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Smoluchowski 's coagulation equation with coagulation rates K 0 oc (ij) ~ describing the temporal 
evaluation of the size distribution ck (concentration of k-mers) is studied in the presence of  a source 
term ark, and a sink term --bCk. With a' - a/b 2 one finds that a steady state is reached, exhibiting 
gelation when w > ½ and a '  > ao(w), where a0(o~) depends on w (ao(w) = ~ for ~o < ½, ao(1) = ¼, a0(w) 
= 0 for w > 1). For a '  < ao(w) the asymptotic behavior of  the ck is dominated by exponential decrease, 
for a '  > ao(w) it has an algebraic tail. The case w = 1 is singular in that also nongelling steady states 
have an algebraic tail oc k a, where/3 depends on a'. © 1985 Academic Press, Inc. 

1. I N T R O D U C T I O N  

In this paper we study properties of  the 
solutions, in particular steady-state solutions, 
of  the population balance equation 

1 
= Z Ki cicj - Z X jcj 

i+j=k j= 1 

+ a ~ -  bkck [A] 

describing coagulation of particles in a con- 
tinuously stirred tank reactor (1-3). The co- 
agulation rates are represented by the num- 
bers Ko; ck(t) is the concentration of  particles 
containing k structural units (k-mers), ak is 
the source term, and bkck is the removal 
term. We shall always take ak = ark1 (mono- 
mer source) and b~ as a constant; then a is 
the rate at which monomers are being fed 
into the reactor, and 1/b is the mean residence 
time. An important quantity, associated with 
the distribution ck(t), is its first moment,  or 
the total mass of  all the finite size particles: 

c~ 

m l ( t )  = ~ kck(t). [B] 
k=l 

A balance equation for this quantity can be 
formally derived from [A] (with a~ = arkl 
and bk = b) but this derivation is only valid 
when the ck decrease rapidly enough as a 
function of  k. In general, only the inequality 
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M l  <~ a - bM1 [C] 

can be derived by multiplying [A] on both 
sides by k and summing over all k. The 
above-mentioned balance equation has the 
equal sign. In some cases, depending on the 
coagulation rates Ko., solutions exist for which 
the strict inequality sign holds. It seems that 
these solutions do not conserve mass, as the 
RHS of  [C] represents the difference of in- 
and outflowing mass. The deficit is caused 
by the formation of an infinite cluster, the 
mass of which is not present in [B]. This 
phenomenon is called gelation, and has been 
discussed in (1, 2, 4-9). In the absence of 
source and removal terms, criteria whether 
or not gelation occurs have been developed 
and in some cases bounds on the gelation 
time have been derived. For example, when 
K o ~ (ij)  ~ for large i and j, gelation occurs 
only when co > ½ and at the critical point the 
Ck decay as k -~ with a critical exponent r 
= co + 2 3- (4, 7). The same is true of  the steady- 
state solution when only a source is present 
(1). The amplitude of  this algebraic tail is in 
both cases proportional to the square root of 
the rate of gel formation. White (1) has given 
an existence proof for a class of  kernels, 
source, and removal terms, which was later 
generalized by Crump and Seinfeld (2). These 
authors' results may be formulated as follows. 
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248 H E N D R I K S  A N D  Z I F F  

Assume a monomer  source ak = ark~ and 
kernel and removel terms satisfying the re- 
lations: Kij < const. (i j)  ~+~ and bk >1 const. 
k s, where fl >~ 0. Then, if w < 1 a nonnegative 
steady-state solution to Eq. [A] exists, having 
finite mass. If  the stronger condition o~ < ½ 
is satisfied, this solution is mass-conserving 
(nongeUing) and has finite moments of all 
order. As an example (2) one may apply this 
to aerosols undergoing Brownian coagulation 
(Kij <~ const. (i j)  1/3) and gravitational sedi- 
mentation (bk >1 const, k2/3). In this case, 
- ½ and hence gravitational sedimentation 
acts as a sink, strong enough to preclude 
gelation phenomena in aerosol systems. 

In the same paper it has been conjectured 
that o~ = ½ is actually the largest possible 
exponent for which mass-conserving solutions 
exist. This is not true, however, as we shall 
show that it is possible to construct examples 
for which the removal term is weak enough 
to imply o~ > ½ and still strong enough to 
preclude gelation. 

In this paper we restrict ourselves to sep- 
arable kernels of the form K 0 = sisj. We 
prove, in the Appendix, existence and unicity 
of  the steady-state solution irrespective of the 
functional form of Sk, using an idea of Ley- 
vraz (9). This covers many cases in which 
the conditions under which the theorems in 
(2) are derived are not satisfied and thus the 
class of kernels for which existence of steady- 
state solutions is known is enlarged. For Sk 
= k we investigate for which values of o~, a 

a n d  b gelation occurs and what the asymptotic 
properties of the distribution are for gelling 
and nongelling steady states. These results 
are expected not to change when K 0 is not 
strictly equal to (ij) ~, but only asymptotically 
for large i and j. For w = 0 we give the 
complete time-dependent solution, which is 
a generalization of a result of Lushnikov and 
Piskunov (3). 

2. BASIC C O N C E P T S  

2.1 Bas ic  E qua t i on  

The coagulation process in a continuously 
stirred tank reactor is described by the set of 
differential equations 

~k = ~ G K~cicj - ck 
i+j=k j~ 1 

+ arkl -- bCk. [1] 

For a given initial state, these equations 
determine the time evolution of the size 
distribution, Ck(t). The rate at which i + j- 
clusters are formed out of i- and j-clusters is 
taken to be Kocic  j .  Monomers are fed into 
the system at a rate a and mass is removed 
from the system at a rate proportional to the 
amount  present. In this paper we shall almost 
exclusively study the process for initial con- 
ditions ci(0) = 0, and take the kernel K o of 
the form stsj where Sk is a measure for the 
effective, reactivity of a k-mer.  

Changing to new variables t' = bt and c~ 
= crib such that c'k(t') = Ck(t) we obtain an 
equation of exactly the same form as [ I], in 
which b is replaced by unity and a by a/b  2 
= a'. Omitting the primes we write 

1 

Ck = -2 ~ SiSjCiCj-- CkSk ~ SjCj 
i+j =k j= 1 

+ aG~ - ck. [2] 

To obtain a solution of the original equation 
from a solution of this equation, one simply 
has to make the substitutions ck ~ bCk, t 
bt, and a ~ a /b  2. 

In general, Eq. [2] resists solution, but 
often certain properties of the distribution 
can be obtained. Of interest are the values of 
the lower moments Mn = Z knCk and the 
asymptotic behavior of Ck for large k. We 
shall be mainly interested in steady-state 
solutions and their properties. These are so- 
lutions for which Ck is zero. In the Appendix 
we give a rather technical proof of the exis- 
tence of such solutions. 

2.2. M a s s  B a l a n c e  Equa t i on  

In the new units, the rate at which mass 
is flowing into the system is a. The amount  
of mass leaving the system per unit time is 
given by the value of the first moment  of the 
size distribution: 

09 

Ml(t) = ~ kCk(t). [3] 
k=l  
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where 

From [2], by multiplying by k and summing 
over all k, the following equation can be 
derived: 

L oo 

~ / l = a - M 1 -  lim ~ Z isisjcicj. [4] 
L ~ o o  i=1  j = L - i + l  

If  the last term of  the RHS is zero, this 
becomes the mass balance equation, which 
expresses that the increase of  mass in the 
system is a result of  a difference between 
inflow, a, and outflow M~. This is the case 
whenever 

c~3 

X = ~, kseck [5 ] 
i=1 

is finite. This quantity may diverge, however, 
so in general we only have 

J~/l ~< a -- M 1 . [61 

The loss of  mass is due to the formation of 
an infinite cluster, the mass of  which is not 
contained in M1 (which is a sum over all 
finite clusters). This phenomenon is called 
gelation (4-9). We shall call solutions for 
which 21~/1(t) becomes strictly less than a 
- M1 at some point: gelling states as opposed 
to nongelling states. 

2.3. Moment  Equations 

An important  mathematical  tool when in- 
vestigating properties of  the solutions of  Eq. 
[2] is furnished by the m om en t  equations. 
The moments  of  the distribution are defined 
in the usual way: 

M,(t)  = ~, k"ck(t). [71 
k=l 

I f  we multiply [2] by k n, sum, and rearrange 
terms we find 

= a - M .  + ~ Z SkS~ k, [81 

09 

S,(t) = ~ kn&Ck(t). [9] 
k = 0  

In deriving Eq. [8] we have omitted a term 
like the last term in Eq. [4] which vanishes 

only when Sn(t) is finite (2, 4, 7). Provided 
this, the momen t  Eqs. [8] are valid. It is 
possible that Sn(t) is infinite for n > N and 
finite for n ~< N. In that case the momen t  
equations are valid only up to n = N. For 
gelling states N = 0. Only for special choices 
of  sk, such as Sk = 1 or & = k are the 
m omen t  equations closed. 

2.4. Generating Functions 

Another important  mathematical  tool is 
the (moment) generating functions. We define 
two of  them as 

at) 

f i x ,  t) = ~ SkCk(t)e ~ [10] 
k = l  

oo 

g(x, t) = ~ c~(t)e ~ [11 ] 
k = l  

for complex x. The series converge for Re(x)  
< 0 when ck(t) is a solution of [2], since in 
order for the solution to make sense both So 
= Z SkCk(t) and M0 = Z ck(t) must  converge. 
The function g generates the moments  about 
x = 0 (as far as they exist) and the cluster 
size distribution about x = - ~ .  We have 
the following explicit formulas 

M,(t)  = (27ri)-ln! f g(x, t )x -"- ldx  [12] 

and 

Ck(t) = (27ri) -l  f g(1og Z, t)z-k-ldz,  [13] 

where the integration paths are closed con- 
tours around the origin in the respective 
complex planes. Multiplying Eq. [2] by e ~ 
and summing over all k, we find that f and 
g are related by the equation 

Og/Ot = f 2 / 2  - f So + ae x - g, [14] 

where So = f(0, t) = Z &ck. In the case of  a 
gelling state we can obtain the asymptotic 
(large k) behavior of  the size distribution 
from [14]. Since Ml(t) is finite we may 
expand g about x = 0 as 

g(x, t) = Mo + M i x  + O(x 2) (x T 0). [15] 
Journal of Colloid and Interface Science, Vol. 105, No. 1, May 1985 
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We rewrite [14], using $2o = 2(a - Mo - 3~/o) 
(which follows from [14] by putting x = 0) 
a s  

f = So - [2(a - M0 - ~/o 

_ a e  x + g + g)]l/2. [16] 

Expanding this about x = 0, using [15], 
yields in lowest order: 

f ~  So - [2(a - M 1  - M 1 ) ] 1 / 2 ( - x )  1/2 

(x T 0). [171 

This corresponds, from the definition [10], 
to the asymptotic large-k behavior of  the size 
distribution 

SkCk ~ [(a -- M I  - J~/ll)/27r]1/2k-3/2 

(k-~ ~). [18] 

The coefficient is thus expressed in terms of 
M1, which is an unknown function of t. For 
nongelling states this coefficient vanishes, be- 
cause for these states the mass balance equa- 
tion ~/1 = a - M 1  holds. We may interpret 
the quantity g --- a - 21;/1 - M1 as the rate of  
gel formation. Equation [18] is the general- 
ization of a similar formula derived in (7) to 
the case in which a source term and a 
removal term is present. In the steady state, 
~q=0. 

In general we expect the size distribution 
to have the asymptotic behavior 

Ck ~ Avlkk  ~ ( k  ~ oo), [19] 

where A, ~/, and/3 are parameters depending 
in principal on time and on the source rate 
a. The parameter  r/ is related to the radius 
of  convergence of f and g, and becomes 
unity for gelling states. The exponent/3 does 
not depend on time and is related to the 
nature of  the singularity of  g at the radius of  
convergence. 

3. C O A G U L A T I O N  RATES K,j = (/j)~ 

In the following we restrict ourselves to 
coagulation kernels of  the form Kij = (0) ~ 
(& = k~). These have been studied in (4, 7). 
For different choices of  co various coagulation 
mechanisms are described by this form (2) 
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in the limit of  large clusters. It has been 
shown that in the absence of source and 
removal terms, and for a large class of  initial 
conditions, gelation occurs for w > ½ and is 
absent for w < ½ (4, 7) and some bounds on 
the gelation time have been derived. We shall 
investigate the nature of  the solution and in 
particular of  the steady state for various 
choices of  ,0. The existence of a unique 
steady state will be proved in the Appendix. 
Beside the question of asymptotic behavior 
of  the ck it is of  interest to know the answer 
to the questions: For which value of a and w 
does the system reach a gelling steady state? 
What  is the dependence of the rate of  gel 
formation (a - M1) on a? We start with the 
simpler case ~o = 0 (Ki j  = 1) for which the 
t ime-dependent problem was solved in (3) 
with a source but no removal term. It is an 
easy matter  to generalize the result to include 
removal. 

3.1.  T h e  C a s e  w = O ( K  O =  1) 

In the case of  constant coagulation rates, 
as in Smulochowski's original coagulation 
equation (10), the generating functions f a n d  
g, defined in [10] and [11], are equal (sk = k ~ 
= 1), so that [ 14] becomes a closed nonlinear 
partial differential equation for g. Here it is 
more convenient to use another generating 
function, h, defined by 

to 

h ( x ,  t) = ~ ck( t)(e  ~ -  1) 
k = l  

= g ( x ,  t) - M o .  [20] 

If  we substract from [14] the same equation 
with x = 0, we find that h satisfies 

Oh/Ot = h2/2  - h + a ( e  x - 1) [21] 

which we want to solve with the initial 
condition h(x ,  0) = 0. It is not difficult to 
generalize this to arbitrary initial conditions. 
The steady state, however, does not depend 
upon Ck(0). Abbreviating ~b = a ( e  x - 1) we 
can treat equation [21] as just an ordinary 
differential equation, in which ~b occurs as a 
parameter, and solve it by separating vari- 
ables, with the result: 
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h(x, t) 

2¢ tanh[(t/2)(1 - 2¢) 1/2] 

( 1  - -  2¢) 1/2 4- tanh[(t/2)(1 - 2¢)1/2] . 

[221 

The steady state is obtained from this by 
substituting t = 0o. It corresponds to a zero 
of  the RHS of Eq. [21]: 

h(x, oo) = 1 - (1 - 2~) 1/2 [23] 

agreeing with a result of  White (1). A corre- 
sponding expression in (3) for the generating 
function of  the distribution, valid when there 
is no removal, can be obtained from [22] by 
changing back to the original variables (h 
bh, t ~ bt, a --~ a/b 2) and letting b --~ 0. For 
finite times the expression [22] represents a 
meromorphic  function with an infinite num- 
ber of  simple poles on the real axis to the 
right of  x0 = log(1 + 1/2a). An asymptotic 
formula for these poles is 

xn - log[1 + (1/2a) + (2/a)Orn/t) 2] 

( n =  1 , 2 , . . . )  ( t - -~m) .  [241 

It follows from [13], [20], and [22] that the 
exact distribution can be written in the form 
of  a series (for t finite) 

ck(t) = (2~at) ~ [1 - 2a(x, - 1)1 
/ ' t=l 

× e x p [ - ( k  + 1)xn]. [25] 

So that the large-k behavior is dominated by 
a purely exponential tail distribution. For 
t ---, m,  however, the poles become dense on 
the real axis to the right of  x0. For t = 
the size distribution can be calculated in 
explicit form from [23]: 

.1/2[ 2a ~k ck(°°) = { (1//~2)I (1 + z a ) t ~ )  [26] 

which has the asymptotic behavior 

1 [1 + 2 a \ ! / 2  -_[  2a \k 

(k ~ ~) ,  [27] 

i.e., exponential decay dressed with an alge- 
braic factor. The value of  the first m om en t  

Ml(t),  which is the amount  of  mass flowing 
out of  the system, can be found from [22] 
by differentiating with respect to x: 

Ml(/) = (Oh/Ox)x=o = a(1 - e- ') [28] 

which is the solution of the mass balance 
equation ~/1 = a - M1 with Ml(0) = 0. 
Therefore this model does not suffer a gelafion 
transition. In the steady state, M 1  = a. 

So we have shown that the model with 
= 0 can be solved explicitly, and the time- 
dependent solution leads to a steady state 
with mass conserved and therefore does not 
undergo a gelation transition. 

3.2. The Case w = 1 (K O= i j )  

For w = 1, Eq. [14] becomes a nonlinear 
partial differential equation for g(x, t) (since 
f = Og/Ox in this case) which resists solution. 
The second momen t  M2(t), however, satisfies 
a closed equation: 

]~/2 = M22 - M2 + a. [29] 

As follows from [8], it is valid provided S2(t) 
= M3(t) < oo. The solution for M2(0) = 0 
can be written as 

2a tanh[(t/2)(1 - 4a) 1/2] 
m2(t) = 

( 1  - 4a) 1/2 + tanh[(t/2)(1 - 4a) 1/2] " 

[30] 

There are two qualitatively different cases. I f  
a < I ,  M2(t) remains bounded for all times 
and approaches the steady-state value 

M2(~)  = [1 - (1 - 4a)~/2]/2. [31] 

This implies that the mass balance equation 
([8] for n = 1) is valid, so the system never 
gels and approaches a nongelling steady state 
with M l ( ~ )  = a. I f  a > I ,  however, M2(t) 
diverges within a finite amount  of  time. The 
point tc at which M2(t) becomes infinite, the 
gel point, corresponds to a zero of the dom- 
inator in [30]: 

tc = 2(4a - 1)-1/2[~ - 

- arctan(4a - 1)1/2] .  [32] 

So for a > ¼ the system approaches a gelling 
steady state, with M1(~)  < a. The asymptotic 
behavior of  the corresponding size distribu- 
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tion follows from [18], with ~/1 = 0 and sk 
= k, as 

ck ~ [(a - M1)/21r]l/2k-5/2 

(k ~ ~ ) .  [33] 

Next we investigate the asymptotic behavior 

for a < ¼. 
First we note that the m om en t  equations 

[8] in the steady state can be written here as 

M , = ( 1  - nM2)_l{1 n - 2  } Mk+lMn-k+l + a 
k=2 

n - 3 , 4 , . . . ,  [34] 

where M2 is given by [31]. Using this all 
moments  can be calculated recursively. How- 
ever, it seems to follow from [34] that when 
n > (l/M2) the moments  become negative, 
i.e., unphysical. In fact, the moments  with n 
> (1/M2) must be infinite. This follows, for 
instance, from the solution of the time-de- 
pendent momen t  equations (which can also 
be solved recursively in principle). This be- 
havior indicates that for a < ~ there is still 
an algebraic tail distribution, although the 
steady state is a nongelling one. To find the 
exponent we use the equation for the gener- 
ating function in the steady state which fol- 
lows from [14]: 

f 2 / 2  - f M l  + ae x - g = 0, [35] 

w h e r e f  = f ( x ,  ~ )  = g'(x, ~ )  and M1 = f(0, 
~ ) .  We assume that there is an (integer) 
value N of n such that M,  is finite for n ~< N 
and infinite for all n > N because of an 
algebraic tail in Ck ~ k -~ which leads to the 
singularity ~ ( - x )  a-I in the generating func- 
tion. This means that about x = 0 the gen- 
erating func t ions fand  g will have the expan- 
sion 

N 

g ~- ~ M,,x"/n! + 3"(-x) ~ 
n=0 

and 

( N < ~ < N +  1) [36] 

N - I  

f =  g' ~- ~ M,+lx" /n!  - "yr( -x)  ~-l. [37] 
n=0 

We substitute these into Eq. [35] and equate 
the coefficient of  the various powers x n to 
zero. For n ~< N we recover the momen t  Eqs. 
[34]. The term proportional to ( - x )  ~ leads to 

6 = 1/M2 [38] 

and 3' remains undetermined. Hence g has a 
singularity 3,(-x) l/M2 in x = 0 to which 
corresponds an algebraic tail in the size dis- 
tribution 

ck ~ A(a)k  -1-1/M2, [39] 

where 342 is given as a function of a by Eq. 
[31]. The coefficient A(a) remains undeter- 
mined. I f  we increase the source rate a, Mn 
becomes infinite at the value an = (n - 1)/ 
n 2. For a > a2 = ¼ the second momen t  itself 
is infinite and the system gels. In this range 
Ml(a) becomes strictly less than a. We note 
that Eq. [29] can be solved for general initial 
condition M2(0), allowing some mass to be 
present in the reactor at t = 0. One finds 
that M2(t) diverges when M2(0) > ½11 + (1 

- 4a)1/21, even when a < ¼, in a finite t ime 
to. However, the steady state, which is unique, 
depends solely on a and not on M2(0) and 
therefore should be nongelling. This seems 
in contradiction with the fact that here M2(t) 
= ~ for all (finite) t > to. The solution to 
this paradox lies in the fact that the approach 
to the steady state is nonuniform in k, so 
that it is possible that Mz(t) -- ~ for all t 
> tc and yet M2(~)  = finite. At all finite 
times the distribution has an algebraic tail as 
in [10] causing M2 to diverge, the amplitude 
of which vanishes as t ~ ~ .  

3.3. General w (Ko = (i j )  ~) 

For arbitrary w (=~1, ~0), none of the 
higher moments  can be found in explicit 
form. The momen t  equations 

A:/n = a - Mn + ~ k Mk+,,Mn-k+~ [40] 
k = l  

are not closed. However, for ~0 < 1 the 
equation with n = 2: 

] ~ 2  = a - M2 + M~+~ [411 
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implies, since MI+~ < 1142, that the second 
momen t  is bounded by the solution of  Eq. 
[29] (which was strictly valid for w = 1), i.e., 
by the expression [30]. 

Since Ml+o~ < M2 and gelation occurs only 
when MI+,~ = 0% it follows at least for a 
< ¼ the system never gels. In the absence of  
removal it is known that the system suffers 
gelation for o~ > ½ (1). Therefore we expect 
that there is a number  a0(o~) such that gelation 
occurs for a > a0(o~) and does not for a 
< a0(o~). In the case of  gelation, the size 
distribution asymptotically behaves as ck 

k -(3/2+t°) (see [18]). On the other hand M1 
has to be finite, i.e., kck has to converge. This 
is only consistently possible when o~ > ½. 
Hence gelation is precluded for w < ½, so 
that ao(w) = ~ for o~ < ½. It follows from 
the results of  Section 3 that a0(1) = ¼. 

To find the asymptotic behavior of  the 
size distribution for a < ao(w) we may proceed 
as before, using Eq. [36]. In this c a s e f i s  not 
simply the derivative of  g, but it follows from 
the definitions [ 10] that when g has a singular 
term oc ( - x )  ~ about x = 0 t h e n f h a s  a 
corresponding singular term ( - x )  ~-~. I f  we 
substitute this into [35] we find that it is 
impossible to match the coefficients of  the 
singular term since the powers are different. 
We conclude that g cannot  have a singularity 
in x = 0 for a < a0(w), so that ck must  have 
an asymptotic behavior as in Eq. [19], with 

< 1. This means that f ( x )  and g(x)  both 
have a singularity in x = x0 = -ln(~).  Con- 
sistent with [35] one f i n d s f  oc (x0 - x) 1/2 for 
x --, x0, implying 13 = - (w  + 3). We have 
not been able to determine the parameters 
of  A and n for general w. 

I f  w > 1, the situation is different. Now 
MI+~ > M2 so that M2 is bounded from 
below by [31], and the system suffers gelation, 
at least for a > ¼. In the steady state we write 
Eq. [40] as 

0 = a - Mn + nMl+~Mn+~ 1 

+ 2 k Mk+~/,-k+~. [42] 
k = 2  

Since Mn+,o-i > Mn for w > 1, the RHS must 

become strictly positive for some n. Hence 
the momen t  equation cannot be valid for all 
n, in the steady state, and we conclude that 
the distribution must have an algebraic tail. 
I f  we assume that M2 is finite we again find 
that the coefficients of  singular terms cannot 
be matched in the equation for the generating 
function; the only remaining possibility is 
gelation. Therefore we conclude that for ~o 
> 1 the steady state is gelling for all values 
of  a, in other words a0(o~) = 0 for w > 1. 
However the case w > 1 is unphysical (4, 7). 

Summarizing, we have the following results 
for Kij = (tj)~: 

(i) If  w < !2, the system reaches a nongelling 
steady state for all values of  the source rate 
a. The asymptotic behavior of  the size distri- 
bution is dominated by exponential decrease. 

(ii) For ½ < o~ < 1 there is a number  ao(w) 
such that the steady state is gelling for a 
> a0(o~) and nongelling for a < a0(~). For 
gelling steady states the size distribution has 
an algebraic tail k -(3/2+'°) (Eq. [10]), for non- 
gelling steady states dominated by an expo- 
nent of  decreasing factor (Eq. [19] with /3 
= + 3)) .  

(iii) For w = 1 the steady state is gelling 
for a > ¼ and has an algebraic tail ~ k -5/2. 
For a < ¼ the system does not gel, but there 
is still an algebraic tail ~ k a. The exponent 
/3 = ( - 1  + 1/M2) is a known function o f a .  

(iv) For the unphysical case w > 1 the 
steady state is always a gelling one, and has 
an algebraic tail k -(3/2+'~). 

It is in fact possible to calculate the steady 
state numerically in the following way. If  the 
parameter  M~ which occurs in the equation 
were given, the steady-state equation could 
be solved recursively. So the parameter  M~ 
is varied and each t ime the size distribution 
is calculated, until the consistency require- 
ment  M,~ = Z ckk ~ is met  within a reasonable 
accuracy. It follows from the existence proof  
in the Appendix that the procedure converges 
to the unique steady state. 

This way we have numerically confirmed 
the results (i) to (iv). For the parameter  M~(a) 
upper and lower bounds can be found as 
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follows: We take 0 < w < 1. The equation 
for Mo is given by 

a - Mo - M~/2 = 0 [43] 

and the fact that M0 < M,o implies M~ > (1 
+ 2a) l/z - 1. On the other hand, from the 
steady-state equation, M0 > c~ = a/(1 + M~) 
and this, combined with [43] leads to M~ 
<½[(1  q- 8a )  1/2 -- II, hence 

(1 + 2a) 1/2-  1 < M~ 

1 
< ~ [ ( 1  + 8 a )  1/2-  1]. [44] 

Since the bounds are asymptotically the same 
for large a, they also represent the large-a 
behavior of  M,o(a). This implies that for large 
source rates the monomer  is the dominant  
species in the system; which is to be expected 
physically. 

4. CONCLUSION 

We have found that in the presence of 
source and removal terms a unique steady- 
state solution exists to the coagulation Eqs. 
[1], when the kernel is a product of  two 
factors K 0 = sisj. The criterion for having a 
gelling steady state or not depends on the 
large-k behavior of  sk and on the relative 
strength of source and removal terms, ex- 
pressed through the parameter  a '  = a/b 2. For 
example, when & = k "°, gelling occurs for all 
values of  a '  when w > 1, for a '  > do(w) for 
½ < w < 1, and for no value of a '  when w 

½. The conclusion for ½ < w < 1 contradicts 
a conjecture in (2) that gelation always occurs 
for w > ½. (This conjecture was based on the 
steady-state solution for a system without 
removal (b = 0), in which case the statement 
is true.) In all cases, except w = 1, nongelling 
steady states correspond to exponentially 
dominated tails and gelling steady states to 
algebraic tails k -(3/2+~). For w = 1, also the 
nongelling steady states have an algebraic tail 
k ~ where/3 depends on the source rate a as 
/5 = - (1  + 2/(1 - (1 - 4a)1/2)). For w = 0 
the complete t ime-dependent solution could 
be given in terms of a generating function. 
Journal of Colloid and Interface Science, Vol. 105, No, 1, May 1985 

APPENDIX 

Here we prove that for K a = sisj a unique 
steady-state solution of Eq. [2] exists for all 
values of  a, irrespective of  the functional 
form of &. The idea of the proof  comes from 
an existence proof  for a similar problem, 
given by Leyvraz (9). We define ak = szck 
and consider the recursion relation 

Y~I + ½ Z aias 
i+j=k [A1] 

ak = s~ ~ + S ' 

where y and S on which the ak depend are 
real and positive. A steady-state solution to 
[2] exists if we are able to construct a value 
S such that for y = a the ak satisfies the 
consistency relation 

oo 

S = ~ ak. [A2] 
k=l 

We shall, however, fix the value of  S first 
and show that there is a value a of  y such 
that this condition is met. After that we show 
that a is an invertible function of S, so that 
for every a an S can be found. Thus we fix 
S and define, for N = 1, 2, 3 . . - ,  the 
numbers  bf(y) by 

b~k(y ) = i+j=k [ A 3 1  
O ( N -  k)s;  1 + S 

in which O(x) = 0 for x < 0 and O(x) = 1 for 
x >~ 0. The following properties hold: 

~ ( y )  = ak(y) k ~< N 

bN(y) > ak(y) k > N [A4] 

and from this 

/~k+l(y) ~ b~k(y). [A51 

Furthermore, it follows from [A3] that the 
b~k(y) are of  the form 

b~(y) = vUy k, [A6] 

where vk does not depend on y and, for k 
~< N, not on N. We define functions F~y)  
and Pu(Y) as 

Fu(y) = ~ bNk(y)= vNy k [A7] 
k= l  k = l  
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N N 

PN(Y) = ~, b~k(y)s; 1 = Z ak(y)s;'. [A8] 
k = l  k = l  

PN(Y) is a polynomial of  degree N in y. For 
N = 1 the function F,(y) can be found from 
[A3] to be 

F~(y) = S{1 - [1 - 2y/S(S + 1)1 '/2} [A91 

which has a radius of  convergence R, = S(S  
+ 1)/2. Because of  [A5], for higher values of  
N, F~y)  must have a radius of  convergence 
R N >1 R, .  For all y < R, we derive from 
[A3], using the definition [A8]: 

FN(y) = S -  [QN(y)] 1/2 

with 

Q~y) = S e + 2[PN(y) - y]. [A10] 

The function QN(Y) is a polynomial in y of  
degree N which is a convex function on the 
real axis, since Q~y)  = 2P~y)  > 0. Its zeroes 
correspond to singularities of  FN(y). The 
power series of  FN(y) has only positive coef- 
ficients so that the singularity nearest to the 
origin lies on the positive real axis, corre- 
sponding to a zero of Q~y). Since QN(Y) is a 
convex polynomial it can have at most  two 
real zeroes. If  these two zeroes would coincide, 
QN+I(Y) would have no zero, since QN(Y) 
strictly increases with N, in contradiction 
with the fact that FN(y) has a singularity on 
the positive real axis. We conclude that Qu(y) 
must have two distinct zeroes YN and y~v on 
the positive real axis and since QN~I(Y) 
> 0 ~ ( y ) :  

);2 < YN < YN+I < Y*+l < Y~V < Y~, [A1 i] 

implying that the sequences {YN} and {Y~v} 
tend to the limits y~ and * y ~ ,  respectively, 
with Yo~ ~< Y*. Since PN(Y*) < P~YN) = - $ 2 /  
2 + YN --* -$2]2  + Yo~ PN(Y*) also tends to 
a limit, which implies uniform convergence 
of the power series 

oo 

limPN(y) = ~ ak(y)s~ 1 = P(y) [A12] 
N ~ o o  k=0 

for y < y * .  Using this result, the quantity 

IP(Yo~) + S2/2 - Y~I 

= J t ' ( y ~ )  - P u ( y o ~ )  + e ~ ( y ~ )  - P~(yN) 

+ Pu(YN) + $2/2 - Y N  "~- Y N  - -  Yoo I 

= I I P ( y ~ )  - P~(yo~)] + [ P ~ ( y ~ )  

-- PN(YN)] q- [YN - -  Yoo][ 

can be made arbitrarily small. Hence, 

P(Yo~) = Yo~ - $2/2. [A13] 

For small enough y(y  < R1), we may let 
N---* oo in [A10] to find 

F(y) = l i m F ~ y )  
lV~oo 

= S -  [S 2 + 2(P(y) - y)]1/2. [A14] 

Since F(y) is an analytic function with only 
positive coefficients, its first singularity lies 
on the real axis. Because of  [A13] this sin- 
gularity is in y = Y~o or further out on the 
real axis. 1 F(y) is bounded on (0, Yoo) (from 
[A14]) and must be finite in y~.  So we can 
take the limit y --* y~ in [A 14] to find 

oo 

F(yo~) = Z ak(Y) = S. [A151 
k - I  

So choosing y -- Yo~ = a in [All leads to a 
sequence {ak}, satisfying the consistency re- 
lation [A2]. 

To show that conversely for a given value 
of a (=y) a corresponding S can be found 
we note that Yoo is a strictly increasing func- 
tion of S (see [A15]) that takes on all real 
values as S ~ 0% since y~ > R1 = S(S + 1)/ 
2. This function is continuous on account of  
[A13] and the fact that the series [A12] 
converges uniformly in S. Therefore Y~o is a 
bijective function of S, thus having an inverse. 

This finally proves that for any value a of  
y, a number  S exists such that both [All  and 
[A2] are satisfied, constituting a steady-state 
solution to the coagulation equation in the 
presence of source and removal terms. 

When y~ = y * ,  F(y) is not  singular there, since then 
the expression under the square root sign has a double 
zero in y. 
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