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The optimality of balancing workloads in certain
types of flexible manufacturing systems
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Abstract. Symmetric iathematical programming is used to analyze the optimality of balancing workloads
tn» maximize the expected production in a single-server closed queuing network model of a flexible
manufacturing system (FMS). Ir particular, using generalized concavity we prove thai, cven though the
production function is not concave, balancing workloads maximizes the expected production in certain
types of m-machine FMS’s with » parts in the system. Our results are compared and contrasted with
previous models of production systems.
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Introduction

Balance is basic to the human conditior.. Dividing equally is equitable in economics, democratic by
definition, and just, according to Aristotle.' Balancing is also optimal in situations as diverse as
maximizing the perimeters of inscribed polygon: of a circle (Stark and Nicholls, 1972) and designing
optimal biniry search trees (Aho, Hopcroft, and Ullman, 1974 and Knuth, 1971). This paper considers
balancing ir the context of Computer Aided Manufacturing. Specifically, we use symmetric mathematical
programming to establish the optimal:ty of balanced workloads for certain types of flexible manufacturing
systems.

A flexible m:nufacturing system (FMS) is an automated alternative to conventional means of batch
manufacturing in the metal-cutting industry. An FMS consists of a number of numerically controlled
machine tools which are linked together by an automated material handling system. Computers control
most real-time activities such as the actual machining operations, part movements, and tool interchanges.
An FMS can s:multaneously and efficiently manufacture several part types. This combination of automa-
tion and increased flexibility offers the potential for vast improvements in productivity but as noted by
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Graves (1981), also increases the complexity of the problems faced by production managers. For example,
the operation of an FMS requires a careful system set-up pricr to production to achieve a good system
utilization during production, even though technological hardware developments eliminate machine setup
time. Several existing FMS’s are described in Cavaillé. Forestier, and Bel (1981), Stecke and Solberg
(1981b), Dupont-Gatelmand (1982), and Barash (1982).

This paper studies an idealized version of the FMS loading problem, which is one of the set-up problems
of an FMS (see Stecke, 1983a). The loading problem invclves determining the best allocation of operations
and associated cutting tools of a set of part types among the machine tools subject to technological and
capacity constraints.

The most widely applied loading objective is to balance, or equalize, the total workload assigned to each
machine in: job shops (Deane and Moodie, 1972; Caie, Linden, and Maxwell, 1980); flow shops (Gutjahr
and Nemhauser, 1964; Ignall, 1965; Magazine and Wee. 1979); and FMS’s (Buzacott and Shanthikumar,
1980; Shanthikumar, 1982; Berrada and Stecke, 1983; Kusiak, 1983; Stecke and Talbot, 1933). However,
the applicability and optimality of balancing has recently come under scrutiny. For example, Stecke and
Solberg’s (1981b) simulation results demonstrated that balancing workloads :s not necessarily the besi
objective in an FMS. Other studies of finite-buffer stochastic flow lines also indicated that balancing the
assigned workload is not always optimal (see Makino, 1964; Hillier and Boling, 1966, 1967: Payne ".lack,
and Wild, 1972; Rao, 1976; Magazine and Silver, 1978; and El-Rayah, 1979). In particular, the numerical
studies (see Hillier and Boling, 1966, 1967; and El-Rayah, 1979) discovered a “bowl phenomenor’ in which
the expected production of a finite-buffered, balanced flow line is increased by assigning proportionately
lower average processing or service times to the middle machines on the line.

Queueing network models have recently been used to analyze design issues and planning problems of
FMS’s. (For example, see Solberg, 1977; Buzacott and Shanthikumar, 1980; Cavaillé and Dubois, 1982;
Dubois, 1983; Suri, 1983; and Stecke and Solberg, 1984.) Queueing networks have been shown to be robust
models of FMS’s even when the assumptions of the model are not satisfied (see Suri (1983) and Section 1
of this paper).

In the context of a closed queueing network (CQN), the loading problem is that of allocating a total
amount of work among a system of (possibly grouped) machines so as to maximize expected production.
Using a CQN, it has been shown that (Stecke and Solberg, 1984):

(i) the best way to partition the machine tools of a particular type into machine groups is to unhalance
as much as possible the number of machines in each group;

(i1) for these better (unbalanced) system configurations, expected production is maximized by a
particular unbalanced allocation of workload per machine.

However, in some practical situations, because of the discreteness of operation times, diiferent raachine

tool requirements, and limited capacity tool magazines, balancing the workload per machin: can be best
even in some systems with grouped machines. This paper characterizes situations in which balancing is
optimal: For those systems in which there is no grouping, or pooling machines of similar type intc machine
groups. Also, the fact remains that balancing is the almost universally applied loading objective, at least at
present. Therefore, balancing is applicable to some FMS’s.
_ In this paper we use a single-server CQN model to analyze the optimality of balancing for adequately
buffered flexible manufacturing systems in which each operation is assigned to only or.e macaine. We show
that balancing mar .~ izes the expected production in these systems. Specifically, symmetric mathematical
programming and generalized concavity is used to establish the optimality of balanced ‘orkloads. The
appli. ations of these results are the algorithms to balance in FMS’s. In particular, zn efficient mean< of
implementing a balancing FMS loading objective is provided in Berrada and Stecke {1383).

There is a related Computer Science literature. Price (1474), Trivedi and Kinicki (1978), Trivedi,
Wagner, and Sigmon (1980), and Trivedi and Sigmon (1981) maximize throughput in centrel server, single
class, single-server CQN subject to various cost constraints. The studies optimize different parameters such
as service rate (of a CPU, say), capacity of servers (I/0 devices), device speeds, and main memory size,
subject to budgetary limitations. The parameters relate cost considerations to performance.

In this paper, a different non-central server CQN of single-server queues is considered. Rather than the
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budgetary constraints of the previous studies, we impose a constraint on total system workload that
appears as a result of our unique scaling of workload and throughput. Therefore, the objective function and
constraints are somewhat different. The motivation of our particular scaling results {rom our studies of
optimal machine allocation and optimal workload assignment in FMS’s.

Even though the objective function (to maximize expected production, or throughput) is not concave
(see Stecke, 1983b), the production function is still well-behaved. In the situations studied here, the local
maximum (which we prove is a balanced workload) is a glodal maximum.

The plan of the paper is as follows. The closed queueing network model is described in section 1.
Notation and results from symmetric mathematical programming and generalized concavity that are
required to characterize properties of optimal workloads are summarized in the Appendix. Properties of the
production function and some preliminary results that are required to establish global optimality of
balancing for this particular version of the FMS loading problem are provided in section 2. The main result
is given in section 3. The paper concludes with a discussion of the rel:tionships between this CQN and
otaer models of manufacturing systems in section 4.

I. Closed queueing network maodel of an FMS

A flexible manufacturing system can be modeled as a closed network of arbit:arily-connected queues.
The particular case of a central server CQN is depicted in Figure 1. There are m machines and n parts in
the system. The average processing time of an operation by machine i is ¢,, i=1, ..., m.

Routing through the system is arbitrary, and can be described by the relative arrivai rates (the g, of
Figure 1, to the machines. These can be obtained by any nonnegative solution to ¢, =3 ,P;iq,» where the
p,,’s are first-order Markovian probabilities. Our formulas permit any scaling of the g¢,’s. For example, if
the g,’s are scaled to sum to one, g, may be interpreted as the probability that a part leaving the
icad/unload station (L/UL) via a transporter goes next to machine i. Therefore, g, is the expected number
of visits to machine i per visit to the transporter (or L/UL). Other relevant routing possibilities are
described in Stecke and Schmeiser (1983).

A measure of relative workload assigned to machine i is w, (Buzen, 1973; Reiser and Kobayashi, 1975;
Solberg, 1977;, which is defined as the visit frequency times the average processing time, or ¢,¢,, i =1
m. These worl:loads are relative since the ¢,’s can be scaled in any manner.

For our puposes w, was scaled, where 2} ,4,7,/m is the average wcrkload per machine, to provide

X - q,:,/{( 3 q,z,)/m}. (1)

j=1

3 eeen

X, is a scaled 1neasure of workload, whose values lie between 0 and m, for all i.
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Figure 1. A closed queueing natwork model of a flexible manufacturing system.
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There are several reasons for choosing this particular scaling: the total amount of work to be allocated
among the machines is a fixed constant that equals the total number of machines: 27, X, = m; the scaled
workload is now independent of any particular, chosen scaling of the g,; regardless of the number of
machines, a balanced loading has a unit workload: X;=X,=...= X, =1; this particular scaling of
workload results in the production function (defined in equation (3) being a dimensionless functiona, whose
values are also normalized to lie between zero and one; and finally, the workload scal'ng defined by (1)
allows new alternative definitions of the production function (equation (3)). Sce Stecke (1981) or Stecke
and Schmeiser (1983) for these alternative definitions. These are useful for providing insight into what this
production function, associated with a CQN model, is.

A state of the CQN model of an FMS is given by /i = (n,, ..., n,)), where n is the number of parts at
machine tool i, both those waiting and those in process. For all i, n,€ {0, 1. ..., n} and 2L n,=n. The
steady-state probability of being in state 7 is p(#) = p(n,, ..., n,), which for this CQN model has the

product form solution
- 1
p(#)

——_XMXP .. XD,
G(m,n; X) 7172 ”

where

G(m,n; X)= Y XmXpe o Xie, i=1, ..., m. (2)

i+ . ta,=n,n20

It can be seen that the function G(m, n; X) is the normalizing constant that is required for the
probabilities, p(#), to sum to 1. For the FMS depicted in Figure 1 with n parts in the system, the expected
production rate, which is the expected number of parts produced per unit of time, can be defined as a
function of G(m, n; X), which in turn is a function of assigned workload, X,. In fact, for a particular
scaling of g,, the production function, Pr(m, n; X), is given by Reiser and Kobayashi (1975) as

Y XMXyr ... Xin
G(m,n—1;X) nm+. .. +n,=n-1
Pr(m,n; X)= = (3)
( ) G(m,n; X) Y XmXy? .o X

M+ . tn,=n

The alternative definitions, referred to above, do provide additional intuition into just what Pr(m. n; X)
means. For these insights, we refer the reader to Stecke and Schmeiser (1983).
As an example, the production function for two single machines and any number of parts, n, is

XX
n+n;=n—1
Pr(2,n; X)=
S T
n‘+nz==n
n—1 -
X oXxn@e-x) "
="'=,:) . since X;+ Xo=m=2,
r xne-x)""
n =0
L X-e-x)" (40
X -@2-x)"

after dividing both numerator and denominator by (2 — X;)— X; = 2(1 — X;).
Many performance measures that can be obteined from CQN models, such as the expected production
rate, are insensitive to the form of the service time distribution-see Helm and Schassberger (1982) ard
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Dukhiovny and Koenigsberg (1981). In fact, for the performance measure of expected production, the
service time distribution can be arbitrary.

The assumptions of our CQN model of a flexible manufacturing system are that:

1. There are n parts (or pallets) circulating through a system of m machines.

2. There is a buffer at each machine tool that has the capacity to hold all n parts, including the part
being machined.

3. The queue discipline at each machine tool can be either FCFS, infinite server, LCFS preempt-resume,
processor sharing (see Baskett et al., 1975), random selection, or one developed by Kelly (1979) which
allows an arbitrary distributior to be defined at each node.

The main restrictive assumption is the limited number of allowable queue disciplines, which is why
product form queueing networks are not used to study scheduling problems.

Queueing network models have been shown to be accurate in qualitatively predicting steady-state
behavior of FMS's. For example, Solberg (1977) compared results from his CQN computer program,
CAN-Q, to those of a detailed simulation of the Suadstrand /Caterpillar FMS of Peoria, Illinois (Stecke,
1977) to find thai the performance measures of all machine utilizations and expected production rate
differed from thos2 of the FMS by less than 3 percent. Similar results were observed by Kimemia and
Gershwin 1978), Secco-Suardo (1978), and Dubois (1983). Queueing network models have also been used
to model other ncamanufacturing systems in which the service time distributions were not exponential,
with encouraging results. For example, Hughes and Moe (1973), Giammo (1976), Lipsky and Church
(1977), and Rose (1976, 1978) have verified ir empirical studies that queueing network models reproduce
observed quantities with reasonable accuracy. Attempts tc explain the observed robustness through
operational analysis can be found in Denning and Buzen (1978) and Suri (1983).

2. Preliminary results

The production function given in equation (3) is difficult to characterize analytically. However, it can be
evaluated numerically using Buzen’s (1973) efficient algorithm. The function behaves so well empirically
that some res:archers (i.e., Secco-Suardo, 1978; and Solberg, 1979) have conjectured that it must be
concave. Concavity would be desirable because it would insure that a local maximum, if it exists, is a global
maximum. However, Stecke (1983b) has shown that, cortrary to conjecture, the nroduction function is nor
concave in general, even though it is concave in a few restrictive cases. Fortunately, however, the function
satisfies weaker generalized concavity conditions, which are also sufficient to insure that a local maximum
is a global maximum.

Using the Definitions (D) and Theorzms (T) ia the Appendix, we first establish two preliminary results
on symmetric mathematical programming which are used subsequen:ly in section 3 to prove the main
result.

Proposition 1. The set x of feasible loadings is a closed S-convex set.

Proof. From (1). we have

n
x={(x,, e X ZX,=m,X,eR,OsX,=§m}.

r=1

Therefore, x is clearly c'osed. It is also clearly convex and symmetric. Then by Ti1, x is S-convex. O

Proposition 2. The quotient of two symmetric functions in the same variables on the same symuietric set x is a
symmetric function.

Proof. Suppose that f(x) and g(x) are symmetric functions on the symmetric set x. Then by D5,
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f(xP)=f(x} and g(xP)=g(x)

for all x€ x and for any permutation matrix P. Let h(x)=f(x)/g(x) for all x € x such that g(x)# 0.
Then

h(xP)=f(xP)/g(xP)=j(x)/g(x)=h(x).

Therefore, h(x) is a symmetric functionon x. O

Proposition 2 will be used subsequently in Lemma 4 to prove that the production function is symmetric.
Prior to doing that, we prove directly the S-concavity of the production function for two machines, Pr(2, n;
X), in Theorem 3 that follows.

Theorem 3. Pr(2, n; X) is S-concave.

Proof. From (4), we have

Xr-@2-x,)"
Pl'(z, s I‘{) = n+‘l ( l)n+1
X] *(Z“Xl)
X' - X}
=_T£1___2,:T’ for X, # X,;
Xl A

=n/(n+m-1), forX, =X,.
Differentiating yields:

oPr(2,m; X) _ — (X7 = X3 )nXp ™+ (X7 - X7)(n+ 1) XT

8X2 (Xln4l____X2n+1)2
Therefore,
oPr(2,n; X) OPr(2,n; X) )
(X2 - X]) axz a‘:“/l

= {(Xo~ x){{(n+ 1) (X7 = X5) = nx2 (X0
=[xyt (et = X0 = (e D X7 - X7)] )
Since the denominator is positive for X, # X,, it may be dropped, yielding after simplification:
(X = X)) X3 [(n+ 1) X, (X7 = X3) = n( X' = X3 T))
+ X0 [+ )X (X7 = Xx5) = (X7 = x50
which upon rearranging
n—1
= (X, - x)(x2- Xf){ ¥ xproicrxl - nX;"“‘X;“}. (s)
i=1
In order to show that (5) is not positive, it suffices to show that
A;lzn——Z'-ZsXZZ:+X]ZIXZZn~2-21>2X{:~1X£1-—I" (6)

since the sumimation of (5) can be separated into n/2 inequalities of the form (6). Assume that 2/ < 2n - 2.
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Subtracting the RHS from the LHS of (6) yields:
Xl2i 12:( X,z"’z’"“ _ 2Xln~l—-2iX£a~1’—-2i + X22n—~2-4i)

= Xlzr'XZZi( X]Z(n—l—?.i)_ ZX{:-l—zeX;-—l—Zi,{_ Xzz(n—l -2i))

. ) ; 2
— Y2iyc2i n—1-2i _ yu—-1-2
= XPA3 (X XpmtH)
=>0.

Therefore, (6) holds for all i < n — 1. The proof for 2i > 2n — 2 follows mutatis mutandis and equality holds
ifi=n—1. O

Next consider the m machine case.
Lemma 4. Pr(m. n; X) is symmetric.

Pracf. By D5 and T9, Pr(rm, n; X) is symmetric if the value of the function remains the same when the
X, ar¢ permuted.

G(m,n; X)= 3 X X)X,
nyk o bn=n

G(m, n; X) is symmetric. Since the production function is the quotient of two symmetric functions, by
Proposition 2, Pr(m, n; X) is a symmetric function of X. 0

If in addition Pr(m, =; X) is quasiconcave, then by T12 Pr(m, n; X) is S-concave and we can use T15 io
prove that balancing is optimal.

Theorem S. The production functron, Pr(m, n; X), is strictly quasiconcave.

Proof. The result is provided in Stecke (1983b). O

3. Characterizing optimal workloads
We now state and prove the main result.

‘Theurem 6. A balanced allocation of workload maximizes expected production, i.e.,

Xt =[X,X. ..., X,]=[1,1....,1].

Preof. By Proposition 1, tie set of feasible loadings, x, is closed and S-convex.

By Lemma 4, Pr(in, n; x) is symmetric. 3y T12, since Pr(m, n: X) is quasiconcave by Theorem 5, then
Pr(m, n; X) it S-concave. By T15, the set x* of points maximizing Pr(m, n; X) over the set X is a closed
S-convex set. x* is not empty since Pr(m, n; X )€ [0, 1] for all m, n, and X € [0, m]. The symmetric point
of x is the point [1, 1, ...,J. By T14, [1, . .. 1}e x*.

Therefore. a balanced allocation maximiz s the expected prodr»otion. O

Balancing is now justif.ed for the < stems examined here, i.e.,, FMS’s with nu pooling of similar
machines.

We next provide some numerical results. Specifically, the following computer-drawn graphs demonstrate
the behavior of the production function. First, Figure 2 is a graph of Pr(2, n; X) as a function of X, , for
n=4, 5, ..., 14 and infinity. For each curve, 400 points (X, Pr(2, a; X)) were plotted. These were
calculated using a variation of Solberg’s CAN-Q program [1980]. The maximum functional value, also



Table 1

Maximum (baianced) production rates and corresponding workloads for two-machine systems
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n t i X, X, Maximum (balanced)
- production rate
4 1.0 10 10 10 0.800
5 1.0 1.6 1.0 1.0 0.833
6 10 1.0 1.0 1.0 0.857
7 1.0 1.0 1.0 0 0.875
8 1.0 10 i0 1.0 0.889
9 1.0 10 1.6 1.0 0.900
10 1.0 1.0 1.0 1.0 0.909
11 1.0 1.0 1.0 1.0 0.917
12 1.0 1.0 1.0 1.0 0.923
13 1.0 1.0 1.0 1.0 0.929
14 1.0 i.0 1.0 1.0 0.933
oo 10 1.0 1.0 1.0 1.000
1.00
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Figure 2. Production rate as a function of workload assigned to machine 1 for 2-machine sysiems.
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76
Table 2
Maxim im (bulanced; production rates and corresponding workloads for three-machine systems
n balanced Maximum Xt=4 Xs=1,
production raie production rate
4 €.667 0.667 1.0 1.0
5 0.714 0.4 1.0 10
6 0.750 0.750 1.0 10
7 0.778 0.778 10 1.0
8 0.800 0.8¢0 1.0 1.0
9 0.818 0818 1.0 1.0
10 0.833 0.833 10 1.0
11 0.846 0.846 1.0 1.0
z 0.857 0.857 1.0 1.0
13 0.867 0.867 1.0 1.0
14 0.875 0.875 1.0 1.0
=) 1.000 1.000 1.0 10
1.000
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Figure 3. Production rate as a function o workload assigned to machine 1 for 3-machine systems.
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calculated and plotted, was attained at X = {1,1]. Table * displays the calculuted optiimal allocation ratios
and the maximum normalized production rate for each n. For ¢, = ¢, = 0.5 (e2ch machine is visited haif of
the time on the average), the average processing times, #, and ¢,, vary so that #, + ¢, = 2. The optimal
allocation occurs when ¢, =1, =1. Then X,=2g,1,/(q,t, +g,t,)=1,, where i is 1 or 2. The optimal
allocation of workload in this system is balanced.

Figure 3 is a graph of Pr(3, n; X) as a function of X, for n=4, 5, ..., 14 and infinity, along the plane
X, = X;. It is interesting to note that this two-dimensional slice of Pr(3, n; X) is nonsymmetric even though
the entire function is symmetric. The maximum is shown to be at X; = X, = X; = 1. The computer program
generated both the balanced and the maximum ncrmalized productions, as well as the optimal allocation
ratios. These are shown for each n in Table 2.

Finally, Figure 4 displays Pr(4, n; X) for n =4, ..., 14 and infinity along the intcrsection of the planes
X, = X, and X; = X,. Table 3 gives values for Pr(4, n; X). Notice that for all finite n, Pr(3, n; X)> Pr(4,
n+ 1; X). That is, as the number of machines increases, the actual expected production obviously increases
but the normalized expected production decreases. The apparent anomaly is the result of the normalization
of production to the scaling between 0 and 1.

We conclude that even though Pr(m, n; X) is not concavz for any m > 2 and » > 2, balancing is optimal
for all cases (fixed-route FMS’s) considered here.
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Figure 4. Production rate as a function of workload assigned to machine 1 for 4-machine systems.

ko



78 K.E. Stecke, T.L. Morin / Optimality of balancing workloads in flexible manufacturing

Table 3 e

Maximum (balanced) production rates and corresponding wotkloads for four-machine systems

n Balanced Maximum - XE=4 X3=1t,

production rate production rate

4 0.571 0571 10 . 1.0
5 0.625 0.625 1.0 1.0
6 0.667 0.667 1.0 10
7 0.700 0.700 1.0 1.0
8 0.727 0.727 1.0 10
9 0.750 0.750 10 1.0

10 0.769 0.76% 1.0 1.0

11 0.786 0.786 10 1.0

12 0.800 0.800 1.0 1.0

13 0.812 0.812 1.0 1.0

14 0.824 0.824 1.0 1.0

00 1.000 1.000 1.0 1.0

4. Discussion

The results can be related to similar studies of ‘workload allocation in manufacturing systems. Our
results differ from the finite-buffer stochastic flow shop studies (Hillier and Boling, 1966, 1967; Magazine
and Silver, 1978) mainly because we assume an adequate buffer at each machine.

In fact, using our CQN model, the expected production is identical for both flow shops and job shops in
which each operation is assigned to only one machine. To see this, let ¢, (the average processing time of an
operation by machine i) be identical for both systems. The routing mechanism, defined by Markovian
probabilities p, , for a three-machine flow shop is given by the following transition matrix:

01 0
P.=10 0 1};
1 0 O

the routing for the job shop is given by:

M/ 173 173
P=11/3 1/3 1/3
1/3 1/3 173

Then solving balance equations

m
Quiy= 2 Py i=1,...,m, (k)=ForJ,

j=1
for the two systems produces identical, steady state resilis. That s,
Q=9 =1 ....m.

Since g,, ¢,. i1, and # are identical for both the flow and job shops, the expected production rate is the same
for both systems.

Some implications are as follows. Under the assumptions of our CQN model (in particular, random
processing times and adequate buffer at each machine), the two extreme system types (flow and job shops)

are equally efficient. Intuition indicates that as variability decreases, tt.e flow shop becomes more efficient
than the job shop.
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The Hillier and Boling (1966, 1967) result is basically the following:
For a stochastic flow shop with a finite buffer at each machine, the expected production is maximized
by a specific unbalancing in the workload assigned to each machine.

Our analogous result is: 4
For a stochastic flow shop with an infinite buffer at each machine, the expected production is
maximized by balancing the workload assigned to each machine.

In other words, as buffer size increases, the degree of unbalance in the optimal workload decreases, until
in the limit, a balanced schedule is optimal.

Appendix. Results from generalized concavity and symmetric mathematical programming

Definitions and previously published results which are required to prove the optimality of balanced
workloads are reviewed below. The definitions and results concerning generalized concavity can be found
in Mangaserian (1969) or Bazaraa and Shetty (1979), those concerning S-concavity can be found in Berge
(1963), and those on symmetric mathematical programming can be found in Greenberg and Pierskalla
(1970).

Let f be a real-valued function mapping x — R, where x is a closed subset of R™. We require the
following Definitions (D) and Theorems (T):

D1. f is a quasiconcave function on the nonempty convex set x € R™ if and only if (iff) for anv two points
x', x> € x, and for all A €[0,1],

F(AX"+(1=X)x?) = min{ f(x'), f(x?)}.

D1 is not enough to insure that a local maximum is a global maximum. For this to be true we have:

D2. f is a strictly quasiconcave function on the convex set x C R™ iff for any two points x', x? € x, and for
all A € (0, 1), with f(x')# f(x?),

F(AX' +(1 = A)x?) > min{ f(x'), f(x?)}.

In order to insure that a global maximum is unique, we require:

D3. f is a strongly quasiconcave function on the convex set x € R™ iff for any two points x', x?€ x suca
that x! # x? and for all A € (0, 1),

FAx' +(1=A)x?) > min{ f(x'), f(x?)}.

D4. x is a symmetric set if x € x = xP € x for all permutation matrices P, where P is a permutation matrix if
(i)each row has only one entry equal to one;
(ii)each column has only one entry equal to one: and
(iit) all remaining entries are equal to zero.

DS. f is a symmetric function on a symmetric set x if for any permutation matrix P

f(xP)=f(x) forallxey.
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D6. x is S-convex if x € x = xS € x for all doubly stochastic matrices 5, where § is a double stochastic
matrix of order m if all of its entries, p, ;, satisfy

()p,>0 foralli, j
# Y. p,=1 forall j
i=1

ot
(iii) Y p;,=1 forall i
71=1

D7. f is a (strictly) S-concave function on an S-convex set x if for any §

f(xS)(>)=f(x) forallxex.

T8. Let D be an open interval in R and let f be ¢ symmetric differentiable function in D™ C R™. If for all
x=(xy, ..., X,,) € D™ such that x, # x, we have

<x2—x,)(-9i—ﬂ}<<> <o,

0x, Ox,

then the function is (strictly) S-concave in D™ {Berge, 1963, Theorem 5, p. 221).

T9. An S-concave function f in R™ is symmetric in the components x,, ..., x,, of x € x; that is, the value of
f(xy. ..., x,) remains the same when the x, are permuted (Berge, 1963, Theorem 3, p. 220).

T10. If D is an open interval in R, a necessary and sufficient condition for a differentiable and symmetric
function f to be (strictly) S-concave in D™ is that for all x,, x, € D,

(o)L - 2L Je<1<0

9x,

(Berge, 1963, Theorem 6, p. 224).
T11. Symmetric convex sets are S-convex (but not necessarily conversely).

T12. Symmetric (strictly) quasiconcave functions defined on a symmetric convex set x are (strictly) S-concave
{but not necessarily conversely).

D13. A point x = (x;, X5, ..., X, ) is spmmetric iff x, =y, Vi=1, ..., m.

T14. Every nonempty S-convex set contains a symmetric point.

TI1S. If x is a closed, S-convex set and f is S-concave on x, then the set X° of points maximizing f over x is a
closed S-convex set (Greenberg and Pierskalla, 1970).
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