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LINEAR TIME DETECTION OF INHERENT PARALLELISM IN SEQUENTIAL PROGRAMS

Peter L. BIRD *

Computer Science and Engineering Department, College of Engineering and Computing Center, University of Michigan, Ann

Arbor, MI 48109, USA

The topological sort can be used for the rapid detection of parallelism in sequential programs. Using this algorithm, one can
detect both intrablock and interblock parallelism. The algorithm requires only information normally collected by an optimizing

compiler.

1. Introduction

The execution speed of single processor com-
puters is rapidly approaching physical device limi-
tations. One way of achieving increases in the
running speed of programs is to partition the
problem into independent, concurrently executa-
ble computations. While the greatest speed in-
crease should certainly come from algorithms
which are structured for parallel execution (using
parallel programming languages), there is much a
compiler can do to automatically determine con-
currently executable computations in sequential
programs.

There are four tasks related to the automatic
parallelization of sequential programs:

1) Graph construction

This involves building a graphical representa-

tion of the execution behavior and the data

dependency relationships between computa-
tions in the program.
2) Graph modifications

This is a broad class of operations to modify
the graphical representation of the program. It
involves the insertion and deletion of both arcs
and nodes in the graph. The deletion of arcs in
the dependency graph is important to enhance
parallelism. Analysis of array and pointer refer-
ences is one class of graph analysis.

* This work was partially supported by Applied Dynamics
International of Ann Arbor.

3) Detection of parallelism

This includes vectorization (the determination

that a looping construction can be mapped to a

vector operation) and the identification of op-

erations which may be concurrently executed.
4) Operation scheduling

This involves the allocation of resources to

perform the computation.

The first two tasks act only upon the abstract
program structure. In contrast, the second two
tasks map this graph onto the target architecture.
The algorithm discussed in this paper is concerned
with the third problem, the detection of paralle-
lism, and to some degree with the scheduling of
parallel computations. This is not to imply that the
other tasks are unimportant. In particular, the
number of concurrent operations in a program can
be severely limited unless one breaks data depend-
encies. However, these techniques have been widely
studied, and are outside the scope of this paper.
See ref. [1] for a presentation of the problems
involved in building program graphs; ref. [9] is an
introduction to graph modifications.

A partial order is commonly used for repre-
senting the data dependency relations between the
operations of a basic block of a program *. Recall
that a partial order is reflexive, antisymmetric and
transitive.

* Throughout this paper, we will use the operator § to repre-

sent all data dependency relationships. Thus, o’ § o means
that o’ is dependent upon o.
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Fig. 1.

Consider the partial order of fig. 1. The nodes
of this graph represent computational objects
(either single operations or sets of operations)
while the arcs represent dependency relationships
between objects. Objects at the higher (numbered)
levels are dependent upon objects at the lower
levels (for example, d 8 a). If we presume each
object takes one cycle to execute, it is clear that
the minimum execution time for the objects in fig.
1 is four time steps; this is the soonest object h
could complete execution. The maximum number
of useful processors would be three; this is the
maximum number of objects at any level (on level
0).

The problem addressed in this paper is the
determination of sets of objects which can be
concurrently executed. Upon visual inspection of
fig. 1, one can observe that the objects at each of
the “levels” can be concurrently executed because
there are no constraints between them. These sets
can be found by making a *“breadth-first” traver-
sal of the graph. In addition to those sets, the
following objects have no data interdependencies,
and therefore can be concurrently executed:

{ae)
{cd} {d}
{fe} {/m}

The topological sort [7] is a well-known al-
gorithm used to embed a partial order in a linear
order *. Historically, the topological sort has been
used to reorder computations for sequential (SISD)
machines [1]; any topological sort of a program
block represents a legal execution order for the

* The resulting linear ordering is not necessarily unique. That
is, there may be more than one possible linear embedding for
a partial order.

operations of the block. As shown below, it can
also determine (in linear time) sets of program
operations which can be performed in parallel.

2. The topological sort

The topological sort can be described as a
strategy for traversing a partially ordered graph. If
we view the arcs in the graph as constraints upon
nodes, then the sort provides a method for releas-
ing nodes which insures that no node will be
released until all of its constraints are satisfied.

The implementation of this graph traversal is
straightforward. For reasons of efficiency we re-
quire that all objects o in the graph maintain two
values:

dependency_count (o) = cardinality ({o'|o § 0'})
and
dependent_nodes (o) = {0’|0’ 8 0}.

The first value is a count of the initial constraints
for a node; this is the number of objects which
must be released before o can be released. The
second value is a list of objects which are depen-
dent upon o.

For example, the equation set:
a : = constant;
b : = constant;
c:=a+b;
d : =a+ constant;
would have the augmented data dependency graph
of fig. 2. The nodes in this figure have a field
containing the dependency _count, and a field rep-
resenting the output of the node. The arcs in the
figure represent the sets of dependent_nodes.

The topological sort works by selecting (for

Fig. 2.
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release) from among those nodes in the graph with
no outstanding constraints. A suitable candidate
can be found by examining those nodes whose
dependency _count is zero. After a node has been
released, all dependent_nodes have their depend-
ency _counts decremented. Searching for a con-
straint free node could require a continuing traver-
sal of the graph. We can avoid these graph traver-
sals by maintaining a set of mutually independent
computations (which we’ll call MT); this is the set
of objects whose constraints have been satisfied. A
pseudo-code description of the algorithm follows.

Input: an acyclic data dependency graph with
counters

Output: a linear scheduling of computations in the
graph

Initialization: M7 = {0 |counter (0)= 0}

Iteration: while (MI # () do
Select (0 ¢ MI)
MI. = MI - {o}
(¥ o')(0’ 8§ 0) do
Counter (0'): = counter (o) — 1
If counter (0')=0
then MI: = MIU {0}
od
od

The Select procedure can incorporate a sched-
uling mechanism to determine which node to re-
lease. While this selection criteria could be com-
plex (and time expensive), the cost of the traversal
of the graph is quite small. If there are m objects
in the graph, and » dependency relationships, then
the cost of the graph traversal is

cym+cyn

since each object is visited at most twice (once for
initialization and once during iteration) while each
dependency arc is traversed at most once.

One fairly simple, but nevertheless useful, selec-
tion mechanism constructs sets from the “levels”
of the partial order. Rather than selecting a single
node from MI, each iteration of the topological
sort releases all nodes in M. This amounts to a
“breadth-first” traversal of the dependency graph.
The number of sets constructed indicates the

minimum possible execution time for the nodes of
the graph, while the cardinality of the largest set is
the maximum number of useful processors needed
by the program.

There are three topics we need to examine when
discussing the utility of the topological sort for
parallelism detection, First, can the program sec-
tion realistically be represented as a partial order?
Does the graph of the program contain cycles?
Second, what are the problems associated in build-
ing the graph of the data dependency relation-
ships? Lastly, what kinds of scheduling are possi-
ble for the partitioned computations?

3. Definitions

Data dependencies between objects are de-
termined by examining the input set and the out-
put set of an object. The input set (denoted by
IN[o]) is the set of operands used for computa-
tions, while the output set (denoted by OUT][o])
consists of the values generated during execution.
The following definitions are useful for discussing
these sets, and the dependency relationships be-
tween objects; for a discussion of the role of data
flow analysis in program optimizations see ref. [1]
or ref. [5].

A basic block (or block) is a linear sequence of
program statements having one entry point and
one exit point. Execution of any statement in a
block implies execution of all statements in the
block. A flow graph is the graphical representation
of the control flow of a program. The nodes of the
graph are basic blocks, and the arcs represent
successor relationships.

A definition is the calculation performed by an
object. An assignment statement stores a defini-
tion into a variable. A definition of a variable
reaches a point in a program if there exists a path
from the definition to that point (without a subse-
quent redefinition). A variable is used by a block if
it appears as an operand in a statement in the
block prior to a redefinition in the block.

The following definitions of data dependency
relationships are from ref. [9]. Given two objects
O, and O, (where O, is positioned in the control
flow prior to O;) we define that (0, 8 0,) if any of
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the following are true:
Flow dependence - OUT[O,] N IN[O/] # (.
Output dependence - OUT[O,] N OUT[ 0,] * (.

Anti-dependence - IN[O, ] N OUT[O,/] #0.

4. Intra-block analysis

This section presents the problems associated
with manipulating the graph used to represent the
basic block of a program. There are three points to
examine. Can a block be represented as a partial
order? What problems exist in building the pro-
gram’s graph? What kind of schedules can be built
for the computations?

The computational objects in our discussion of
blocks are statements *. The statements within a
block have a linear order; there cannot be execu-
tion cycles within a block. This implies that there
cannot be data dependency cycles in a block’s data
dependency graph, therefore this graph is a partial
order.

The process of building the data dependency
graph for a block has two steps. First, we con-
struct a list of the outputs of each object in the
block. These can be collected and sorted by name
of the variable, and position of the statement in
the block. If an array element is used for output, a
conservative approximation would be to enter the
array name into the list **. If an output is multi-
ply defined in the list, then an output dependence

* Another approach would be to take the operators of state-
ments as our objects. Indeed, the operators and operands in
a block are commonly represented by a DAG (a Directed
Acyclic Graph) [1]. This representation could yield more
parallel operations, since all operators in the block would be
examined for parallel execution.

Better analysis of array usage requires determining whether
different indexing expressions could possibly reference the
same array element. This requires examining the definition
points for the variables used in indexing; these definitions
may be generated within other blocks.

* ¥k

exists between these objects. Renaming ¥ all but
the last occurrence of a scalar variable will break
this type of dependence. Without extensive analy-
sis, multiple outputs to array variables requires the
establishment of an output dependence between
the two objects.

The second step in graph construction is to
insert the dependency arcs. This task uses the
elements of IN 7 (for each object in the block) to
search the list of outputs. A flow dependence exists
between definitions and their usage in the block.
An anti dependence exists when a variable is used,
then redefined within the block *.

The unrenamed elements of the output list and
those variables which are used (before definition)
constitute the elements of OUT and IN for the
block. These sets will be used for interblock analy-
sis.

There are two ways the computations in a block
can be scheduled: synchronously or asyn-
chronously.

The execution times for all objects in the block
are known at compile time, so a deterministic
schedule can be built. This avoids the cost of
runtime synchronization mechanisms. By using an
attribute grammar scheme for instruction selection
[4], the compiler can collect data about the compu-
tation tree. This information would include the
height of the expression, and resource needs of the
tree. We can accurately determine the execution
time of the tree (since we know the cost of each
operation used by the tree), and thus can build a
schedule for it. A microcode compaction strategy
[3] could be used to match the needs of the expres-
sion trees with the available machine resources.

The asynchronous approach to scheduling oper-

¥ Renaming is the assignment of a different storage location
for a definition of a variable. Since only the last definition
of a variable will reach the end of the block, all earlier
definitions are live only within the block, and thus are
temporary values.

¥ All operands used to index an array element are part of IN,
even if the array element itself is used only for output.

* For scalar variables, the only meaningful anti dependence is
between the first usage of the variable in the block (if the
definition comes from outside the block), and the definition
which reaches the end of the block. This is true because all
other definitions and usages could be renamed.
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ations is equivalent to the dataflow machine model
for computations *¥#, This strategy has been re-
ported in the literature [6], and is discussed in
section 6.

In this section we have shown that a program
block can be represented as a partial order. The
process of graph construction is straightforward,
although collecting accurate usage analysis for
array and pointer references is difficult. The
scheduling for parallel execution of intra-block
objects can be can be done at compile time for a
synchronous processor.

5. Inter-block analysis

This section discusses the relationship between
basic blocks of programs. Again, there are three
points to address. Can the control flow graph be
augmented to reflect the data dependency relation-
ships, and is this graph partially ordered? What
problems exist in construction this graph? What
kinds of schedules can be constructed for the
parallel operations?

The data dependericy problems encountered in
inter-block analysis are “classic” data flow analy-
sis problems [5]. We are more concerned with the
data dependency relationships between blocks than
with the program’s control flow. For this reason,
we will restrict our discussion to structured flow
graphs (representing programs written without
GOTOs). This insures that all nested control struc-
tures have exactly one entry and one exit point.
Given this restriction, the process of representing
the control flow graph as a partial order is
straightforward.

In general, the control flow graph does contain
data dependency cycles. These cycles can exist
because of two kinds of control structures:

1) Iterative control structures. These occur

wherever a for or while statement is used.

2) Recursive functions. This includes sets of mutu-
ally recursive functions.

Data dependency cycles must be eliminated before

*% That is, if we presume that our computational objects are
the operators of the statements.

the topological sort can be used to detect paralle-
lism.

Iterative cycles are “static”; their existence can
be determined at compile time. Their effect on the
graph can be minimized by encapsulating the cy-
cling portion of the graph as a single node. In this
way, the cycles are transformed to reflexive arcs in
the graph. The resulting graph is a hierarchical
representation of the program * which contains no
cycles, only reflexive loops.

The data dependence cycles occurring in recur-
sive functions cannot, in general, be processed
entirely at compile time. This problem is discussed
below.

Building the data dependency relationships be-
tween blocks of a program is similar to that of
intra-block construction discussed above. Recall
that IN and OUT for a block are calculated during
intra-block analysis. The (possible) difficulty in
building the data dependency graph comes from
trying to construct IN and OUT for nested control
structures. Since these control structures can con-
tain other blocks, the process of determining the
inputs and the outputs for the control structure
requires collecting input/output information from
the nested blocks.

Given the conditional control structure B’

if cond
then B,
else B,
fi
the input and output sets are determined by:
OUT[B’] = UOUT][B,]
IN[B’] = IN[cond] UIN[B,].
Since either path of the conditional statement can
be traversed, it is necessary to compose the input
and output sets of B’ from the input and output

sets of the blocks along both program paths.
The nested program block B’

* Hierarchy graphs (or H-graphs) have been used to study the
semantics of programming languages and machines. See ref.
[10].



74 P.L. Bird / Linear time detection of inherent parallelism

while cond do
B,
B,

od

requires the same equations for computing its in-
put and output sets. Even if a flow dependence
exists between B, and B,, so that a definition
computed in B, is used in B,, B, may not execute.
In this event, the definition used in B, could come
from outside of the structure B’. Therefore all
definitions required by B, must also be required
by B'.

The positioning of dependency arcs is done in
the same fashion as in intra-block analysis. The
relative position of the definition(s) and usage of a
variable in the control flow is used to determine
the type of dependence (flow, anti or output).

Graph construction for functions is difficult.

The above discussions presume that there is a one

to one relationship between a program’s oper-
ations and its data dependency relationships. For
a function, this is not always so. Consider a func-
tion which is multiply invoked *. Even though the
function may not be recursive, and may be para-
meterless (so we avoid data dependency analysis),
the data dependency graph of the function body
must contain information about the invocation
point (an invocation number) to permit possible

parallel execution of the function body. For each.

invocation point, a separate dependency graph
must exist.

The inclusion of parameters and different
parameter passing disciplines [1} complicates anal-
ysis. Use of Call by VALUE and call by RESULT
parameters ** permits the encapsulated analysis of
the function body. Since these parameters are
transferred only at the point of function invo-
cation (or return), the actual variables used as
parameters have no data dependency effect on the
function body. While individual copies of a func-
tion’s dependency graph need to be generated (one
for each invocation point), there are no structural
differences in the copies. Determining the data

* Further discussion of functions presumes that the function
is invoked at different points of the program.
** These are the in and out parameter modifiers of 4DA.

dependency arcs for the function at the invocation
point is straightforward; no examination of the
function body is necessary. Value parameters are
elements of IN, while result parameters are ele-
ments of OUT.

The use of call by NAME or call by REFER-
ENCE parameters can change the structure of the
function’s data dependency graph. These parame-
ter passing.disciplines require a full data depend-
ency analysis for the function body. In addition,
since either type of parameter can serve as input or
output to the function, linking the invocation point
to the surrounding graph requires the analysis of
the use of the parameter within the function body.

Scheduling for interblock parallelism must gen-
erally be done at execution time *. Two types of
scheduling mechanisms can be used: static and
dynamic.

The synchronization mechanisms can be stati-
cally built into the program’s code using either
semaphores of COBEGIN /COEND structures [2].
This is effectively building the data dependency
graph into object code of the program. Sema-
phores are used by Jajodia [6]. While they permit a
faster release of data dependency constraints, their
use would be incorrect for functions. The
COBEGIN /COEND structure permits a execu-
tion time scheduler to provide the invocation val-
ues for functions, at the expense of a delay in
releasing data dependency constraints.

The data dependency graph can also be passed
to a runtime execution scheduler. An execution
time scheduler could provide a “dataflow” sched-
ule, where the computations are packets of oper-
ations, rather than single operations. Since a topo-
logical sort is not time intensive, its integration
into a scheduler isn’t expensive. The only difficulty
is that the scheduler must allocate and release data
dependency graphs for recursive functions.

There is a potential problem with recursive
functions. Each invocation of the function could

 If the loop is bounded at compile time, then a deterministic
schedule could be built. Conditional statements within a
bounded loop, however, would result in only an approxima-
tion for the execution time of the loop being available. If the
loop is bounded at execution time, static analysis is inaccu-
rate.
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spawn concurrent tasks. The possibility exists that
an exponential number of outstanding tasks could
be generated. Consider the mutually recursive
routines:

procP, proc P,
B ; P,
Py
B,; end
end

If B,, P, and B, are data independent, then each
invocation of P, could spawn three tasks. Their
concurrent execution would cause a proliferation
of tasks. A safe way to prevent this would be to
“serialize” the parallelism at the point of recursive
invocations.: For the above example, this could be
accomplished by insuring that P, executed either
before (or after) the pair { B,, B, }. In this fashion,
only one task would be allowed to execute the call
chain for recursive procedures.

We have shown that a structured program can
be represented as a partial order, where looping
constructs are encapsulated. The data dependency
relationships can be found by synthesizing the
input/output sets of the encapsulated code. Paral-
lel operations must be synchronized at execution
time. The synchronization mechanisms can be in-
serted in the generated code, or the data depend-
ency graph can be passed to an execution time
scheduler.

6. Related work

The topological sort has been reported as a
method for parallelism detection in at least two
recent papers [6,11]. While both papers describe
the operation of the sort in differing degrees of
detail, neither identifies the work as a topological
sort.

The system described by Jajodia et al. [6], em-
phasizes analysis and scheduling of intra-block
parallelism. Their computational “objects” are
statements of the program. After determining de-
pendency relationships, they place semaphores with

fork and join operations in the code of the pro-
gram to synchronize the parallel execution. They
provide a proof that if two objects are bound by
an anti-dependence * relationship, then variable
renaming could break the dependence and allow
for parallel execution. They use this theorem to
show a scheme for the parallel execution of un-
rolled loops.

An important question, not addressed in the
paper, is the tradeoff between the time savings
gained from the parallel execution of the program
statements versus the expense of executing the
synchronization primitives. Since (at least one)
semaphore signal is executed at the end of each
statement, the runtime expense must be quite high.
It is unnecessary to incur this expense, however,
because the schedule for a block can be de-
termined at compile time. However, it would be
interesting to explore the utility of positioning the
semaphore signals after definitions of elements of
OUT for the whole block; this might speed the
release of subsequent, dependent blocks.

Vairavan [11] introduces the idea of providing
the data dependency graph to an execution time
scheduler. They recognize that the cost of the
graph traversal (by the topological sort) is rela-
tively inexpensive, so the overhead for releasing
data dependencies at execution time is low.

Neither paper discusses the problems of ¢ycles
in the dependency graphs. As discussed above,
these can occur with LOOP constructs in the pro-
gram, or with recursive functions. Jajodia [6] claims
that functions which are “freed from side effects”
can be scheduled in their fashion. However, be-
cause they position semaphores in the code body
of their translated programs, the parallel execution
of the function body would cause improper releas-
ing of data dependencies. Recursive functions (and
the proliferation of subtasks) are not addressed.
Vairavan [11] also neglects these topics.

7. Conclusion

The topological sort has been shown to be an
efficient method for the detection of parallel oper-

* The paper neglects the detection of output dependencies.
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ations in a partially ordered representation of a
sequential program. The algorithm can easily in-
corporate a scheduler for the concurrently executa-
ble operations. Intrablock operations (those within
the basic block of a program) have an execution
cost which can be determined at compile time. To
avoid the overhead of runtime synchronization
mechanisms, these operations can be scheduled at
compile time for execution on a synchronized
parallel processor. Basic blocks have execution
times which aren’t fixed at compilation time, so
runtime synchronization between data dependent
blocks is required. The synchronization mecha-
nisms can be positioned in the program’s code, or
the data dependency graph of the program can be
passed to a runtime execution scheduler.
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