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A concise survey of the literature related to the large deformation elasto-plasticity problems 

including unilateral contact and friction is presented together with an extension of the friction law for 
large deformation analysis. 

Starting from the principle of virtual work, the so-called total Lagrangian and updated Lagrangian 

formulations are derived based on some fundamental assumptions in linearizing the nonlinear equa- 
tions. By introducing the Zaremba-Jaumann (co-rotational) increment to the Cauchy stress tensor, the 
classical Prandtl-Reuss equations are generalized for describing the elastic-plastic material behavior. 

To allow a proper consideration of the contact conditions in the incremental analysis, a general friction 
law with an associated isotropic Coulomb sliding rule is obtained by the similarity between dry friction 
and plasticity. Finite element discretizations and approximations are applied to the resulting for- 
mulation of the updated Lagrangian approach. 

Four example problems are solved to test the formulations developed in this paper. The emphasis is 
made toward the numerical accuracy of the finite element solutions. 

1. Introduction 

After two decades of development, finite element methods have been successfully applied 
to the analysis of many large deformation elasto-plastic problems. Since the establishment of 
finite element methods to solve linear problems, an extension to nonlinear elasto-plastic 
analysis was started by Argyris [l], Pope [2], Marcal and King [3], and Yamada et al. [4-51. 
Stiffness matrices based on the incremental stress-strain relation were derived for small strain 
problems. Some techniques to control the transition region at the elastic-plastic interface were 
introduced. Another approach using an ‘initial stress’ computational process was proposed by 
Zienkiewicz et al. [6]. 

Extensive studies on the finite element analysis of finite strain problems were pursued by 
Turner et al. [7], Gallagher et al. [S], Kapur and Hartz [9], Martin [lo-111, Oden [12-141, 
Besseling [15], Wissmann [16], Mallet and Marcal [17], Murray and Wilson [18], Marcal [19], 
Kawai [20], Hartz and Nathan [21], and Oden and Key [22]. It was not until Oden [23-241 that 
complete incremental forms were obtained from nonlinear continuum mechanics in which 
variations of loading and finite rotations of the element were properly considered. A survey of 
related works up to 1971 was given by Oden [25]. The first elasto-plastic formulation suitable 
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for large strain and large displacement was presented by Hibbitt, Marcal and Rice [26]. They 
used an incremental Lagrangian approach and pointed out that an additional ‘initial stress’ 
stiffness matrix, being dependent on current loads, was missed in ordinary small strain for- 
mulations. Later, McMeeking and Rice [27] derived an Eulerian type of finite element 
formulation following the principle of virtual work given by Hill [28]. The utilization of the 
updated finite element mesh as the reference configuration made this approach very appealing 
to investigators in the area of large deformation analysis, especially with some path-dependent 
materials. Alternative formulations and implementations are due to Needleman [29], Larsen 
and Popov [30], Key [31], 0 sias and Swedlow [32], Bathe, Ramm and Wilson [33], Kleiber 
[34], Wunderlich [35], Argyris et al. [36-371, Cescotto et al. [38], Atluri [39-40], Gadala et al. 
[41], and Mattiasson [42]. 

The number of applications to metal forming problems and structural analysis is tremen- 
dous. Needleman [29], McMeeking and Rice [27], and Chen [43] have extensively studied the 
simulation of necking phenomena in a simple tension test. Stress distributions in a steady-state 
extrusion process were obtained by Lee, Mallett and Yang [44], and Lee, Mallett and 
McMeeking [45]. Upsetting problems were investigated by Yamada, Wifi and Hirakawa [46], 
Nagtegaal and De Jong [47], and Boer et al. [48]. A summary and comparison of different 
computer codes applied to an axisymmetric upsetting problem were presented by Kudo and 
Matsubara [49]. Intensive analyses of sheet metal forming were treated by Gotoh [50], Wang 
and Budiansky [51], Oh and Kobayashi [52], Wifi 153-541, and others, A variety of forming 
processes has been successfully solved by Key, Krieg and Bathe [55], Argyris and Doltsinis 
[56-581, Argyris et al. [59], Taylor [60], and Kikuchi and Cheng [61]. Among these, the aspect 
of thermomechanical coupling was taken into account in [58], and contact conditions with fric- 
tion were included in the last two papers. In structural mechanics, nonlinear elasto-plastic large 
deformation analyses have also attracted a considerable amount of research efforts from many 
authors such as Yaghmai and Popov [62], Dupuis et al. [63], Heifitz and Constantino [64], 
Bathe et al. [33, 65-661, and Argyris et al. [67], to name a few. 

In addition to those works cited above, two major alternatives were introduced for the 
analysis of metal forming processes. First, as being advocated by Kobayashi and his col- 
laborators [68-701, the rigid-plastic formulations in which the elastic deformations are assumed 
to be negligible compared to the large plastic strains, have gained a wide range of applications. 
The method fails to predict the stress history whenever elastic loading or unloading is 
encountered. The second approach owing to Zienkiewicz et al. [71-751 (the inclusion of elastic 
strains was presented by Dawson and Thompson [76]), which is based on a viscoplastic 
formulation and thus enables itself to deal with rate-dependent materials, has also acquired 
relatively successful small strain analysis of different processes. 

Solutions of nonlinear elasto-plastic problems strongly depend on the use of finite element 
discretization and incremental strategy. Several different methods have been discussed by Rice 
and Tracey [77], Krieg and Krieg [78], Schreyer et al. [79], Crisfield [80], Tracey and Freese 
[81], and Nyssen [82] for integration of the constitutive equations. The overconstrained 
problems of the finite element model due to the incompressibility condition of the plastic 
deformation have been carefully examined by many authors. Hermann [83] developed a 
special formulation for incompressible or nearly incompressible materials. Nagtegaal, Parks 
and Rice [84] observed that the ‘locking phenomenon’ can be overcome by special arrange- 
ments of elements so as to eliminate one constraint. Another approach called the selective 
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reduced integration method was suggested by Zienkiewicz, Taylor and Too [85], Pawsey and 
Clough [86], and Naylor [87] to properly choose less order integration points so that there 
exists an adequate total number of degrees of freedom. Currently used methods and difficul- 
ties for finite element analysis of large strain plasticity problems were reviewed by Bathe et al. 
[88], and Nagtegaal and Veldpaus [89]. 

Another very important characteristic in most forming processes is the existence of contact 
conditions with friction. The variational theory of contact mechanics was initiated by Signorini 
[90] in 1959 and the problem was solved by Fichera [91] in 1963. Kalker [92] in a review paper 
provided a summary of the theory of contact mechanics prior to 1974. Finite element analyses 
to this subject formulated by variational inequalities were studied by Fredriksson, Rydholm 
and Sjoblom [93], Hlavacek and Loisek [94], Kikuchi and Oden [95], Kikuchi and Song [96], 
Kikuchi and Skalski [97], and Oden and Kikuchi [98]. Various algorithms and numerical 
implementations to solve elastic contact problems were presented by Chan and Tuba [99], 
Tsuta and Yamaji [loo], Ohte [loll, Francavilla and Zienkiewicz [102], Okabe and Kikuchi 
[103], Sachdeva and Ramakrishnan [104], Zeid and Padovan [105], Mazurkiewicz and 
Ostachowicz [106], and Gurra and Browing [107]. Either the Lagrange multiplier method or 
the penalty method was used to resolve the constrained boundary conditions. Schafer [108], 
and Yamada et al. [109] proposed a technique using the concept of bond elements. Ap- 
plications to the dynamics of impact problems were considered by Hughes et al. [llO], 
Talaslidis and Panagiotopoulos [ill], and Osmont [112]. The use of the incremental theory in 
obtaining the friction law was adopted by Seguchi et al. [113], Fredriksson [114], Peterson 
[115], Michalowski and Mroz [116], and Okamoto and Nakazawa [117]. A concise survey 
including both mathematical development and practical considerations was given in the 
treatise by Kikuchi and Oden [95]. 

In the present paper, starting from the principle of virtual work, the boundary value 
problems of arbitrary amount of deformation are formulated in the deformed configuration. 
By properly choosing the reference state, transformation and linearization of the nonlinear 
equations result in two well-known incremental forms; the total Lagrangian formulation and 
the updated Lagrangian formulation. To describe the material behavior, the Prandtl-Reuss 
equations based on J2 flow theory of von-Mises type are assumed and are generalized for large 
deformation analysis. As the nature of nonlinear problems, many models exist in the literature 
of the theory of plasticity. Among others, J2 deformation theory originated by Hencky [118] 
and reassessed by Budiansky [119] has been frequently argued to not being suitable to 
describe the complete plastic behavior of a metal except for nearly proportional stress 
increments. A modified version termed the J2 corner theory was given by Christoffersen and 
Hutchinson [120] to circumvent some of the difficulties associated with the bifurcation-related 
phenomena in the plastic range. Many other constitutive equations for elastic-plastic materials 
at finite strain have been proposed by Freund [121], Tanaka [122], Hahn [123], Key, Biffle and 
Krieg [124], Shiratori, Ikegami and Yoshida [125], Axelsson and Samuelsson [126], Dashner 
[127], Hashiguchi [128], Mandel [129], Nemat-Nasser [130], Sidoroff [131], Tokuora [132], Key 
and Krieg [133], Lee, Mallett and Wertheimer [134], Palgen and Drucker [135], and Atluri 
[136]. Mixed hardening of isotropic with kinematic has been studied in many of these works. 
Recently, a summary of some of the major theories in finite plasticity of crystalline solids and 
geomaterials was presented by Nemat-Nasser [137] from both microscopic and macroscopic 
phenomenological points of view. However, due to Hill’s treatise [138] and the paper by 
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Hibbitt et al. [26], the generalized Prandtl-Reuss equations still remain most popular in 
applications. 

To allow for the effect of finite rotation and to satisfy the requirement of objectivity in a 
material constitutive law, the Zaremba-Jaumann increment (or rate) of the Cauchy stress 
tensor is chosen to be a function of the strain-increment (rate) tensor. While there have been 
many more stress rates proposed by, for example, Oldroyd [139], Cotter and Rivlin [140], and 
Truesdell [141], the question of which measure is superior to others is still a controversial 
topic. The definition of Zaremba-Jaumann’s (or co-rotational) rate seems to be more prefer- 
able than many available because, as shown in Prager [142], the vanishing of the Zaremba- 
Jaumann’s stress rate does (but others do not) imply the stationary invariants of the stress 
tensor. Johnson and Bammann [143], Lee and Wertheimer [144], Atluri [136], and Dafalias 
[145] have discussed the features of some different stress rate measures. 

Following the concepts in [95] for dealing with normal contact, the formulation of the 
principle of virtual work is completed by introducing a friction law similar to the ones deduced 
by Seguchi et al. [113] and Fredriksson [114], in which the analogy with the plasticity theory 
has been used. However, in these studies a basic assumption is made, namely, that the normal 
reaction is constant during the deformation process, which is generally not valid in the 
incremental analysis of metal forming processes. Recognizing this fact, an incremental friction 
law including the contribution of normal contact pressure is derived and can be readily 
incorporated into the computer code of incremental type. One interesting observation of the 
friction law obtained in this paper is that it can be directly related to the experimental results 
on the coefficient of friction which show the ‘hardening’ effect similar to the plastic behavior of 
materials. 

Some bench mark problems are chosen to examine the numerical solutions obtained from 
the computer code ‘EPAFRIC’ (Elastic-Plastic Analysis of FRIction Contact problems) 
developed by the authors. Several delicate problems such as the importance in selecting the 
finite element discretization and the size of increments are carefully investigated and dis- 
cussed. 

2. Field equations 

For a deformed body in equilibrium, once the constitutive law (stress-strain relation), is 
chosen, the stress field can be determined by solving the following governing equations: 

‘Tji. j + phi = 0 in 0, (1) 

satisfying the boundary conditions 

and 
Ui = gi on TD (2) 

Ujiflj = ti on r,. (3) 

where u (= ojiejei) is the true (Cauchy) stress tensor defined in the deformed configuration &? 
which is depicted in a fixed rectangular Cartesian coordinate system x with the origin o and 



J.-H. Cheng, N. Kikuchi, Analysis of metal forming processes 75 

xl 
Fig. 1. A deformation problem. 

base vectors ei (Fig. l), the comma notation represents the partial derivatives with respect to 
the coordinates Xi, i.e., aji,j = aaji/axj, p is the mass density function, b (= biei) is the body force 
vector, u (= uiei) is the displacement vector which is specified by a given vector function g 
(= giei) on th e p t or ion r,, and t (= tiei) is the traction vector function prescribed on the surface 
r, with a unit normal vector ti (= iiiei). 

Throughout this paper, all vector and tensor components are Cartesian. The summation 
convention is used. All dummy indices which appear exactly twice in a given term will assume 
summation over the values 1 to 3 unless otherwise stated. 

3. Weak form (the principle of virtual work) 

Another way to state the boundary value problem described above is to apply the principle 
of virtual work to the local form (1). Let ii (= iiiei) to an arbitrary virtual (variation of) 
displacement vector such that Uj = 0 on rD. Multiplying iii to both sides of (1) taking the 
integration over the domain 0, and applying the divergence theorem, we have 

ajiiii,j da = pbiiii da + 
I 

tiiii dT V iii such that iii = 0 on r,. 
n R I-F 

Here we have used the boundary conditions (2) and (3) on r which is assumed at this moment 
to consist of two disjointed portions ri, and r,. Later the boundary conditions of unilateral 
contact with friction will be included and discussed in detail. 

Direct applications of (4) are limited to linear problems where the deformations are small 
and the materials respond linearly during the deformation. Equation (4) is formulated in the 
deformed configuration 0. If the deformation of the body is infinitesimally small, this expression 
may be used without difficulty by taking 0 to be essentially the same as the initial (stress free) 
configuration 0’. However, when the deformation is finite, 0 is in general considerably 
different from 0’ and is one of the unknowns to be determined. Therefore, it will be more 
convenient if (4) can be transformed and expressed in the reference configuration OR which 
may be identified with the initial one ano. 
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Writing the principle of virtual work in the reference configuration is also essential in the 
sense that the domain can be held fixed when later we have to take linear increments to 
nonlinear equations. 

4. The total Lagrangian formulation 

Consider a body occupying a region 0’ with boundary P initially, which corresponds to a 
region 0 with boundary r in the deformed state (Fig. 2). The position of any material point in 
the bodies in the reference and deformed configurations can be traced by its radius vectors X 
(= XN,) and x (= xiei), respectively. Capitalized indices indicate measures with respect to the 
reference state. The difference between x and X is defined by the displacement vector u with 
the components 

During the deformation, the mass is conserved, i.e., 

(6) 

where dV and dV’ are infinitesimal volume elements. 
Realizing that any quantity of a material point can be represented by a function of either x 

in the deformed configuration or X in the initial configuration provided that the relation 
between x and X is uniquely defined, we can use (6) to transform (4) from L! (I) to L?’ (r”) as 

t=O initial configuration 

Fig. 2. Reference configurations for the large deformation analysis. 
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follows: 

f R0 
T,iZi, J dOno = 

I 
no p’biiii dOno + 

I 
ra tP& dT” . (7) 

where T (= TJieJei) is the first Piola-Kirchhoff (Lagrange, nominal) stress tensor related to the 
Cauchy stress tensor aji by 

T,i = JX, juji 7 (8) 

to (= t4ei) is the traction vector given on the undeformed boundary surface rF, J (= p”/p) in (8) 
is the determinant of the Jacobian matrix [axi/aXj]. It is noted that Ui,J means the partial 
derivative of the ith component of u with respect to the (material) coordinate X, defined in 
the reference configuration 0’. Indeed, for an arbitrary function f associated to mass (or a 
particle) of the body, the relation 

I ,dW da= f R. ~“f(x) da0 3 %<x> = fwa (9) 

represents the transformation between the deformed and reference configurations. Thus the 
internal virtual work can be written as 

I ujiiii,j da = 
R I 

p-‘p~jiX,,jiii, J d0 = 
R R” 

p”p-‘~jia,,jfii,i da”. 

It follows from Jp = p” that the virtual work principle (4) in the deformed configuration is 
transformed into (7) in the reference configuration. 

It is noted, from the balance of the moment of momentum that the Cauchy stress tensor is 
symmetric, i.e., uji = aij. However, the relation (8) implies that the Lagrange stress tensor is 
not symmetric. In order to avoid managing the unsymmetric tensor, let us define another stress 
measure as 

or 
SJI = XI, i Ki 7 

SJI = JX 1, iX,jaji * (W 

where S = SJIe,e, is the second Piola-Kirchhoff (or Kirchhoff) stress tensor which has the 
desired symmetry property. Then (7) can also be expressed as 

I RO S,,Xi, ,Lii,, da0 = f RO p’biiii dOno + ru tytii dT” 7 f (11) F 
which is called the Lagrangian formulation [26], or the total Lagrangian formulation [33] to 
the boundary value problem (l)-(3), with 0’ being identified as the initial configuration of the 
body. If we recall that the variation of Green’s strain tensor 
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elJ = !dXi,IXi,J- aIJ> 

is given by 

then symmetry of the Kirchhoff stress tensor yields 

SJIX i, I c i, J = SJ~IJ Y 

and the meaning of the left-hand side of (11) becomes clear. 

(12) 

(13) 

(14) 

5. Incremental forms 

Linearity of the governing equations is always a great advantage in solving boundary value 
problems. Unfortunately, for large deformations and general material properties, the equa- 
tions are highly nonlinear. Therefore, in many applications it is convenient to derive linearized 
forms of these equations under the assumption that the entire nonlinear response of the body 
is replaced by a sequence of piecewise linear increments. 

Suppose that at time f a deformed body occupies a configuration 0’. At a later instant 
t + At, the body is further deformed to coincide with 0 which is sufficiently close to 0’ (Fig. 2). 
The stresses in the body and coordinates of each point change from SJI to SJ, + ASJ, and from 
xi to Xi + AY respectively, due to the increments of Abi and At:. Thus, for each successive 
increment, (11) takes the form, by neglecting the higher-order terms ASJIAUi,, and ASJ,Aui,J, 
of 

n,(ASJxi.*~i,J+SJ,A~i,,iii,J)dn”= R + n,p”Abiiii dono+ (1% 
where 

R=- no SJIxi.Ifii,J dono+ RO p’biiii da0 + tyiii dT” (16) 

is the remainder (load corrector) emerging from the unbalance of the resultant force. For a 
simple incremental solution, R is taken to be zero. The improvement by this correction has 
been investigated by Yamada et al. [46] and Wifi [54]. 

Discussions on how to obtain proper forms of Abi and Ati can be found in Hibbitt et al. [26]. 
Here we shall be concerned with the case of pressure loading which is important in many 
practical applications, especially in the analysis of hydrostatic bulging of sheet metals. If the 
pressure acting on the surface with the unit outward normal ti is p (p > 0), then the second 
term of (4) becomes 

(17) 

From vector analysis (see Spencer [146, p. 1241) we have 
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where ds (= dT’) and ds’ (= dT”) are differential elements of r and lr”, respectively. 
Substituting (18) into (17) and comparing with (ll), we obtain 

79 

(18) 

(19) 

The incremental form can be written as 

At:= -ApJX,iii: -pA(JX,i)iij , (20) 

in which the second term is due to the change in geometry with the load held fixed. It is noted 
that the second term generates additional terms to the stiffness matrix in finite element 
analysis since AJ and AX,,i are related to Au~,~. 

6. The updated Lagrangian formulation 

If instead of dealing with (7) we take the configuration 0’ at time t as the reference state. 
All static and kinematic variables are referred to this configuration in which S,, = TJ = aji is 
assumed. Fig. 2 illustrates relations among the initial configuration a’, the reference 
configuration &P, and the current (deformed) con~guration a, where X, a and x are selected to 
describe the position of any material point in these configurations. For an increment At small 
enough so that J = 1 instantaneously, (7) can be written in an incremental form as 

which is termed the Eulerian formulation by McMeeking and Rice [27] although in their work 
the rate form was used, which is equivalent to the present form if the Euler’s scheme is 
adopted to integrate it over the time domain. Bathe et al. [33], however, obtained another 
incremental form based on (11) in terms of A& and called it the updated Lagrangian 
formulation due to the choice of the updated reference state. 

The relations between AT, and Aaji can be obtained by taking increment on (8) 

ATJi = Aaj$,j + pJiAUk,k - ujiAU,i 3 (22) 

in which some basic assumptions have been made: J = 1, AJ = Auk,k, aJ,j = &, AaJ,j = -Au,~. 
Using (22) or the similar approach in the previous section, the increment of the traction 

vector for a type of pressure loading can be expressed as 

Ati=-A~ri,-pAM~~~~i~pAu~,ifir, (23) 

under the assumption that the unit normal n’ does not change its direction during the 
increment, where p is the pressure in the reference state R’. 

In the following discussions, we shall use (21) exclusively in the analysis of large elasto- 
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plastic deformation problems. The reasons of this choice are that the equations of the updated 
Lagrangian formulation are obviously simpler than those of the total Lagrangian formulation, 
and that for history-dependent elasto-plastic materials the constitutive relations are readily 
incorporated in the updated Lagrangian formulation since these equations are functions of 
variables referred to the current state, although these can be transformed into the ones in the 
initial configuration. 

Theoretically these is no difference between the total Lagrangian and updated Lagrangian 
formulations. Comparisons of these two approaches have been presented by Cescotto et al. 
[38], Atluri [39] and Gadala et al. (411 from the aspect of formulations, and also by Bathe et al. 
[33, 651 and Mattiasson [42] from the view-point of numerical effectiveness. 

7. Constitutive relations 

By introducing the Zaremba-Jaumann increment (V) to the Cauchy stress tensor ui, such 
that 

(24) 

where f2, = ;(A u,. , - AU,.,) is the spin tensor, the constitutive equation of an isotropic material 
(excluding the thermal effect) can be written as 

uG= AcPk8ij + 2GA&;, (25) 

where A and G are 1st and 2nd Lame constants and he; are the elastic components of the 
strain-increment tensor Acij defined by 

~~~~ = t(Aui,i + Auj,i) * (26) 

Basic postulates [137] in the plasticity theory suggested by Levy and von Mises, later ex- 
tended by Prandtl and Reuss are: (a) There exists a yield function 

f(ui,, Y) = v3J2 - Y, (27) 

such that f < 0 implies elastic loading and the material is said to be yielded when f = 0, where 
52 (= is+Sij) is th e second invariant of the deviatoric stress tensor Sij (= 0, - fs,ok,), and Y is 
the yield strength depending on the strain history. (b) An associated isotropic-hardening (thus 
the Bauschinger effect is not considered) flow rule 

AE$ = Adf/c?uij (28) 

is applied to describe the postyield behavior, where A is a positive scalar function. (c) The 
decomposition of AEil into AE: and AE$, i.e., 

hEij=AETj+h~$, (29) 
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is assumed to be held throughout the entire deformation process. The validity of this 
assumption in a finite elasto-plasticity theory has been thoroughly discussed by Nemat-Nasser 
[130, 1471. Another theory which is in contrast with this model was proposed by Lee [148-1491 
based on the decomposition of the total deformation gradient to an elastic and plastic parts. 
Arguments on this controversy can be directed to Green and Naghdi [150], Casey and Naghdi 
[151], and Lee and McMeeking [152] as well. 

Using (25) (27), (28) and (29), the Prandtl-Reuss stress-strain relations for materials 
obeying von-Mises yield criterion can be deduced [4] as 

where 
Diikl = (Ev/(I + ~)(l - 2v))S$kr + G(&& + si,sjl,)-a3G(SijSLI)/(~jZ(1 + H’/3G)) (31) 

is the material constant tensor, E, G, v are the Young’s modulus, the shear modulus and the 
Poisson’s ratio, respectively, & (= V/3J,) is the effective (or equivalent) stress, H’ = 
HA/(1 - HA/E), H’ ’ o IS the tangent of the true stress-logarithmic strain curve, and a! = 0 if f<O 
(elastic loading) orf = 0 but Sij A&ii < 0 (unloading): otherwise (Y = 1 iff = 0 and SijAEi, 2 0 (plastic 
loading). Loading and unloading criteria follow directly from whether f” = 0 or f” < 0 for next 
increment (see discussions by Fung [153, p. 1401 or Malvern [154, p. 3681). 

Since the term uJiAuk.k in (22) yields unsymmetric stiffness matrices in the finite element 
approximation to the principle of virtual work (21) we shall replace the constitutive equation 
(30) by 

a; + UijAu,,, = LjijklAEkl, (32) 

which leads to a symmetric stiffness matrix, fiijk, is the same as (31) except that H’ has to be 
changed into 

H’= H;/(l- HA/E - (1-2+/E). (33) 

The difference between Ijijkl and Dijk, is (1- 2v)/(2G(l+ v)) which is within the order of 
elastic strain and is generally negligible in the finite deformation analysis. See discussions by 
Tomita 11551. 

8. Unilateral contact conditions 

Without loss of generality let us consider a rigid body moving on a deformable body of 
which the surface can be represented by a parametric equation 

x3 = 4(x1, x2). (34) 

If the rigid surface can also be described as 

x3 = $(L a,), (35) 
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parametricaliy where a In’ on the coordinates x1, x2 indicates the updated coordinates of the 
deformable surface taking account of the relative motions of the origins of C#I and $ (Fig. 3). 
Then the kinematic contact condition, 

+(xi, x2) + v&)At d @(xl + (U&X) - v:)At, x2-i- (II&) - v,“)At) + v:At , (36) 

has to be satisfied for an arbitrary time increment At on the possible contact surface r:, where 
v (= viei) is the velocity vector of the point with the updated coordinates x (x1, x2, 4(x1, x2)) on 
the deformable surface, and vR (= urei) is the prescribed velocity vector of the rigid body. 

The equality of (36) can be used to solve for a proper At so as to just bring a (or some) 
point(s) to be in contact with the rigid surface. If the increment At is small enough, (36) can be 
linearized as 

n.vAt~~n,(~--)+21R.nAt, (37) 

where n (= tiiei) is the unit vector inward normal to the rigid surface defined by 

(38) 

After the point is in contact with the rigid surface, 4 = $ instantaneously; therefore, (34) 
becomes 

Au,-Ag,,=O on I’%, (39) 

Fig. 3. A unilateral contact problem. 
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where Au, (= Au l n) is the increment of the normal displacement constrained by a given 
motion Ag, on the in-contact surface l?. 

In order to resolve the constraint (39) we shall apply the exterior penalty method 
introduced by Courant, Friedrichs and Lewy [156], and extended by Zangwill [157]. As 
Courant [l%] indicated, physically the constraint (39) can be viewed as the existence of a very 
stiff spring between the contact surfaces. Thus, if we define 

At,, = -k,(Au, - Ag,) on rZ , (40) 

with a very large penalty parameter k, (~0, spring constant), then (39) is replaced by a third 
type of boundary condition approximately. Furthermore, the increment of normal reaction At, 
(<O) is obtained as a by-product from (37). Depending upon the loading condition a point which 
is already on rz may tend to leave the rigid surface at certain deformation stage; in this case 
the sign of At, becomes positive. Nevertheless, the point will stay in contact as long as the 
resultant contact pressure t, updated by At, remains negative. 

The proofs of the existence of the solution to the penalized problem and its convergence to 
the original problem (39) as k, + +m have been given by Kikuchi and Song [96]. The extension 
of this idea to various unilateral contact problems can also be found in [95]. 

9. An incremental friction law 

Friction forces arise whenever two contact surfaces are in relative motion. A relation among 
the increment of the tangential friction force, the displacement increment, and the increment 
of the contact pressure can be derived using the similarity of sticking-sliding phenomena and 
elastic-plastic behaviors as shown by Seguchi et al. [113] and Fredriksson [114]. If we assume 
that there exists a Coulomb isotropic slip function [114], 

where &r (= t=iei) and t, are the tangential and normal components of the traction vector t 
(= tT + t,n), and j.&F is the coefficient of friction. Then a point on r;t: with f < 0 is regarded as to 
stick on the rigid surface. And the requirement of zero tangential displacement relative to the 
rigid surface can be satisfied if we stipulate the following relation, 

AtTi = -kT(AU;i - AgTi) , (42) 

by imposing a large enough penalty parameter, where Ag,i is the prescribed motion of the 
rigid body. The spring constant k, may also be properly chosen using experimental works (as 
discussed by Bowden and Tabor [159]) which support the fact that a small amount of relative 
displacement is allowed before a point starts to slide. 

When the state of stress of a point on r;t: is such that f = 0 and Af = 0, the point is said to be 
sliding. If an associated isotropic sliding rule, 

AUR = -A (aflat,,) 9 (43) 
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is adopted to describe the behavior of the sliding (plastic) component AuFi of the displacement 
increment vector A+ (= AUTiei) which is assumed to have the following decomposition: 

AUTi = AUR + Au%i . (44) 

The positive scalar function can be obtained from one of the sliding criteria, 

and (42), as 

(45) 

where ii+ (= %‘~up,u+,) is the effective sliding displacement, the quantity &~di%iT is to be 

U$i, and Ti is defined as 

in which & (= Q’/tTirTi) is termed the effective tangential traction. 
Substituting (46) into (43) and using (42) and (44), we arrive at a complete incremental 

friction law as 

with 
AfTi = -kij(AUu, - AgTj)- cT,At, , 

kij = k,(Sij - CtkT~lT;/&) , 

(48) 

(49) 

c = ak,pFID,, (50) 

D-r = kl-+ T,f”(a~Flaii~)(u~~/~~), (51) 

where iiT (= d/u$iU$!i) is the effective sliding displacement, the quantity &_~~_l&i~ is to be 
obtained from the pF- ti% curve in a simple sliding test such as the experimental work by 
Courtney-Pratt and Eisner [160] for like-metallic specimens (gold, platinum, tin, indium and 
mild steel, etc.), and (Y = 0 if f ~0 (sticking) or f = 0 but TiAtTi + /LFA~ <O (frictional 
unloading), otherwise (Y = 1 when f = 0 and TiAtTi + pFhtn 2 0 (sliding). 

The above incremental form of friction law is obtained based upon the experimental work 
by Courtney-Pratt and Eisner [160] which shows the existence of small ‘elastic’ deformations 
in advance of large plastic sliding. The experimental results resemble plasticity very closely. 
Detailed explanations of these observations are referred to Bowden and Tabor [159]. One 
interesting consequence is that the ‘hardening’ parameter apF/&.i$ can be determined as the 
tangent of pF - & curve obtained from experiments just as H’ from the stress-logarithmic strain 
curve in plasticity theory. 

Another remark is for the so-called non-local form of friction laws advocated by Oden and 
Pires [161-1621. If the size of contact surface is too small for the height or the size of asperities 
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on the surface of materials to affect the friction, we may replace t, in the incremental friction 
law (48) by I” defined as 

t*,(y) = I,. k(x; y>t?itY) dW ’ (52) 
f 

where k(x; y) is a kernel function satisfying 

If i-6 I-: 
W; Y) dW) dW = 1, (53) 

and k(x; y) becomes almost zero for y with \y - X/ > (r. Here 5 is a parameter related to the 
height and the size of asperities, i.e., the surface roughness. For many applications in metal 

enough, thus t*, = t, can be assumed. In the 
friction law without considering the non-local 

forming, the size of contact surface is large 
following examples, we shall use (48) as the 
effect. 

10. Finite element approximation 

Using constitutive equations (32) and (48) 
work of the updated Lagrangian approach 
rewritten as 

with the relation (22). the principle of virtual 
(21) including the contact conditions can be 

+ 
I 
r’ (kn(Aun - Agn)& + [k,(Au, - AgTj) + c7;:At”]ii,i} dT” 

c 

= 
I 

i?, pdbitii dR’ + 
I rk 

At& dT’ V iii (= SUi) such that iii = 0 on rb, (54) 

where Lijkf = bijkl - a&+ - afk&,, and the relation At* Lz (=A&* UT+ At,&) has been used. 
Finite element approximations to the integral form (54) follow standard procedures [163] by 

discretizing the domain &?’ and the boundary r’ into finite elements 0: and 
element we interpolate the increment of displacement by the shape functions 

also 
tij (X) = ii,N, (X) ) 

r:. Within each 
{N&9) as 

(55) 

(56) 

where cy is the local node number ranging from 1 to the total number of nodes in one element. 
Au, and iii* are the ith components of the displacement-and virtual displacement- 
increment vectors at ath node, respectively. 

Substituting (55) and (56) into (54) using the arbitrariness of iii, we have 
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cm 

are the element stiffness matrices, and 

are the element load VCCtOrS, kij = kij - kkjlt#lk - kikYljflk 4- kklt’Zi~jfiktZ~, and the assembling sum- 
mations (xc) are performed over the total numbers of elements in 0’, rb, and r:, respectively. 

Equation (57) is a system of linear equations provided that the contact pressure t, remains 
constant. However, if At,, f 0 and is quite different from the previous step, then an iteration 
scheme must be introduced when the frictional case is considered. 

Il. Numerical examples 

The following example problems are intended to verify the formulations given in this article 
and to show the capability of the computer program ‘EPAFRIC’ developed. Emphases are 
placed on the investigation of numerical accuracy of finite element solutions to nonlinear large 
deformation elastic-plastic problems. 

It is well known that for elastic-plastic materials the response of finite elements is too stiff in 
the fully plastic range. This is due to the requirement of vanishing plastic strain increment 
(A&; = 0) in the constitutive equations, although with strain hardening part of the strain 
increment is elastic. The nearly incompressible deformation severely restricts the selection of 
types of finite elements available. The behaviors of many different elements were carefully 
examined by Nagtegaal et al. [86]. A special arrangement of a quadrilateral element which 
consists of four constant strain triangles obtained by connecting its diagonals was proved to be 
free of overconstraint for plane-strain problems. This model is used in the following analysis. 

11.1. Necking in a simple tension test 

This problem has been solved by Needleman [29], McMeeking and Rice [27], Argyris et al. 
[B-58], Kikuchi and Cheng [61], and Chen [43] using finite element methods, also by Chen 
[164], Norris et al. [165], and Saje [166] using finite difference methods. In the present work, a 
cylindrical bar of an initial length 21,, = 12 in. and an initial radius r. = 1 in. as shown in Fig. 4 is 
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(al tbl 

Fig. 4. (a) An initial mesh for a uniaxial tension test. (b) The deformed mesh at 30% elongation. Material 
constants: E = 30 x lo6 psi; v = 4; SY = 60 ksi; c? = 120.?25 ksi. 

used to perform this test. The material is mild steel whose property is characterized by: 
Young’s modulus E = 30 x lo6 psi, Poisson’s ratio v = f, yield strength SY = 60 ksi. The post- 
yield stress-strain curve is described by 

~7 = 12OEO.‘” ksi , (58) 

where E (= d2++) is the effective strain, eij (= eii - f8ijE,,). 
In order to initiate the bifurcation, an initial imperfection of 1% of the radius is introduced 

artificially on the central portion of the bar. Due to symmetry, one quarter of the specimen is 
modelled by 192 finite elements with 226 degrees of freedom. 300 displacement increments are 
taken to complete this analysis up to 30% elongation (Fig. 4). % elongation (engineering 
strain) is defined as 100% . (I - ~~)~~~, where 1 is the current length and lo the initial length of 
the bar. Plastic unloading begins at 15.9% elongation and propagates in the specimen. Since 
then local necking on the center of the bar becomes severe. The development of neck as a 
function of elongation is depicted in Fig. 5. This localized phenomenon is measured either by 
the radial displacement at the neck or by the ratio A/A0 where A is the deformed area of the 

.25 . 

.20 - 

a ClIEN 1971 

.lO - o NETITLEMRY 1972 

A CIIE?? 1983 

x NORRIS ET AL 1977 

0 5 10 15 20 25 30 

“, ELONGATION 

Fig. 5. Development of neck as a function of % elongation; u,(O) = radial displacement at neck, R. = initial radius. 
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neck and A0 is the initial area. Numerical solutions obtained by Chen [164], Needleman [29], 
Norris et al. [165] and Chen [43] are included to compare with the present calculations. The 
border lines between the unloading and the plastic loading regions are shown in Fig. 6 at three 
different deformation stages. As also observed by Chen [164], once the unloading occurs, instead 
of the contraction of the area, the radius at the end expands slightly as a result of the decrease of 
the axial stress. 

Fig. 7 illustrates the load-deformation curve. The applied load is normalized by the 
maximum which is 273 x lo3 lbs. at 11% elongation in this analysis. The maximum load is 
achieved when the rate of decrease of cross-sectional area reaches the rate of hardening effect. 
Again comparisons are made with other investigators. They show fairly good agreement 
despite that different postyield stress-strain relations are used. The dotted line in the figure is 
another solution obtained from a different discretization shown in Fig. 8. It is apparent that 

L 
unloading zone 

r 123 
plastic loading 

0. 
’ z 

Q 
0 2 

Fig. 6. Development of unloading zone and neck. 1: 20% elongation; 2: 25% elongation; 3: 30% elongation. 

UNLOADING OCCURS 

1.0 

0.8 

0.6 
P/F max 

0.4 

0.2 

I I 6 

0 5 lo 15 20 25 30 

$ ELONG4TION 

Fig. 7. Normalized applied load vs. engineering axial strain; F,,,., = maximum load. 
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(a) (b) 

Fig. 8. (a) An initial mesh for a uniaxial tension test. (b) The deformed mesh at 30% elongation. Material constants: 

E = 30 x IO6 psi; v = i; Sv = 60 ksi; & = 120E”.125 ksi. 

both the predicted load and the deformation strongly depend on finite element discretizations. 
Thus for nonlinear problems the choice of a proper initial finite element mesh becomes a very 
important aspect. The question of what kind of model provides the best solution is, however, 
unknown yet. The stress distributions at the neck are shown in Fig. 9 for the axial stress a,, 
and the mean stress a,,, as a function of r/R, where R is the current radius of the neck and r is 
measured from the center line. For comparison purposes, the data are chosen from 
different sources at approximately the same neck radius and are normalized by the initial yield 
strength. 

To see the behavior of finite elements, the computed stress-strain curves for two typical 
elements are given in Fig. 10. The longer curve is for the one at the middle and the other is for 
the one at the end of the bar. The decrease of the effective stress accounts for the effect of 
unloading. The element becomes almost rigid after unloading occurs. 

Fig. 9. Comparison of axial (a,,) and mean (a,,,) stress distributions at neck, OY is the initial yield strength. A: 
present result at R/R0 = 0.744; B: Chen [X4] at R/R0 = 0.764; C: Needleman [29] at R/R0 = 0.769; C: Norris et al. 
[165] at R/R0 = 0.775. 
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Fig. 10. Computed effective stress-strain curves for two elements in a uniaxial tension test. 

The next example problem is the upsetting of a cylindrical block shown in Fig. 11. The 
block has an initial diameter of 20 mm and height of 30 mm. The mechanical properties and 
the hardening effect of the material are specified as follows: Young’s modulus E = 
200 kN/mm’, Poisson’s ratio v = 0.3, initial yield strength Sy = 0.7 kN/mm2, strain hardening 

Fig. 11. Initial finite eieme !nt me :shes for an upsetting analysis. 
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H’ = 0.3 kN/mm*. A quarter of the block is analyzed due to the symmetry of the problem. 
Several cases of different frictional conditions along the punch-billet interface are solved. Fig. 
12 illustrates the computed results for the upsetting load as a function of the reduction in 
height of the block. The load is computed from the stresses of a,, in the elements adjacent to 
the interface. For the case of frictionless interface, the solution is found to coincide with the 
exact one, nR*G, where R is the current radius and G the current yield strength of the 
material. Also included in the figure are results extracted from a joint examination project 
summarized by Kudo and Matsubara [49], and the works of Yamada et al. [46] and Taylor 
[60]. They are all based on the same material constants given above, and an assumption of 
perfectly rough, i.e., sticking interface. An incremental scheme with Newton’s iterative 
method was used by Taylor, while Yamada et al. adopted an approach including two load 
correction vectors, one for the nodal force equilibrium and the other for the overshooting of 
stress values due to the violation of yield condition. 

It is found that the solutions depend upon the choice of the finite element discretization and 
the size of increment to some extent. This can be seen from the upsetting loads obtained by 
choosing the increments of 0.5% and of 0.25% with the finite element mode1 of Fig. 11(a), and 
0.25% increment with the mesh depicted in Fig. 11(b). The evergoing over-estimate of the 
upsetting load (curve A, Fig. 12) for the case of 0.5% increment can also be observed from 
Fig. 13 in which the effective stress-strain are evaluated for the element 82 shown in Fig. 11(a). 

N 
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,a 
c 

0 ._ 1: 
- c 

v 
. 3 

X Yamada A=O. 5% 48el. 
0 Yamada A=0.5$ 308el. 
0 Yamada A=O.25$ 48el. 

A HI 

+ Taylor 

10 20 30 40 

% Reduction 

Fig. 12. Upsetting load vs. % reduction. 
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Fig. 13. Effective stress-strain curves in the element 82 of Fig. Il. 

The response of this element follows very closely to the given material properties for the case 
of 0.25% increment, but, deviates considerably from the expected curve when 0.5% increment 
is used. Similar results have also been concluded by Yamada et al. While the improvement of 
the solution seems to be so profound by reducing the increment size from 0.5% to 0.25%, 
taking increments smaller than 0.25% with the same mesh discretization does not give any 
change of the result. A finer mesh as in Fig. 11(b) does, however, show much decrease of the 
predicted upsetting load (curve C, Fig. 12). 

Two deformed meshes at 40% reduction obtained by 0.25% increment are shown in Fig. 
14(a). The severe distortion of finite elements which is not found in the tension test, is due to 
the sticking constraint on the top surface of the block. It is because of this additional 
constraint that the so-called locking phenomenon arises which is also revealed in the computed 
upsetting loads at the stages of larger deformation. This effect can also be observed from the 
zig-zag pattern in the deformed mesh. In order to overcome this overconstraint, a remedy is to 
take averages of stresses and strains for each four elements within one quadrilaterial. The 
results are demonstrated by a drop in the upsetting load (curve D in Fig. 12) and a much 
smoother deformation pattern (Fig. 14(b)). The more restricted deformation of those two 
shaded elements is because that they become stiffer by having higher stress values contributed 
from the other two who are in the dead zone. Another consideration is to artifically reconnect 
the diagonals of each quadrilateral for every updated finite element mesh. This results in a very 
soft response as indicated in curve E, Fig. 12. The deformed mesh at 40% reduction is shown 
in Fig. 14(c). A similar deformation pattern has been obtained by Nagtegaal and De Jong [47]. 
Properties of the 4CST element were studied in details by Kikuchi [167]. 
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:a) 

(d) 

Fig. 14. Deformed meshes at 40% reduction of height; sticking punch-billet interface assumed in (a)-(c), 
vF = 0.3 in (d). 

It is worthwhile to emphasize more on the importance of solution dependence on finite 
element discretizations. Fig. 15 shows two other initial meshes and corresponding deformed 
configurations at 40% reduction. The computed appfied loads are iltustrated in Fig. 16 which 
also includes the results reproduced from enrve B and curve C in Fig. 12 for comparison. 

Removing the restriction of perfectly rough interface, the analysis is also repeated for a 
frictional case with a coefficient friction pF = 0.3 assumed to be constant. A less distorted mesh 
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(a) 

lb) 

Fig. 15. Two different finite element discretizations for an upsetting process with sticking interface. 

than those in the sticking case is shown in Fig. 14(d). It is noted that between 15% and 30% 
reductions, the upsetting load (Fig. 12) is a little bit smaller than that of the friction-free case. 
This is because that in the frictionless case, the increase of the block radius (which is refrained 
when pF = 0.3) surpasses the rate of strain hardening. 

The equatorial stresses oz, and see obtained from the outermost element at the middle as a 
function of % reduction are shown and compared in Fig. 17 for three cases with others’ 
results. The ever-decreasing values of lo;,/ suggest that a much smaller upsetting load at the 
later stage of compression will be obtained if the load is evaluated on the equatorial plane 
although its area is increasing. 
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Fig. 16. Comparison of applied loads for an upsetting problem with four different finite element discretizations, 
sticking interface, 0.25% disp. increments. 
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11.3. An indentation problem 

This example is aimed to test the friction algorithms proposed in this paper. The problem 
chosen is an indentation analysis of a spherical rigid punch on a cylindrical elastic-plastic block 
(axisymmetrical case) whose dimensions of the cross-section with a finite element model are 
shown in Fig. 18. The radius of the punch is 8 cm. Similar analyses have been carried out by 
Lee and Kobayashi [168], Hardy, Baronet and Tordion 11691, Dumas and Baronet [170], Lee, 
Masaki and Kobayashi [171], and Kikuchi and Skalski [97] under the frictionless condition. 

i! R = 0. 

Lzcnl - 

Fig. 18. An indentation problem of a rigid sphere into a deformable cylinder (axisymmetric case). 

Material properties of the deformable body are assumed to be Young’s modulus E = 
1000 kN/cm’, Poisson’s ratio Y = 0.3, initial yield strength Sy = 10 kN/cm*, and a hardening 
rule of c? = 10 + S(E - 0.01) kN/cm*. The problem is first solved by assuming elastic defor- 
mations only. A reference displacement increment of 0.05 cm of the punch motion is 
prescribed unless it violates either the kinematic contact condition (36) or the Coulomb slip 
criterion (41). Fig. 19 illustrates the computed contact stresses with deformed meshes at 0.4 cm 
indentation for three different coefficients of friction. The contour lines on the left-half part of 
the block represent the distribution of equi-effective stress a. It is seen that the result of smooth 
indentation bF = 0) is in good agreement with the Hertz’s solution. The peak values of the 
tangential traction separate the sticking and sliding zones of the contact surface. Similar results 
have also been presented by Kikuchi 11723 who solved the same problem using an iterative 
method. 

Allowing plastic deformations, the problem is again solved for two different coefficients of 
friction. The results at 0.4cm indentation are shown in Fig. 20. In this computation, the 
reference increment is chosen to be 0.005 cm which may be changed by the yield criterion (27) 
besides those two conditions mentioned above. 
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Fig. 19. Contact stresses and deformed meshes at 0.4cm indented depth for an elastic indentation test. Material 
constants: E = 10 Gpa; Y = 0.3. 
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Fig. 20. Contact stresses and deformed meshes at 0.4 cm indented depth for an axisymmetric indentation test on an 
elasto-plastic material. Material constants: E = 10 Gpa; Y = 0.3; SY = 100 Mpa; a = 100 + _5O(E - 0.01) Mpa. 

11.4. A head forming process 

As the last example, let us 
and material properties shown 

consider a head forming problem with an initial con~guration 
in Fig. 21. The same problem has been solved by Argyris et al. 
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Fig. 21. Initial configuration for a head forming problem. 

[59] using both the viscoplastic flow model and the updated Lagrangian model with Newton- 
Raphson corrections, and by Kobayashi [69] using the rigid-plastic approach. 

The analysis is carried out under a reference displacement increment of 0.25% of the initial 
height. Deformed configurations at various stages are displayed in Fig. 22 together with the 
contour lines of the effective stress ~7. Localized plastic deformations in the core of the head 
grow into two shearing bands in the upper and lower parts of the head. Fig. 23 shows the 
historical path of the applied load evaluated from element stresses under the punch. The slight 
disturbance at 36% reduction amounts to the response of the material when some portions of 
the initially vertical lateral surface of the billet come into contact with the die and the punch 
(see the deformed mesh at 40% reduction in Fig. 22). 
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Fig. 22. Deformed meshes of a head forming problem by using material co&ants E 
Fig. 21. 
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12. Conclusion 

A finite element analysis based on updated Lagrangian formulations has been carried out to 
solve large deformation elasto-plasticity problems involving contact with friction. Four exam- 
ples have been analyzed to examine the quality of the solutions through the comparison with 
some published results. 

The first problem was a uniaxial tension test which offered a critical test on the plasticity 
model and the consideration of finite strain coded in the computer program. The second 
problem was an upsetting process of a cylindrical block. Locking phenomena due to the 
overstiff response of the 4CST element under the assumption of sticking punch-billet interface 
were discussed. Some considerations to resolve this di~culty were given, The emphasis has 
been laid on the importance of the choices of the increment size and the finite element 
discretization. The third example, an axisymmetric indentation problem, was selected to check 
the proposed friction algorithms. Finally, a head forming process was presented to show a 
practical application of the formulations in this article. 

As the natural course of development, an extension of the present work would be to take 
account of the temperature effects in both the material constants and the surface properties. 
Lacking of experimental data and the complicated coupled problems pose a challenging field 
for research. 
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