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Abstract: An extended coherent-state theory I.‘) is used to give a simple construction for the matrix 
elements of the proton-neutron sp(4) quasispin algebra. A very simple analytical expression is 
given for the matrix elements of the sp(4) generators valid for all cases where initial and final 
states are multiplicity-free with respect to the U( 1) x SU(2) n, T subalgebra. In the more general 
case, involving multiplicity, the most natural orthonormal basis constructed by the coherent-state 
method leads to many-nucleon states in the seniority scheme which are approximately labelled 
by Tp, the isospin of the p nucleon pairs coupled to J = 0, T = I. 

1. Introduction 

Recently an extended coherent-state theory has been developed by Rowe ‘) and 
in slightly different from by Deenen and Quesne ‘)++ and applied to the 
noncompact symplectic groups and, in particular, the Sp(6, R) nuclear collective 
model 3). A similar and detailed treatment of the Sp(4, R) group has been given by 
Castar?ios, Chacbn, Moshinsky, and Quesne4) in their study of boson realizations 
of this group. Many of the compact groups of relevance for nuclear spectroscopy 
have also been discussed in terms of a generalized coherent-state theory by 
Dobaczewski 5, in his functional representation analysis of boson expansion 
theories. Coherent-state expansions have also been used in the interacting boson 
model [for a recent example, see ref. “)I; but detailed applications of the 
generalized coherent-state methods to compact groups have so far lagged behind 
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the successful application made in the derivation of Sp(2d, R) matrix elements. It is 
the purpose of this short note to show how the generalized coherent-state methods 
of refs. 1y2v4) can be applied to advantage to compact groups with a specific simple 
example. The example chosen is that of the proton-neutron quasispin group, a 
unitary symplectic group in 4 dimensions, Sp(4), in its application to the n, T 
structure of shell-model states in the seniority scheme, (n = nucleon number, 
T = isospin). A five-dimensional quasispin formalism (using the isomorphism 
between the Lie algebras R(5) and sp(4)) has previously been developed ‘) to 
determine the (n, T)-dependent factors of shell-model matrix elements in the 
seniority scheme. Although a detailed practical solution to this problem has been 
found for most of the representations of interest in nuclear spectroscopy’), a 
“missing quantum number problem” has prevented a complete analytic solution. It 
will be shown how the extended coherent state methods can cope with this 
problem. It is of particular interest to note that the most natural orthonormal basis 
constructed by these methods is very closely related to a labeling scheme first 
proposed by Racah s). In this scheme a state of seniority t’ and isospin T is 
constructed by coupling the reduced isospin t of the c nucleons not coupled in 
pairs to J = 0 with the resultant isospin Tp of the p pairs of nucleons coupled to 
f=O, T= 1. 

The coherent state realization of the sp(4) or proton-neutron quasispin algebra 
will be given in sect. 2. The strategy used to calculate the matrix elements of this 
algebra is the same as that of refs. ‘,‘f, It uses coherent-state theory to relate the 
sp(4) algebra to a simpler algebra whose matrix elements are known. This simpler 
algebra generates a semi-direct product of a 3-dimensional Heisenberg-Weyl group 
with the U(1) x SU(2) n, T subgroup of Sp(4), where the Heisenberg-Weyl algebra is 
generated by Bargmann space variables zi and the adjoint differential operators 
i-?/&, (i = 1,2,3). As in ref. ‘) a very simple analytical expression can be derived for 
the matrix elements of the sp(4) generators valid for all cases where initial and final 
states are multiplicity-free with respect to the U(1) x SU(2) subalgebra, i.e. for all 
matrix elements involving only states which are completely specified by n, IT; and 
Mr. In those cases where the additional fourth quantum number is needed the 
method involves the square root taking of an isoscalar, hermitean operator (or 
matrix). This case is illustrated in some detail with a few examples in sect. 3, with 
particular emphasis on the irreducible representation with seniority number t’ = 4 
and reduced isospin t = 2. For nuclear shells with j B y this involves states with 
threefold multiplicities. It is therefore beyond the scope of the earlier five- 
dimensional quasispin treatments but may have useful applications since 
configurations of both neutrons and protons in the h, abnormal-parity intruder 
orbit may play an important role in yrast-band spectroscopy of neutron deficient 
nuclei in the A * 126 mass region 9). 
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2. Coherent-state realization of the proton-neutron quasispin group 

The proton-neutron quasi-spin group is generated by the nucleon pair-creation 
(and annihilation) operators coupled to J = 0, T = 1, A+(M,) (and A(M,)), the 
isospin generators T, and the number operator, or more conveniently H, = 
iN,,-(j++). [The n o a ran follows that of ref. ‘).I It is convenient to introduce t t’ 
a vector notation A’ = (A:, A:, A:) where A’(MT = F 1) = T& (A: *iA:), 

A+(O) = A:. The irreducible representations are labeled in terms of the seniority L’ 
and reduced isospin 1 by o, = j+i--i~ and r. The states of an irreducible 
representation are spanned by vectors of the type 

l.i’hrt x T,lTM,) = c n (A+),T,M,~o~~~,)(~~,T,MT,JTM,), (lb) 
MTP 

where n (A + )p~p~,p is a product of p pair-creation operators coupled to resultant 
isospin T,, with p = .i(n-0) and Tp = p, p-2,. . . . The Jortm,) are the c-particle 
states r&r,). Note that TP is not an orthogonal label since the label TP cannot be 
associated directly with the eigenvalue of a hermitean operator. However, the states 
p~r[t x T,]TM,) are normalized. A generalized coherent state can be defined by 

Iz, colt) = exp (z* * A +)lo,t), 12) 

where z = (z,,z,, z3) defines three independent complex variables zj- In eq. (2) 
Iw,t) is a shorthand notation and stands for the subspace of (2t+ 1) states jwrtm,) 
with T = t and n = c. The states (2) are therefore a set of partially coherent states 
in the language of ref. ‘). Since all final-state vectors will be vector-coupled in 
isospin space (as in eq. (1)) and all matrix elements to be derived will be isospin 
reduced matrix elements, this distinction can be suffused in the shorthand notation 
Iwit). The I$) thus have the functional representations 

and operators 6 are represented by F‘(a) 

QW4+, dz) = (wItle(~‘A)Ol~) 1 

= (~~~l(~+C(z~~),0]+~[(z~A),[(~~A),8]]+...)e~~~~~lJ/). (4) 

This leads to the coherent-state realization 
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l-(/l+) = o,z-i[zxt]-z(z~V)++(z~z)v, WI 

W,) = -o,+(z.V), (5c) 

T(T) = t--i[z x V], (5d) 

where z. V = ~jzja/dzj. The isospin operator acting on the implied label m, in the 

space of the $,,t with n = v and isospin t is denoted by t, an “intrinsic” isospin 

operator, which is combined with the “orbital” isospin operator -i[z x V] in eq. 

(5d). 
The operators 

a 

az’ z3 --co, +(z.V), t-i[ZXV] 

generate a semi-direct product of a three-dimensional Heisenberg-Weyl group 

with a U(l)x SU(2) subgroup of sp(4); and the operators a/& and z are a 

realization of a set of three-dimensional boson annihilation and creation operators 

a and a+. The states generated by these operators in the functional representation 

(3) (to be denoted by round brackets) for a number p of bosons, 

(7) 

have here been expressed in terms of normalized z-space three-dimensional 

harmonic-oscillator functions : 

P pTpM,(Z) = J~“,,~(Z’ z)t(p-T,)+,, tz), 
P 

(8) 

where ?Y is a solid harmonic in z; and p = ~(PI -v). Note, however, that these are 

not the oscillator wave functions in real three-space because of the different 

definition of the scalar product in complex z-space [see ref. lo)]. Instead, the 

functions (8) are the Bargmann transforms of the familiar three-dimensional 

harmonic-oscillator functions. 

The reduced matrix elements of z are given by standard Racah algebra: 

(n+2,q[r x T;lul II z no,[t x T,]T) = U(tT,T’l ; 7-7g(TJzlpJ Pa) 

where the z-space reduced matrix element follows from the simple properties lo) of 

the PpTpM,“(z) and is given by 

uyl4l~,) = [(p+ Nf((PO)q; (10)1ll(P+ Lwy), (9b) 
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with T; = T,+ 1. The double-barred coefficient in (9b) is an SU(3) ZJ R(3) reduced 
Wigner coefficient of very simple algebraic form; see, e.g. ref. “), also eq. (20~) 
below. (It should be pointed out that the order of the vector couplings in eqs. (1) 
and (7) has been chosen to be Et x Tp]. Also, the isospin reduced matrix elements of 
eq. (9a) are defined as follows: full matrix element = (reduced matrix 
element) x (Wigner coefficient), without dimensional factors of [2r + 111.) 

Since Vj = i?,Gzj is the hermitean adjoint of zj the realization (6) is a unitary 

realization of the U(1) x SU(2) Heisenberg-Weyl algebra, whereas the realization r, 
eqs. (5) of the sp(4) generators, is nonunitary. To evaluate the matrix elements of 
the sp(4) generators, we follow refs. ‘*‘) [adhering to the notation of ref. ‘)I, and 
make a transformation to a unitary realization, y, of the sp(4) generators by means 
of a hermitean positive definite [U( 1) x SU(2)]-invariant operator K 

y(A’) = K-lr(A’)K, y(A) = K- ‘r(A)K. (10) 

The unitary requirement, y(A+) = (y(A))+, and eq. (5a) then give 

I-(,4+) = KZZK-2* 01) 

To determine hc ~followin~ ref. ‘)I we seek an [U(l) x SU{2)]-invariant operator n 
with the property 

[‘4,2-j = r(A+). (12) 

Since the number of scalars which can be formed from the vectors z, V, f is limited, 
it is easy to show that the operator 

A= -~(z~V)(z~V)+~(2:~z)V2+(0~+~)(Z’V)+it~[ZXVJ (13) 

is an operator with the necessary properties. It is diagonal in the basis (7) with 
eigenvalue Sz, 

which follows from the simple action of operators (z . V),. . ., on the PPTPT,(z). With 
these eigenvalues, the combination of eqs. (i 1) and (12), 

[A,Z] = K%c-2, (15) 

leads to recursion relations for the matrix elements of the operator I$. Since rc2 is 
an [U(l) x SU(2)] -invariant operator its matrix elements are diagonal in n, T and 
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independent of M,: 

(n’o,[t x T;]T’M;(~~[nco~[t x TJTM,) = 8,,~,,6T~Tb~M;M7(u2(o,, t, n, T)Jrir, (16) 

The dimension of the rc2 matrix is thus given by the multiplicity of possible Tp 

values for a state of definite n and T; and this is generally a very small number. 

There are a large number of states in the seniority scheme in which the label Tp is 

uniquely determined by the values of L’, t, n, and T Then rc2 is l-dimensional. This 

includes all states ‘) of the irreducible representations with t = 0, t = $ and with 

wi = t, also all states with n neutrons and no protons, with (n- 1) neutrons and 

one proton, and states with t = 1 and +(H -c) - T = even. The occurence of these 

simple (l-dimensional) states is therefore quite common so that this l-dimensional 

case is of considerable interest. For the l-dimensional case the square root taking 

of K’ required for eq. (10) is trivial. Taking matrix elements of relation (15) 

between simple (l-dimensional) states of type (7) with n, T on the right and 

n’ = n + 2, T on the left yields 

K2(W1, t, n+2, T’) 

K*(w,, t, a, T) 
= Q(n + 2, T;, T’) - Q(n, T,, T), (17) 

where it is assumed that T, (similarly T;) is uniquely specified by n and T. For 

such states the combination of eqs. (lo), (1 l), and (17) gives 

(n+2,o,[r x T;]T’llW+)ll~~,[t x T,]T) 

= [Q(n + 2, T;, T’) - Q(n, T,, T)]” 

x (n+2, q[t x T;]T’llzllm+[t x T,]T). (18) 

Since the carrier space spanned by the bosonic states (7) in the functional 

representation is mapped isomorphically into the fermion states (lb), the matrix 

elements of the generators of the proton-neutron quasispin group in the fermion 

basis are also given by [cf. ref. ’ )] 

0’n+2c01[t x T,‘]T’IIA+lli”q[t x T,]T) 

= [Q(n + 2, T;, T’) - Q(n, T,, T)]+ 

x (n+2,o,[t x T;]T’llzllnq[t x T,]T). (19) 

This leads to a very simple general analytic expression for matrix elements of A + 

for the case when both initial and final states are simple (when both TP and Td are 

uniquely determined). In this case 

(jn+2q[t x T;]T’IIA+jV”w,[t x T,]T) 

= [Q(n + 2, T;, T’) - Q(n, Tp, T)]* 

x [(p+ l)]+((pO)T,; (lO)lll(p+ l,O)T;)U(tT,T’l; TT;), Wa) 
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where 

3.5 

This result is in agreement with all the l-dimensional cases included in ref. ‘) but is 
of wider applicability, 

For states which are not free of multiplicity with respect to the Ufl)x SU(2) 
subalgebra the tcz operator can be represented in matrix form, (16). Its matrix 
elements can be evaluated recursively from simple simultaneous equations by 
putting eq. (1.5) into the form 

K2Z = [A, z]t& cw 

or 
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For non-simple states the matrix elements of the sp(4) generators are then given by 

= [Ai(n+2, T)]+ C U?i(n+2,CfJ,[t X T~]T’I[ZllnOl,[t X T,]T) 

Tdr, 

x UTp#dn, T)] -+? (23) 

where the reduced matrix element of z is given by eq. (9), and i = 1,. . A’, 
k = 1,. . .,d. Here d’ and d are the multiplicities of the states with n+2, T’ and n, T 
respectively. Since eq. (22) can be followed by a further arbitrary unitary 
transformation, after square-root taking, there is nothing unique about the states 
k = 1,. . .d. However, for the coherent state theory they will be considered as the 
“most natural” orthonormal basis states. Surprisingly, the states of this “most 
natural” basis each has a large overlap with a particular value of Tp. This is now 
illustrated with some examples. 

To compare with the earlier solutions ‘) the first example chosen is that of the 
irreducible representation wr, t = 1. For this representation states with 
&n - ZI) - T = even integer = 2k are simple ; with Tp = T, uniquely specified. For 
these states a recursive application of eq. (17) gives 

K2(4 T) (01 -l)! z-(w, +$, 
2 = (O ’ + ’ ) (or-kTT)!T(o,+T-k) ’ K (0, t) 

k = 0, l,.... (24) 

Without loss of generality the K* value for the lowest weight state rc2(v, t) will be 
replaced by unity. States in the irreducible representation or, t = 1 with 
+(n-u)-T = odd ’ t m eger, in general, have a 2-fold multiplicity. For these states 
recursive application of eqs. of type (21) give, with f(n -a) = T + 2k + 1; 
k = 0, 1,2,. . .: 

(K-*(n, T ))T;T, = 
(01 -l)! Qo, +$, 1 

_-__ 

(WI-k-T)!I-(;>+3-k)2(2T+l) MTiTp’ 

where 

MT-I,T_l = ((or + 1)(2w, + 1-2k)+T(20, +3)(2w, - 1 -2k)-2T2(2m1 +3)}, 

MT-I,T+I = [2(k+1)T(T+1)(2T+2k+3)lt, 

M r+1,r+1 = 2{(w,+2)( co,-k)+T[(2co:+4wI+1)-k(2w,+3)]}. (25) 

For this case the U-matrix for eq. (23) can be expressed in the form 

U= ( -cos 8 sin 8 

sin 8 > case . 
(26) 

We also note that for states on the boundary of allowed n, T-values ; that is, for 
states with T = q -k, the M-matrix has zero determinant, leading to one zero 
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eigenvalue A, as required by the fact that these states are simple. (In this case the 

single allowed state corresponds to the second column of eq. (26), the one 

appropriate to the larger of the two eigenvalues, A). In all practical j-shell cases of 

this type which have been considered, the orthonormal basis states corresponding 

to the larger (smaller) eigenvalue JL are dominated by the larger (smaller) of the 

two possible T, values ; that is cos 0 _ 1, so that the label T, has relevance in this 

“most natural” basis. This is illustrated with a specific example in table 1 which 

gives the cos0 values for states with j = 8, 2’ = 2, t = 1. [The labels fi = 1 and 2 

of ref. 7, can be regained by following eq. (23) with a further unitary 

transformation; but, as pointed out in ref. ‘), no special physical relevance can be 

assigned to these b-labels which were chosen largely for practical reasons of 

calculational simplicity.] 

As a second example, we consider the irreducible representations o,t, with 1 = 2, 

which were beyond the scope of ref. ‘). In these irreducible representations states 

with $(n -c) - T = odd integer = (2k + 1), in general, have a twofold multiplicity. 

For these states (with k = 0, 1, 2,. . .) 

where 

M,_,,,_, = {(2&+3w, +9)-2k(w, -3) 

+ T(2w, +3)(20, - 1 -2k)-2T2(2c01 +3)}, 

MT-I,T+I = 3[2(k+l)(T-l)(T+2)(2T+2k+3)li, 

M T+l,T+l = 2{(w:+2w, -6)-k@.+ +6)+T[(2u$+4wI -3)-k(2w, +3)). (27) 

TABLE 1 

The most natural basis for j = yi’, IV = 2, t = 1 

n T COSO”) n T cos H 

6 
8 

10 
12 

14 

10 
12 
14 
16 

0.99675 14 1 0.98134 
0.99833 16 2 0.99202 
0.99890 18 3 0.99523 b, 
0.99919 

0.99936 b, 18 1 0.96937 
20 2 0.98742 b, 

0.99055 
0.99567 22 1 0.95513 b) 
0.9973 1 
0.99808 b, 

“) See eqs. (26) and (23). 
b, Maximal states with only one non-zero eigenvalue, 1. 
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The first threefold multiplicity occurs for states with $(n -P)- T = 2. For these the 

K’ matrix is given by 

where 

M,_,.,_, = --‘p {(-2w’:-60;++$++~ +9) 
2(2T - 1) 

MT-,., = 

MT-,,,+2 = 

M T,T = 

+T(4w:+38w;+3101-~)+T2(8w;‘+24+4+62~,+) 

+ T3( - 16~: - 56~0; - 280, + 30) + T4(8w: + 32w, + 30)}, 

[-(T- l)(T+ 1)(2T+ 1),‘(2T- 1)2]+{3(o, + 1)(2w, + 1) 

+ T(4w: -9)-2T2(2c0, +3)}, 

3[(T- l)T(T+ l)(T+2)(2T+5),‘2(2T- l)]+, 

[(2T+1)/(2T-l)(2T+3)]{(-3+++24w~-+0,-9) 

+T(40;+13~0;++0:+9w,+~) 

+T2(4~/:+6+6w:+2w1+24)+T3(-4c+10~+4~1+6)}, 

M T,T+2 = [3T(T+2)(2T+ 1)(2T+5)/(2T- 1)(2T+3)2]+{2Tw,(o, +2) 

+0:+20, +3)}, 

M T+2.T+2 = [WT+3)1{3( wI - l)wi(o, +2)(w, +3)+T(8&+32w: 

+ loo;-440, -12)+T2(4&+ 160~+80~-1601 -6)j. (28) 

In the special case, when .T = aI, this symmetric matrix has two zero eigenvalues, 

in agreement with the fact that this state is simple. Also, with T = co1 - 1 there are 

only two nonzero eigenvalues, again in agreement with the fact that states one step 

inside the boundary of maximal n, T values can have at most a twofold 

multiplicity. For states with j = y, u = 4, t = 2, for example, the only threefold 

multiplicity occurs for the single case n = 12, T = 2. In this case the U-matrix of 

eqs. (22) and (23) has the numerical value 

i=l i=2 i=3 

T, = 0 0.92848 0.37071 0.02225 

T, = 2 - 0.37061 0.92107 0.11945 

T; = 4 \ 0.02379 -0.11916 0.99259 
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showing again that the three “most natural” states in the basis defined by the 

eigenvalues R, < i., < i, are dominated by the values T, = 0, 2, and 4, 

respectively. 

In conclusion, it can be stated that the extended coherent state theory gives a 

simple method of constructing the matrix elements of the proton-neutron quasispin 

algebra, a compact sp(4) algebra. Moreover, the most natural orthonormal basis 

constructed by these methods for the proton-neutron quasispin algebra leads to 

many-nucleon states in the seniority scheme for which the label T, has significance. 

This label, which is natural to the associated U(1) x SU(2) Heisenberg-Weyl 

algebra thus plays a role very similar to that of the corresponding U(3) labels in 

the coherent state theory of the noncompact sp(6, R) algebra of ref. ‘). As in the 

latter case, the off-diagonal matrix elements of the ti2 operators could be neglected 

altogether in the limit j -+ cc ; or, for fixed (large) j, T --f j. Although these limiting 

cases are now not generally valid in the practical applications, the extended 

coherent-state method nevertheless leads to a many-nucleon seniority basis which 

is approximately labelled by T,. Note, however, that a recent study 12) of the 

physical significance of the label T, in the f+ shell indicates that Tp is strongly 

mixed and that this mixing is close to that which corresponds to definite U(6) 

symmetry in the interacting boson model. 
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