrium glide condition consists of  

assuming that the glide angle is small and stays nearly 
constant. From Fig. 2 it is seen that in the exact optimal 
trajectory the glide angle oscillates about and stays near 
the value of()". Hence for the equilibrium glide condition 
we make the assumption that 

Also,  by the definition of  Q in eqns (18), the transvcr- 
sality condition p~, = 0 in eqns (27) becomes the con- 

dition 

y ~ 0, 'vd, ~ 0. (32) 
(Is 

Q, = 0. 

With this, the equation fi)r y becomes the equilibrium 

(29) equation 

The Hamiltonian integral remains the same as in eqn (19) 
and the system of  differential equations for P,  N. and Q 

[ v 
k Z  - (33) 

v h c o s  (r" 
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Fig. 2. Optimal trajectories for maximum cross range. (a) Dimensionless altitude ~3(r - ro) and velocity ratio 
V/V<,  vs arc length s. (b) Flight path angle 3' and heading angle tb vs arc length. (c) Latitudinal range + vs 

longitudinal range 0. (d) Normalized lift coefficient ;~ and bank angle ~ vs arc length. 

This equation is used to evaluate the altitude variable Z. 
With the equation forZ eliminated, we  have the fol lowing 
reduced set of  state equations 

d v  (1 + ?~2)(1 - v) 

ds 

dO cos + 

d s  c o s  (b  

d6 
- -  = sin 0 
ds 

d0  (1 - v) 

d s  v 

E* ~. cos cr 

- -  t a n ~ -  c o s 0 t a n 6 .  

(34) 

It is easy to verify that in this reduced set of state equa- 
tions, we  preserve the classical integrals of  eqns (16). 
Also,  we  have the transversality conditions Co = Cj = 
p,, = 0 and P*t = 1, and the solutions f o r p +  and p+ 
given in (28). It has been shown[4,  5] that for lift control 
the optimal equilibrium glide is effected at maximum lift- 
to-drag ratio, namely ,k = 1, and for bank control we  
either have [o" I - O'm~xOr a variable bank angle such that 

tan ~ - 

X 

(I - v) 

cos + sin (01 - O) 

cos (01 - O) sin 0 - cos 0 sin 4) sin (0, - O) 

(35) 

The problem is thus reduced to a one-parameter problem 
in the value 0 t. In this formulation, the condition on Z I 
is no longer enforced and we use the prescribed final 
value v I = 0.001 to adjust the sole parameter 01. 

For numerical computation, we use the control law 
(35) with ,k = 1 to integrate the full set of exact state 
equations (10). The initial state used is (25) except that 
the initial value v<, is 0 .999 instead of 1.0. The purpose 
of this change is to give a defined value for ~ at the 
initial time. The maximum value of the bank angle 
o" ..... is selected to be 85 °. The results are also presented 
in Fig. 2 in dashed lines for the purpose of  comparison 
with the exact results. 

From Fig. 2 it is easy to see that the optimal solution 
under the equilibrium glide condition is very close to the 
exact optimal solution. It results in a slightly smaller 
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value of  cb; and a slightly larger value of O;. Quantita- 
tively, we have (0~, ¢~) = ( 1.0945, 0.6577) for the exact 
solution and (0;, 6,)  = ( I .1229 ,  0.6575) for the equi 
l ibrium glide solution. Hence we will say that the equi- 
librium glide solution is a very good suboptimal solution 
and we shall use the equil ibrium glide condition in ob- 
taining the solution of  the fl)otprint, either without or 
with decelerat ion and heating constraints.  

J.-S. CHt3RN et al. 

axis system the point M; is obtained by maximizing el),' 
with free 0,'. Hence the formulation in Section 5. I with 
the prime notation on ~, +.  and dJ applies. The unknown 
set of parameters  to be lound is now (0,', ~,. ~rJ. For 
each value of the scanning parameter  +,', from 90 ~ to 
+ 9 0  °, we solve the max imum cross range problcm to 

obtain the final point (07, #b 7 ). Using a formula m spher- 
ical t r igonometry,  it can be shown that the position m 
the original coordinate system is obtained from 

6. THE FOOTPRINT WITHOUT CONSTRAINT 

6.1. Exact  Jbrmulat ion 

If the reentry vehicle is initially in a close circular orbit 
and the position for leaving the orbit is not prescribed, 
then the reachable domain on the surface of the earth will 
be a zone between the latitudes - +  ...... and +,,,~,~. The 
footprint  of  a reentry vehicle is defined as the curve 
limiting the reachable domain  on the surface of  the earth 
if the reentry point is specified. To construct the footprint 
we have to find the max imum cross range for each pre- 
scribed final longitudinal range 0,. As the final longitu- 
dinal range is no longer free, p,  - C, #- 0. We can nor- 
malize all the adjoint variables by taking C~ = 1. This 
is the same as reducing proportionally all the adjoint 
variables by the factor I /C,  and using the new constants  
k, - C J C ,  and k~ = C~/C~. Then forp,~, andp,~, we have 
the solution 

p,,, = k, sin 0 - k, cos 0 (36) 

p+ - sin ,:b + (k, cos 0 + k~ sin 0) cos +. 

With C, = 0, the Hamil tonian integral is given by eqn 
(19) but with 

(37) 

H, - c o s 6 c o s ~ -  k, 

× (sin ,:b cos 0 cos + - sin O sin ¢,) 

- k~ (sin ~b sin 0 cos + + cos 0 sin ¢,). 

The lift and bank controls,  X and or, and the adjoint 
equations for P, N and Q are the same as given in eqns 
(19) - (24)  except that H, in eqn (20) must  be replaced by 
H~ as given in eqn (37). The problem becomes a four- 
parameter  problem in terms of  the constants  k2, k, and 
two of the three initial values P,, N,, and Qo (since one 
of them can be obtained by the Hamil tonian integral). 
To generate the footprint,  we can use one parameter  as 
a scanning parameter.  Hence it is a three-parameter  prob- 
lem. 

As before,  we can change these parameters to the new 
parameters  with physical  meaning.  This change can be 
accomplished through the use of a rotation of coordi- 
nates[4, 9]. Consider  a trajectory leading from the initial 
point M,, to the final point Mt on the footprint  C as shown 
in Fig. 3. Let M,Oqb be the original coordinate system 
and let M,,O'd)' be the rotated coordinate system. The 
M,,0' axis is along a great circle parallel to the tangent  
to the footprint  at Mt and the M,,+' axis is along the great 
circle orthogonal  to the great circle M,0 ' .  This rotation 
introduces the new heading angle +" #- 0. but this angle 
can be used as the scanning parameter.  In this rotated 

tan +,' sin ~17' 
tan O, = tan ft,' cos +,', + 

cos 0,' 

sin cb, - sin d),' cos tb,', sin (4,' cos ~b/ sin q,'. (381 

6.2. Equil ibrium glide solution 
Since it is very tedious to use the exact formulation to 

generate the footprint,  and since the equil ibrium glide 
solution is a very good suboptimal solution, we shall use 
this assumption of equi l ibr ium glide as a reliable and 
efficient too[ for solving this complex problem. 

From the reduced set of state equations (34) we deduce 
that k - 1. The bank angle is e i thero-  - ~r ...... or is an 
interior bank angle as given by[4] 

= m tan (r Ht 

x I s i n +  + ( k : c o s 0  + k ~ s i n 0 )  c o s d d  (39) 

where H, is the same as given in eqn (37). Hence there 
are two parameters  k_, and k3 in this problem. However,  
this is a one-parameter  problem since either k, or k3 can 
be used as a scanning parameter.  If we choose k, to be 
the scanning parameter ,  the full set of exact state equa- 
tions (10) can be integrated. It is necessary to use the 
explicit  law (39) with a guessed value o f &  and a bounded 
value of bank angle cr ...... = 85 °. The initial state to be 
used is (25) with v,, = 0.99. At v, = 0 .001,  the trans- 
versality condit ion p+, - 0 is used for the adjustment  of  
the unknown parameter  &. 

"1"o give both the scanning parameter  and the unknown 
arbitrary parameter  a physical meaning,  the rotated co- 
ordinate system can also be used here. Here again we 
have ¢,', as the scanning parameter.  The control law (35). 

~ 14'// 

M o -- -- G 0 

o' 

Fig. 3. Rotation of spherical coordinates. 



Deceleration and heating 

1" I ~,'o= (k~,%)= I 
~rad) [ - 1 5 ~  "155) ] 
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_90 o ~" 
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Fig. 4. Footprint without any constraint. 

with the prime notation on 0. +, and 0, now becomes 

t a n  o- - - -  

- v )  

V 

cos 4)' sin (0; - 0') 

cos (0[ - 0') sin q,' - cos 0 '  sin 4)' sin (0/ - 0')" 

(40) 

The unknown parameter to be found is now 0/. Of course, 
the formulas to obtain (0j, qbr) from (0;, +[) are the same 
as in (38). The footprint for E* = 2 is shown in Fig. 4, 
with the projections of the reentry trajectories on the 
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Earth's surface plotted in dashed lines. The variations of 
the dimensionless altitude, velocity ratio, flight path an- 
gle, and bank angle for the reentry trajectories are plotted 
in Fig. 5. As has been shown in the previous section 
(Fig. 2), both the deceleration and the heating rate pass 
through several maxima. The first maxima are the high- 
est. In Fig. 6, the highest decelerations encountered on 
all of the reentry trajectories leading to the footprint are 
plotted as a function of the longitudinal range 0, It can 
be seen that to the left half of the footprint the highest 
decelerations are so large that it is necessary to impose 
a deceleration constraint on the reentry trajectories. Also 
shown in Fig. 6 are the highest heating rates encountered. 
We will also investigate reentry trajectories with heating 
rate constraint in the next section. 

The full set of state equations are integrated using the 
optimal control law (40) deduced from the equilibrium 
glide condition. However, only the final speed can be 
prescribed since there is only one parameter. But it has 
been found that for all the trajectories, the final altitudes 
are uniformly close to the value Z, = 30. For most reen- 
try vehicles, this represents a reasonably low altitude. 
Another thing to be mentioned is that. for E* = 2 with 
t~,', > 30 °, + '  may increase to 90 ° and cause a singularity 
to occur. Hence for that portion of the footprint beyond 
~,', > 30 °. we should use eqn (39) to solve for the reentry 
trajectories and to complete the whole footprint. 
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7. F O O T P R I N T S  W I T H  I ) E C E I , E R A T I O N  A N t )  

H E A T I N ( ;  C O N S T R A I N T S  

7.1. Footprint  with a deceleration constraint  

As b d o r e ,  we shall use the equilibrium glide assump 
tion and the technique of  coordinate system rotation in 
this section. We shall use ~b,i - 90< 60 °, 30 °, 

- 1 5  ° , - 5  °. 0 °, 5 ° . and 30 ° to solve for the reentry 
traiectories and to generate most of  the footprint with a 
deceleration constraint. The remaining portion of  the 
footprint corresponding to +,', 30 ° 90 ~' will be gen 
crated from the traiectories found by using eqn (39i. The 

trajectory with +,', - 0 ° is the one with global maximum 

cross range. 
As shown in Fig. 5, the planar flight trajectory which 

leads to the right end point of the lootprint has the smallest 
first peak in deceleration. This trajectory gives the max- 
imum longitudinal range, and has a first pcak in decel 

eration of  a ...... - 2.12. For planar flight tinder the equi 
librium glide assumption,  this trajectory is obtained by 
using the lilt control ,k = 1 and the bank control {r = 0. 
Hence it is always possible to control the deceleration on 
any trajectory down to the value a ...... - 2.12. This is of  

course at the expense of the reachable domain. Actually 
it is possible to further lower the peak deceleration in 
planar [-light by lift modulation, but this problcm will not 
be discussed here. We shall set the deceleration constraint 
values at 77 ...... - 3.0 and 2.12. respectively, to generate 

the fl)otprints and to investigate the reduction of  the 
reachable domain due to the deceleration constraint. 

To control the peak deceleration on a certain reentry 
trajectory, if the flight is required to stay at a certain 

77,,,,, value, then we have 

kZv - 77,,.~,. (41) 

By taking the derivative of  this equation and making use 
of  the exact state equations (10), we have 

( 1 + 3, 2) _ 
- - a  ...... = [2 + (k: l)v] sin y. (42) 

E* 

Since the flight is effected at maximum lift-to-drag ratio, 
k = 1, using this value in eqn (42) gives the condition 
for entering the boundary a,,,,,. Therefore,  in order to 
reach the first peak in deceleration at the prescribed value 
a ...... a constant 0~'~ must be selected for the paramcter 
0/ in eqn (40) such that eqns (41) and (42) are simulta- 
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neously satisfied. Then by taking the derivative of eqn 
(42), the bank control appears explicitly and is found to 
be given by 

(l ,  , ('(~3 (1" : : 

I(k" I I'v" + Ik e 3)v + 21 c o s : 7  U(k: I)v: 

[2 + I k  l)v] cos y 

~43~ 

This is the optimal bank control tot the flight to stay on 
the boundary /i,,,,. Then what we have to do next is to 

find the point for leaving the boundary. Since the bank 
control must be continuous at the point of  leaving the 
boundary, we can combine the two eqns (4(I) and f43) 
to eliminate the bank anglc and solve for the arbitrary 
parameter 0/. Here at the point ol: leaving the boundary 
it will be denoted by 0,': and the result ix 

0,', - O'  + t a n  ' 

X . . . . . .  
I I v) c o s d /  + v sin + '  cos +'  tan~r 

{44) 

where (r is obtained from eqn (43). After leaving the 
boundary, cqn (40) will be applied tbr the remaining 
['light of  the trajectory. Finally when the integration of  
the trajectory is ended by the prescribed final valne 
v: -- 0.001, the final value 0,' is used to adjust thc ptl- 
rameter 0,'2. In numerical integration, what we actually 
do is to at!just the instant of leaving the boundary, and 
check at the final instant to detemfine if 0/ and tl,', arc 
equal. 

In sunmmry,  for a certain value of  the scanning pa- 
rameter tl/,, we start the integration of  eqns (10) with the 
initial condition (25) except that <. = 0.99. We use cqn 

(40) with an initial guess of 0/', denoted by 0,',, as bank 
control. The condition (42) is used to adjust 0,'~. Then on 
the prescribed 77 ...... boundary, the integration kecps on 
going by using eqn (43) as bank control so that thc flight 
stays on the boundary. At a certain point the flight leaves 
the boundary and we continue the integration by using 
eqn (40) with the parameter computed from eqn I441. At 
the final instant v, - 0.001, the condition 0,' : 0 /  is 
used to check the leaving point. 

For the two dccelcration constraint values a ..... 3.t) 
and 2.12, file above scheme is valid for ~1/ 

90 °, 6 0 ,  30 °. and 15". For d<', 5' .  0 .  5", 
30 ° and beyond,  the flight does not havc to stay on the 
boundary. In this casc, the point of  entering and the point 
of  leaving the boundary coincide. This is because anothcr 
wdue 0,'e can be selected fl)r the integration such that thc 
prescribed final speed v, = 0.001 is identically satisfied 
at 0.' 0,',. Modulated bank is used through cqn (40). 

The footprint without any constraint, the flx)tprint with 
at constraint of  77 ...... - 3.0, and the fix)tprint with a con- 
straint {)177 ...... 2.12 are presentcd in Fig. 7. l 'hc var- 
iations of  the dimensionless altitude, velocity ratio, Ilight 
path angle and bank angle for 77 ...... 2.12 are ~,hown in 
Fig. 8. Here the dimensionless altitude ,...kh is defined to 
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The value qm,~ = 1.36 is reached by the first peak of 
" ~ ~ ~ a ~ a x = 2 " 1 2  ~ heating rate on the planar reentry trajectory. Hence it is 
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Fig. 7. Footprints with and without constraints on amz,. 

always possible to control the heating rate on any reentry 
trajectory down to this value. 

To enter the boundary of a controlled peak heating rate 
qmax, w e  need 

(kZv3)  ':-' = qm.~ ( 4 6 )  

and 

be the actual altitude drop divided b y  1/[3 .  H e n c e  w e  

have 

A h  = In (ZJZ). ( 4 5 )  

The velocity ratio is defined to be the ratio between the 
actual speed and the initial speed and can be obtained by 
simply taking the square root of v. 

7.2. F o o t p r i n t  w i t h  a h e a t i n g  c o n s t r a i n t  

We shall set the dimensionless heating rate constraint 
values at qmax = 1.5 and 1.36 to generate the footprints. 

3(1 + h-') _ ,  
- -  q;,~x = - v ' [ 6  + (k  ~- - 3 ) v ] s i n 7  (47) 

E *  

where the entering condition (47) is obtained by taking 
the derivative ofeqn (46). From the initial condition (25) 
with v,, = 0.99 we start the integration of the exact state 
equations (10). We use eqn (40) with an initial guess of 
0~, denoted by 0;,, as bank control. The condition (47) 
is used to adjust 0;,. Then on the prescribed ~,°,~ boundary, 
the control law for the bank angle on the boundary can 
be obtained by taking the derivative of eqn (47) 

qmax COS O" = 
v 2 { [ ( k  2 - 1)(k  2 - 3 ) v  2 + (5k"  - 9 ) v  + 6 ]  c o s 2 7  - k 2 v [ 4  + (k  2 - 3 ) v ] }  

[6  + (k-" - 3 )v ]  c o s  7 
(48) 
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Finally at the point of leaving the boundary, the arbitrary 
parameter, also denoted by tgTe, is computed from eqn 
(44) with the bank angle o- obtained from eqn (48). This 
parameter is to be used in eqn (40) for the modulated 
bank control after leaving the boundary. When the pre- 
scribed final speed v~ = 0.001 is reached, the condition 
(3,' = %" is used to adjust the leaving point. 

Again,  for the two prescribed heating constraint values 
...... = 1.5 and 1.36, it is not necessary to maintain the 

trajectory at a constant heating rate that is on the con- 
straint boundary, for +,', = 0 °, 5 °, 30 ° and beyond. As 
has been found in previously published literature[l l, it 
is possible to find a new constant ~/~ for modulated bank 
control satisfying the transversality conditions p,,,, = 0 and 
p+, - 1, or simply (r(0,'~) = 0, at a prescribed v~ while 
the heating rate remains less than ~,,,,. 

In Fig. 9, the footprints without any constraint, with 
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a constraint of  ~ ..... - 1.5, and with a constraint o f  

..... = 1.36, respectively, are plotted. The variations of 
the dimensionless altitude, dimensionless speed, flight 
path angle, and bank angle for ~ ...... - 1 .36  are  s h o w n  

in Fig. 10. 

7 . 3 .  Discussions 

In Fig. 11, the maximum heating rates encountered on 
the trajectories without any constraint and with a con- 
straint of a ..... = 2.12 are plotted along the footprints. 
Also plotted are the maximum decelerations encountered 
on the trajectories without any constraint and with a con- 
straint of  ~ ...... = 1.36 imposed along the footprints. It is 
seen that we  have dual reduction. This means that on the 
deceleration constrained reentry traiectory the heating rate 
is also reduced, and vice versa except on the t r a j e c t o r i e s  

for very small values of 0,. The deceleration control also 
brings the heating rate to an acceptable level• The pen 
aries on the reachable domain are shown in Figs. 7 a n d  

9. 

Mathematically, immediately after entering the con- 
strained boundary, an estimated value of 0,', is selected 
to compute o- by using eqn (40). The result is compared 
with the value obtained from eqn (43) or (48). If the 
modulated o" is higher, the flight is required to stay on 
the boundary until the two values are equal. Then the 
flight switches to modulated bank until the final valuc 
~r~ - 0 at the prescribed final speed. At the point of 
entering the constrained boundary the bank angle displays 
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a discontinuity. The reason is that its explicit law is 
obtained by taking the second derivative of the con- 
straining relation, either eqn (41) or (46), in the case 
where the flight is required to stay on the boundary. 
Otherwise, it is computed by using the same equation, 
namely (40), but with a different parameter value 0i' 2 in 
the case the flight is not required to stay on the boundary. 

8. VARIATION OF BANK ANGLE ON THE BOUNDARY 

It is of interest to analyze the variation of cr on the 

constrained boundary. For controlled deceleration at 
... .  cos cr can be expressed explicitly as function of v 

alone by using eqn (42) to calculate 3' and substituting 
into eqn (43). If the simplification cos 3' ~ 1 is made, 
we obtain directly from (43) 

am~cos~r = 1 - v. (49) 

This is the same as using the equilibrium glide condition 
(33) as the control law. It appears that when ~max is small, 
the bank angle is small. Since this bank angle is used to 
maintain constant ~ ..... it is substituted for the modulated 
bank angle if this angle is higher• Also, since the optimal 
final value of ~r is ~i = 0, the trajectory will leave the 
constrained boundary at a certain point betbre the end. 

Similarly, using the approximation cos 3' ~ 1 in eqn 
(48), we have the simple formula 

~,~, cos cr = v:(1 - v), (50) 

which can also be obtained by using the constraining 
relation (46) in the equilibrium glide condition (33). The 
same remarks as for the case of flight on the boundary 

.... may be made. In addition, from eqn (50), we see 
that ~r passes through a minimum at the value v = 2/3. 
This gives 

o',,,,, = cos ' . (5 I) 

This minimum value is low for a low value of ~ .... and 
occurs at the speed ratio V/V,, -- 0.816• After passage 
through this point the bank angle increases, ultimately 
switches to modulated bank control and decreases to the 
final value cr I = 0. 

9. C O N C L U S I O N S  

This paper gives a general assessment of the footprint 
as a function of various deceleration and heating con- 
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straints. With the dimensionless equations of motion, it 
is possible to specify just the maximum lift-to-drag ratio 
(L/D) ..... as the sole physical characteristics of the ve- 
hicle. Hence the analysis applies to a whole class of 
vehicles having the same value for (L/D)n,,~. The exact 
optimal trajectory for global maximum cross range is 
found first. This is a three-parameter problem. We have 
used the classical integrals of the motion, and at the same 
time transformed the adjoint variables into physical var- 
iables. The integrals of the motion allow a reduction of 
the order of the canonical system. The transformation of 
the adjoint variables into physical variables makes the 
initial guess of unknown constants a much less arbitrary 
task. The equilibrium glide condition is then introduced 
to reduce the problem to a one-parameter problem. The 
trajectory for global maximum cross range is found under 
the assumption of equilibrium glide and it is concluded 
that this is a very good suboptimal solution. The footprint 
without any constraint, the footprint with a deceleration 

constraint, and the footprint with a heating rate constraint 
are generated to show the reduction of the reachable 
domain due to different imposed constraints. The equi- 
librium glide assumption reduced much of the numerical 
computation load. Furthermore, the technique of rotating 
the coordinate system on the spherical earth reduces the 
computation of the footprints to a swept operation through 
a scanning heading angle. The reduction in the size of 
the reachable domain is substantial only on the left half 
portion of the footprint. It is seen that on the deceleration 
constrained reentry trajectory the heating rate is also re- 
duced, and vice versa. Also, deceleration control gen- 
erally brings the heating rate to an acceptable level. For 
the reentry trajectories with small prescribed longitudinal 
ranges, the flight has to stay on the constraint boundary 
upon entering the specified constrained value. The smaller 
the longitudinal range is, the longer the flight stays on 
the boundary before leaving it. The variation of the bank 
angle on the constraint boundary is discussed in detail. 

REFERENCES 

1. L. M. Shkadov, R. S. Bukhanova, V. F. Illarionov and 
V. E Plokhikh, Mechanics of optimum three-dimensional 
motion of aircraft in the atmosphere. NASA "IT F-777 (1975). 

2. D. G. Hull and J. L. Speyer, Optimal reentry and plane- 
change trajectories. J. Astronaut. Sci. 117-130 (1982). 

3. J• S. Chem and N. X. Vinh, Optimum reentry trajectories 
of a lifting vehicle. NASA CR-3236 (1980). 

4. N. X. Vinh. Optimal Trajectories in Atmospheric Flight. 
Elsevier, Amsterdam ( 1981 ). 

5. J. S. Chern, C. Y. Yang, N. X. Vinh and G. R. Hwang, 
Optimal three-dimensional reentry trajectories subject to de- 
celeration and heating constraints. IAF-82-309, 33rd Congr. 
IAE Paris (1982). 

6. A, Miele, Flight Mechanics. Vol. I. Theory of Flight Paths. 
Addison-Wesley, Reading, MA (1962). 

7. N. X. Vinh, A. Busemann and R. D. Culp, Hypersonic and 
Planetary Ento' Flight Mechanics. University of Michigan 
Press, Ann Arbor, MI (1980). 

8. L. Lees, Laminar heat transfer over blunt-nosed bodies at 
hypersonic flight speeds. Jet Propulsion 26, 259-269 (1956). 

9. J. Fave, Approche analytique du probl6me du domaine ac- 
cessible hun planeur orbital. La Recherche Adrospatiale 124, 
3-11 (1968). 


