
ComputerPhysicsCommunications37 (1985)69 76 69
North-Holland.Amsterdam

LINEAR TIME DETECTION OF INHERENT PARALLELISM IN SEQUENTIAL PROGRAMS

PeterL. BIRD *

Computer Science and Engineering Department, College of Engineering and Computing Center, University of Michigan, Ann
Arbor, MI 48109, USA

The topologicalsort canbe usedfor therapiddetectionof parallelismin sequentialprograms.Usingthis algorithm,onecan
detectboth intrablockandinterblockparallelism.Thealgorithmrequiresonly informationnormallycollectedby anoptimizing
compiler.

1. Introduction 3) Detectionof parallelism
This includes vectorization(the determination

The executionspeedof single processorcorn- that a looping constructioncanbe mappedto a
putersis rapidly approachingphysicaldevice limi- vectoroperation)and the identification of op-
tations. One way of achieving increasesin the erationswhich may be concurrentlyexecuted.
running speed of programs is to partition the 4) Operationscheduling
problem into independent,concurrentlyexecuta- This involves the allocation of resourcesto
ble computations.While the greatest speed in- perform the computation.
crease should certainly come from algorithms The first two tasks act only upon the abstract
which are structuredfor parallelexecution(using program structure. In contrast, the second two
parallel programminglanguages),thereis much a tasks map this graphonto the targetarchitecture.
compiler can do to automaticallydeterminecon- The algorithmdiscussedin this paperis concerned
currently executablecomputationsin sequential with the third problem, the detectionof paralle-
programs. lism, and to some degreewith the schedulingof

There are four tasks related to the automatic parallelcomputations.Thisis not to imply that the
parallelizationof sequentialprograms: other tasks are unimportant. In particular, the
1) Graph construction numberof concurrentoperationsin a programcan

This involves building a graphicalrepresenta- be severelylimited unlessonebreaksdatadepend-
tion of the executionbehavior and the data encies.However,thesetechniqueshavebeenwidely
dependencyrelationships between computa- studied, and are outsidethe scopeof this paper.
tions in the program. See ref. [1] for a presentationof the problems

2) Graph modifications involved in building programgraphs;ref. [9] is an
This is a broad classof operationsto modify introductionto graphmodifications.
the graphicalrepresentationof the program.It A partial order is commonly used for repre-
involvestheinsertionanddeletion of botharcs sentingthe datadependencyrelationsbetweenthe
andnodesin the graph.The deletionof arcs in operationsof a basicblock of a program*~Recall
the dependencygraph is importantto enhance that a partial orderis reflexive, antisymmetricand
parallelism.Analysis of arrayandpointerrefer- transitive.
encesis oneclassof graphanalysis. * Throughoutthis paper,we will use the operator~ to repre-

sentall data dependencyrelationships.Thus, o’ & o means
* This work was partially supportedby Applied Dynamics that o’ is dependentupon o.

Internationalof Ann Arbor.

OO1O-4655/85/$03.30© ElsevierSciencePublishersB.V.
(North-Holland PhysicsPublishingDivision)

70 P.L. Bird / Linear time detection of inherent parallelism

a b c Level 0 operationsof the block. As shown below, it can\ \ also determine(in linear time) sets of program
d e I Level 1 operationswhichcanbe performedin parallel.

f Level 2 2. Thetopologicalso~

h Level 3

Fig. i. The topological sort can be describedas a

strategyfor traversinga partially orderedgraph. If
we view the arcs in the graphas constraintsupon

Considerthe partial order of fig. 1. The nodes nodes,then the sort providesa method for releas-
of this graph represent computational objects ing nodes which insures that no node will be
(either single operationsor sets of operations) releaseduntil all of its constraintsare satisfied.
while the arcs representdependencyrelationships The implementationof this graph traversalis
betweenobjects.Objectsat the higher(numbered) straightforward.For reasonsof efficiency we re-
levels are dependentupon objects at the lower quire that all objectso in the graphmaintain two
levels (for example,d ~ a). If we presumeeach values:
object takesone cycle to execute,it is clear that

dependency_count(o) = cardinality((o’Io ~ o’})
theminimumexecutiontime for the objectsin fig.
1 is four time steps; this is the soonestobject h and
could completeexecution.The maximumnumber
of useful processorswould be three; this is the dependent_nodes(o) = fo’Io’ ~ o}.
maximumnumberof objectsat any level (on level The first valueis a count of the initial constraints
0). for a node; this is the numberof objectswhich

The problem addressedin this paper is the must be releasedbefore o can be released.The
determinationof sets of objects which can be secondvalueis a list of objectswhich are depen-
concurrentlyexecuted.Upon visual inspectionof dentupon o.
fig. 1, onecanobservethat the objectsat eachof For example,the equationset:
the “levels” can beconcurrentlyexecutedbecause a : = constant;
thereare no constraintsbetweenthem. Thesesets b : = constant;
can be found by making a “breadth-first” traver- c : = a + b;
sal of the graph. In addition to those sets, the d : a + constant;
following objectshaveno datainterdependencies, would havethe augmenteddatadependencygraph
andthereforecanbeconcurrentlyexecuted: of fig. 2. The nodes in this figure have a field

containingthe dependency_count,anda field rep-
(ae} resentingthe output of the node.The arcs in the

{ cd } { cf } figurerepresentthe setsof dependent_nodes.
~fe } ~-~ } The topological sort works by selecting (for

The topological sort [7] is a well-known al-
gorithm used to embeda partial order in a linear _________ _________

order *~Historically, the topologicalsort hasbeen I I a b

used to reordercomputationsfor sequential(SISD)
machines[1]; any topological sort of a program _________

block representsa legal executionorder for the 2 ~.

* The resulting linearordering is not necessarilyunique.That I d

is, theremaybemore thanonepossiblelinear embeddingfor
a partial order. Fig. 2.

P.L. Bird / Linear time detection of inherent parallelism 71

release)from amongthosenodesin the graphwith minimumpossibleexecutiontime for the nodesof
no outstandingconstraints.A suitable candidate thegraph,while the cardinalityof the largestsetis
can be found by examining those nodes whose the maximumnumberof usefulprocessorsneeded
dependency_countis zero. After a nodehas been by the program.
released,all dependent_nodes havetheir depend- Thereare threetopicswe needto examinewhen
ency_ counts decremented.Searchingfor a con- discussingthe utility of the topological sort for
straint freenodecouldrequirea continuingtraver- parallelismdetection.First, can the programsec-
sal of the graph.We canavoid thesegraphtraver- tion realisticallybe representedas a partial order?
salsby maintaininga set of mutually independent Does the graphof the program contain cycles?
computations(whichwe’ll call MI); this is the set Second,what arethe problemsassociatedin build-
of objectswhoseconstraintshavebeensatisfied.A ing the graph of the data dependencyrelation-
pseudo-codedescriptionof the algorithmfollows, ships?Lastly, what kinds of schedulingare possi-

ble for the partitionedcomputations?
Input: an acychc data dependencygraph with

counters

Output:a linear schedulingof computationsin the 3. Definitions
graph

Data dependenciesbetween objects are de-
Initialization: MI = {o I counter(°)= terminedby examiningthe input set and the out-

Iteration:while (MI # ~)do put set of an object. The input set (denotedby
Select(o MI) IN[o]) is the set of operandsusedfor computa-
MI: = MI {o} tions, while the output set (denotedby OUT[o])
(V o’)(o’ 8 o) do consistsof the valuesgeneratedduring execution.

Counter(o’): = counter(o’) 1 The following definitionsare useful for discussing
If counter(o’) = 0 thesesets, and the dependencyrelationshipsbe-

then MI: = MI U {o’} tweenobjects; for a discussionof the roleof data
od flow analysisin programoptimizationsseeref. [1]

od or ref. [5].
A basicblock (or block) is a linearsequenceof

The Selectprocedurecanincorporatea sched- programstatementshaving one entry point and
uling mechanismto determinewhich node to re- one exit point. Executionof any statementin a
lease.While this selectioncriteria could be corn- block implies executionof all statementsin the
plex (andtime expensive),the cost of the traversal block.A flow graphis the graphicalrepresentation
of the graphis quite small. If thereare m objects of the controlflow of a program.The nodesof the
in the graph,andn dependencyrelationships,then graph are basic blocks, and the arcs represent
thecost of the graphtraversalis successorrelationships.

c m + ~ A definition is the calculationperformedby an
1 2 object. An assignmentstatementstoresa defini-

sinceeachobject is visited at most twice (oncefor tion into a variable. A definition of a variable
initialization andonceduring iteration)while each reachesa point in a programif thereexistsa path
dependencyarc is traversedat mostonce. from the definition to that point (without a subse-

Onefairly simple,but neverthelessuseful,selec- quentredefinition).A variableis usedby a block if
tion mechanismconstructssets from the “levels” it appearsas an operandin a statementin the
of the partial order. Ratherthan selectinga single block prior to a redefinition in the block.
node from MI, each iteration of the topological The following definitions of data dependency
sort releasesall nodesin MI. This amountsto a relationshipsare from ref. [9]. Given two objects
“breadth-first” traversalof the dependencygraph. 0, and O~(where0, is positionedin the control
The number of sets constructed indicates the flow prior to 0,) we definethat (0, 6 0,) if any of

72 P.L. Bird Linear timedetection ofinherent parallelism

the following are true: existsbetweentheseobjects. Renaming~ all but
the lastoccurrenceof a scalarvariablewill break

Flow dependence OUT[0,] fl IN[O,] ~ 0. this type of dependence.Without extensiveanaly-
sis, multiple outputsto arrayvariablesrequiresthe

Outputdependence OUT[0,] 11 OUT[o1] ~ 0. establishmentof an output dependencebetween
the two objects.

Anti-dependence IN[0,] n OUT[0,1 * Q. The second step in graphconstruction is to
insert the dependencyarcs. This task uses the
elementsof IN ~ (for eachobjectin the block) to
searchthe list of outputs.A flow dependenceexists

4. Intra-block analysis betweendefinitions and their usagein the block.
An anti dependenceexists whena variableis used,

This section presentsthe problemsassociated thenredefinedwithin the block ~.

with manipulatingthe graphusedto representthe The unrenamedelementsof the output list and
basicblock of a program.Thereare threepoints to thosevariableswhich are used(beforedefinition)
examine.Can a block be representedas a partial constitutethe elementsof OUT and IN for the
order? What problemsexist in building the pro- block.Thesesetswill be usedfor interbiockanaly-
gram’sgraph?What kind of schedulescanbe built
for the computations? Thereare two ways the computationsin a block

The computationalobjectsin our discussionof can be scheduled: synchronously or asyn-
blocks are statements*~The statementswithin a chronously.
block havea linear order; therecannotbe execu- The executiontimesfor all objectsin the block
tion cycleswithin a block. This implies that there are known at compile time, so a deterministic
cannotbedatadependencycyclesin a block’sdata schedulecan be built. This avoids the cost of
dependencygraph,thereforethis graphis a partial runtimesynchronizationmechanisms.By usingan
order, attributegrammarschemefor instructionselection

The processof building the datadependency [4], the compilercancollect dataaboutthe compu-
graph for a block has two steps. First, we con- tation tree. This information would include the
struct a list of the outputsof each object in the height of the expression,andresourceneedsof the
block. Thesecanbe collectedand sortedby name tree. We can accuratelydeterminethe execution
of the variable, and position of the statementin time of the tree (sincewe know the cost of each
the block. If an arrayelementis usedfor output,a operationusedby the tree), and thuscan build a
conservativeapproximationwould be to enterthe schedulefor it. A microcodecompactionstrategy
arraynameinto the list ~ If an output is multi- [3] couldbe usedto matchtheneedsof the expres-
ply definedin the list, thenan outputdependence sion treeswith the availablemachineresources.

The asynchronousapproachto schedulingoper-

Renamingis the assignmentof a differentstoragelocation

* Another approachwould be to take the operatorsof state- for a definition of a variable.Sinceonly thelast definition

mentsasour objects.Indeed,theoperatorsandoperandsin of a variablewill reach the end of the block, all earlier
a block are commonly representedby a DAG (a Directed definitions are live only within the block, and thus are
Acyclic Graph) [1]. This representationcould yield more temporaryvalues.
paralleloperations,sinceall operatorsin theblock would be ~ All operandsusedto indexanarrayelementarepart of IN,
examinedfor parallel execution, even if thearrayelementitself is usedonly for output.

* * Betteranalysisof arrayusagerequiresdeterminingwhether * Forscalarvariables,theonly meaningfulanti dependenceis
different indexing expressionscould possiblyreferencethe betweenthefirst usageof the variable in the block (if the
samearray element.This requiresexaminingthedefinition definition comesfrom outsidetheblock), andthedefinition
points for thevariablesusedin indexing; thesedefinitions which reachesthe endof theblock.This is truebecauseall
maybe generatedwithin otherblocks, otherdefinitions andusagescouldberenamed.

P.L. Bird / Linear time detection of inherent parallelism 73

ationsis equivalentto the dataflowmachinemodel the topologicalsort can be used to detectparalle-
for computations~. This strategyhasbeen re- lism.
ported in the literature [6], and is discussedin Iterativecyclesare “static”; their existencecan
section6. be determinedat compile time. Their effect on the

In this sectionwe haveshown that a program graphcan be minimizedby encapsulatingthe cy-
block can be representedas a partial order. The cling portionof the graphas a singlenode.In this
processof graphconstructionis straightforward, way, the cyclesare transformedto reflexivearcs in
although collecting accurateusage analysis for the graph. The resulting graph is a hierarchical
array and pointer references is difficult. The representationof the program* which containsno
scheduling for parallel execution of intra-block cycles,only reflexive loops.
objectscan be can be done at compile time for a The datadependencecyclesoccurringin recur-
synchronousprocessor. sive functions cannot, in general, be processed

entirely at compiletime. This problemis discussed
below.

5. Inter-blockanalysis Building the datadependencyrelationshipsbe-
tweenblocks of a programis similar to that of

This sectiondiscussesthe relationshipbetween intra-block construction discussedabove. Recall
basic blocks of programs.Again, thereare three that IN andOUT for a block arecalculatedduring
points to address.Can the control flow graphbe intra-block analysis.The (possible) difficulty in
augmentedto reflectthe datadependencyrelation- building the data dependencygraphcomes from
ships, and is this graphpartially ordered?What trying to constructIN andOUT for nestedcontrol
problems exist in constructionthis graph?What structures.Sincethesecontrol structurescan con-
kinds of schedulescan be constructedfor the tam other blocks, the processof determiningthe
paralleloperations? inputs and the outputs for the control structure

The datadependencyproblemsencounteredin requirescollecting input/outputinformation from
inter-blockanalysisare “classic” data flow analy- the nestedblocks.
sis problems[5]. We are moreconcernedwith the Given the conditionalcontrol structureB’
datadependencyrelationshipsbetweenblocksthan
with the program’s control flow. For this reason, if cond
we will restrict our discussionto structuredflow thenB~
graphs (representingprograms written without elseB2
GOTOs). Thisinsuresthatall nestedcontrolstruc- [i
tures haveexactly one entry and one exit point.
Given this restriction, the processof representing the rnput andoutput sets are determinedby:
the control flow graph as a partial order is ouT[B’] = UOUT[B]
straightforward.

In general,the control flow graphdoescontain IN[B’] = INEcond] U IN[B,].
data dependencycycles. These cycles can exist Sinceeitherpathof the conditional statementcan
becauseof two kinds of control structures: be traversed,it is necessaryto composethe input
1) Iterative control structures. These occur and output sets of B’ from the input and output

wherevera for or while statementis used. setsof the blocks along bothprogrampaths.
2) Recursivefunctions.Thisincludessetsof mutu- The nestedprogramblock B’

ally recursivefunctions.
Datadependencycyclesmustbe eliminatedbefore

* Hierarchygraphs(or H-graphs)have beenused to studythe

~ That is, if we presumethat our computationalobjectsare semanticsof programminglanguagesand machines.See ref.
theoperatorsof thestatements. [101.

74 P.L. Bird / Linear time detection of inherent parallelism

while conddo dependencyarcsfor the functionat the invocation
B1 point is straightforward; no examinationof the

B2 function body ts necessary.Value parametersare
elementsof IN, while result parametersare ele-od
mentsof OUT.

requiresthe sameequationsfor computingits in- The useof call by NAME or call by REFER-
put and output sets. Even if a flow dependence ENCE parameterscanchangethe structureof the
exists between B1 and B2, so that a definition function’s datadependencygraph. Theseparame-
computedin B1 is usedin B2, B1 may not execute. ter passing.disciplinesrequire a full datadepend-
In this event,thedefinition usedin B2 could come ency analysisfor the function body. In addition,
from outside of the structureB’. Therefore all sinceeithertypeof parametercanserveas inputor
definitions requiredby B.2 must also be required output to thefunction, linking the invocationpoint
by B’. to the surroundinggraphrequiresthe analysisof

The positioningof dependencyarcs is done in the useof the parameterwithin the functionbody.
the samefashion as in intra-block analysis.The Schedulingfor interbiockparallelismmustgen-
relativeposition of the definition(s)andusageof a erally be done at executiontime ~. Two types of
variable in the control flow is used to determine scheduling mechanismscan be used: static and
the typeof dependence(flow, anti or output). dynamic.

Graph construction for functions is difficult. The synchronizationmechanismscan be stati-
The abovediscussionspresumethat thereis a one cally built into the program’s code using either
to one relationship between a program’s oper- semaphoresof COBEGIN/COENDstructures[2].
ationsandits datadependencyrelationships.For This is effectively building the datadependency
a function, this is not always so. Considera func- graph into object code of the program. Sema-
tion which is multiply invoked *, Even thoughthe phoresareusedby Jajodia[6].While they permit a
function may not be recursive,and may be para- fasterreleaseof datadependencyconstraints,their
meterless(so we avoiddatadependencyanalysis), use would be incorrect for functions. The
the datadependencygraphof the function body COBEGIN/COEND structurepermits a execu-
must contain information about the invocation tion time schedulerto provide the invocationval-
point (an invocation number) to permit possible ues for functions, at the expenseof a delay in
parallel executionof the function body. For each. releasingdatadependencyconstraints.
invocation point, a separatedependencygraph The datadependencygraphcan also be passed
mustexist, to a runtime executionscheduler.An execution

The inclusion of parametersand different time schedulercould providea “dataflow” sched-
parameterpassingdisciplines[1] complicatesanal- ule, where the computationsare packetsof oper-
ysis. Useof Call by VALUE andcall by RESULT ations,ratherthansingleoperations.Sincea topo-
parameters** permits the encapsulatedanalysisof logical sort is not time intensive, its integration
the function body. Since these parametersare into a schedulerisn’t expensive.Theonly difficulty
transferredonly at the point of function invo- is that theschedulermustallocateandreleasedata
cation (or return), the actual variables used as dependencygraphsfor recursivefunctions.
parametershaveno datadependencyeffecton the There is a potential problem with recursive
function body. While individual copiesof a func- functions. Eachinvocation of the function could
tion’s dependencygraphneedto be generated(one
for eachinvocationpoint), thereare no structural
differencesin the copies. Determining the data If theloop is boundedat compile time, thena deterministic

schedulecould be built. Conditional statementswithin a
boundedloop, however,would result in only an approxima-

* Furtherdiscussionof functionspresumesthat thefunction tion for theexecutiontime of theloop beingavailable.If the
is invoked atdifferentpointsof theprogram. loop is boundedat executiontime, static analysisis maccu-

** Thesearethe in andout parametermodifiers of ADA. rate.

P.L. Bird / Linear time detection of inherent parallelism 75

spawnconcurrenttasks.Thepossibility existsthat fork and join operationsin the code of the pro-
an exponentialnumberof outstandingtaskscould gram to synchronizethe parallel execution.They
be generated.Consider the mutually recursive providea proof that if two objectsare bound by
routines: an anti-dependence* relationship,then variable

renamingcould break the dependenceand allow
procP0 proc~ for parallel execution. They use this theoremto

show a schemefor the parallel executionof un-
~ ~a; rolled loops.

An importantquestion,not addressedin the

B,; end paper, is the tradeoff betweenthe time savings
gainedfrom the parallelexecutionof the program

end statementsversus the expenseof executing the
synchronizationprimitives. Since (at least one)

If B~,P~and B.. are dataindependent,theneach semaphoresignal is executedat the end of each
invocation of ~a could spawn three tasks. Their statement,the runtimeexpensemustbe quite high.
concurrentexecutionwould causea proliferation It is unnecessaryto incur this expense,however,
of tasks.A safe way to preventthis would be to becausethe schedulefor a block can be de-
“serialize” theparallelismat the pointof recursive terminedat compile time. However, it would be
invocations.For the aboveexample,this couldbe interestingto explorethe utility of positioning the
accomplishedby insuring that executedeither semaphoresignalsafter definitionsof elementsof
before(or after) the pair { B,,, H.). In this fashion, OUT for the whole block; this might speedthe
only one task would be allowedto executethe call releaseof subsequent,dependentblocks.
chainfor recursiveprocedures. Vairavan [11] introducesthe idea of providing

We haveshown that a structuredprogramcan the datadependencygraph to an executiontime
be representedas a partial order, where looping scheduler. They recognize that the cost of the
constructsare encapsulated.The datadependency graph traversal(by the topological sort) is rela-
relationshipscan be found by synthesizingthe tively inexpensive,so the overheadfor releasing
input/outputsetsof theencapsulatedcode. Paral- datadependenciesat executiontime is low.
lel operationsmust be synchronizedat execution Neitherpaperdiscussesthe problemsof cycles
time. The synchronizationmechanismscan be in- in the dependencygraphs. As discussedabove,
sertedin the generatedcode,or the datadepend- thesecanoccur with LOOP constructsin the pro-
ency graph can be passedto an executiontime gram, or with recursivefunctions.Jajodia[6] claims
scheduler. that functionswhich are “freed from side effects”

can be scheduledin their fashion. However, be-
causethey position semaphoresin the codebody

6. Related work of their translatedprograms,the parallelexecution

of the functionbody would causeimproperreleas-
The topological sort has been reported as a ing of datadependencies.Recursivefunctions(and

method for parallelism detection in at least two the proliferation of subtasks)are not addressed.
recent papers [6,111.While both papersdescribe Vairavan[11] also neglectsthesetopics.
the operationof the sort in differing degreesof
detail, neitheridentifies thework as a topological
sort. 7. Conclusion

The systemdescribedby Jajodiaet al. [6], em-
phasizesanalysis and scheduling of intra-block The topological sort has been shown to be an
parallelism. Their computational “objects” are efficient method for the detectionof parallel oper-
statementsof the program.After determiningde-
pendencyrelationships,they placesemaphoreswith * Thepaperneglectsthedetectionof output dependencies.

76 P.L. Bird / Linear time detection of inherent parallelism

ationsin a partially orderedrepresentationof a References
sequentialprogram.The algorithm can easily in-
corporateaschedulerfor theconcurrentlyexecuta- [11A.V. Aho andJ.D. UlIman, Principlesof Compiler Design

ble operations.Intrablock operations(thosewithin (Addison-Wesley,Reading,Massachusetts,1977).
[2] G.R. AndrewsandF.B. Schneider,ACM ComputingSurv.

the basicblock of a program)havean execution 15 (1983) 3.

cost which canbe determinedat compile time. To [3] S. Davidson, D. Landskov, B. Shriver and P. Mallett,

avoid the overheadof runtime synchronization IEEETrans. on ComputersC-30 (1981)460.

mechanisms,theseoperationscanbe scheduledat [4] M. Ganapathi, PhD Thesis, University of Wisconsin,

compile time for execution on a synchronized Madison (1980).
[5] M. Hecht, Flow Analysis of ComputerPrograms(North-

parallel processor.Basic blocks have execution Holland, New York. 1977).

times which aren’t fixed at compilation time, so [6] S. Jajodia, J. Liu and P. Ng, IEEE Trans. on Software

runtime synchronizationbetweendatadependent Eng. SE-9 (1983)436.

blocks is required. The synchronizationmecha- [7] D Knuth FundamentalAlgorithms (Addison-Wesley,

nismscanbe positionedin the program’scode,or Reading,Massachusetts,1968).
[8] D.J.Kuck, ACM Computing Surv. 9 (1977)29.

the datadependencygraphof the programcan be [9] D.J. Kuck, RH. Kuhn, D.A. Padua,B. Leasureand M.

passedto a runtime executionscheduler. Wolfe, DependenceGraphsand Compiler Optimizations,

Proc. of ACM Symposiumon Principlesof Programming
Languages(Jan. 1981)p. 207.

Acknowledgements [10] T.W. Pratt.H-GraphSemantics,DAMACS Reports81-15

and81-16.Departmentof Applied MathematicsandCorn-
J.R. Levenick and Uwe Pleban read earlier puterScience,Universityof Virginia. Charlottesville(Sep-

drafts of this paperandcontributedgreatlyto its tember1981).
readability. Bertrand Meyer proposeda clearer [11] K. Vairavan and V. Vairavan, A Model for the Parallel

Representationand Executionof Programs.Proc. of the
presentationof the topological sort. John Stark IEEEFourthIntern. ComputerSoftwareandApplications

contributedthe useof his office for preparingthis Conference(October1980) p. 295.

paper.

