
68 

The optimality of balancing workloads in certain 
types of flexible manufacturing systems 
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Abstract. Symmetric mathematical programming is used to analyze the optimality of balancing workloads 
t~ maximize the expected production in a single-serve~- closed queuing network model of a flexible 
manufacturing system (FMS). In particular, using generalized concavity we prove that, even though the 
production function is not concave, balancing workloads maximizes the expected production in certain 
types of m-machine FMS's vdth n parts in the system. Our results are compared and contrasted with 
previous models of production systems. 
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Introduction 

Balance is basic to the human condition. Dividing equally is equitable in economics, democratic by 
definition, and just, according to Aristotle. ~ 13alancing is also optimal in situations as diverse as 
maximizing the perimeters of inscribed polygon:~ of a circle (Stark and Nicholls, 1972) and designing 
optimal bin iry search trees (Aho, Hopcroft, and Ullman, 1974 and Knuth, 1971). This paper considers 
balancing ir the context of Computer Aided Manufacturing. Specifically, we use symmetric mathematical 
programmir~g to establish the optimal~ty of balanced workloads for certain types of flexible manufacturing 
systems. 

A flexible m~ nufacturing system (FMS) is an automated alternative to conventional means of batch 
manufacturing in the metal-cutting industry. An FMS consists of a number of numerically controlled 
machine tools which are linked together by an automated material handling system. Computers control 
most real-time activities such as the actual machining operations, part movements, and tool interchanges. 
An FMS can simultaneously and efficiently manufacture several part types, l'his combination of automa- 
tion and increa,,+ed flexibility offers the potential for vast improvements in productivity but as noted by 
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Graves (1981), also increases the complexity of the problems faced by production managers. For example, 
the operation of an FMS requires a careful system set-up pricr to production to achieve a good system 
utilization during production, even though technological hardware developments eliminate machine setup 
time. Several existing FMS's are described in Cavaillr, Forestier, and Bel (1981), Stecke and Solberg 
(1981b), Dupont-Gatelmand (1982), and Barash (1982). 

This paper studies an idealized version of the FMS loading problem, which is one of the set-up problems 
of an FMS (see Stecke, 1983a). The loading problem involves determining the best allocation of operations 
and associated cutting tools of a set of part types among the machine tools subject to technological and 
capacity constraints. 

The most widely applied loading objective is to balance, or equalize, the total workload assigned to each 
machine in: job shops (Deane and Moodie, 1972; Caie, Linden, and Maxwell, 1980); How shops (Gutjahr 
and Nemhauser, 1964; Ignall, 1965; Magazine and Wee.. 1979); and FMS's (Buzacott and Shanthikumar, 
1980; Shanthikumar, 1982; Berrada and Stecke, 1983; Kusiak, 1983; Stecke and Talbot, 19.~3). However, 
the applicability and optimality of balancing has recently come under scrutiny. For exampIe, Stecke and 
Solberg's (1981b) simulation results demonstrated that balancing workloads ,s not necessarily the best 
objective in an FMS. Other studies of finite-buffer stochastic flow lines also indicated that balancing the 
assigned workload is not always optimal (see Makino, 1964; Hilher and Boling, 1966, 1967: Payne ",lack, 
and Wild, 1972; Rao, 1976; Magazine and Silver, 1978; and E1-Rayah, 1979). In particular, the n,.:merical 
studies (see Hillier and Boling, 1966, 1967; and EI-Rayah, 1979) discovered a "bowl phenomenon' in which 
the expected production of a finite-buffered, balanced flow line is increased by assigning proportionateJy 
lower average p,'ocessing or service times to the middle machines on the line. 

Queueing network models have recently been used to analyze design issues and planning problems of 
FMS's. (For example, see Solberg, 1977; Buzacott and Shanthikumar, 1980; Cavaill6 and Dubois, 1982; 
Dubois, I983; Suri, 1083; and Stecke and Solberg, 1984.) Queueing networks have been shown to be robust 
models of FMS's even when the assumptions of the model are not satisfied (see Suri (1983) and Section 1 
of this paper). 

In the context of a closed queueing network (CQN), the loading problem is that of allocating a total 
amount of work among a system of (possibly grouped) machines so as to maximize expected production. 
Using a CQN, it has been shown that (Stecke and Solberg, 1984): 

(i) the best way to partition the machine tools of a particular type into machine groups is to unbalance 
as much as possible the number of machines in each group; 

(ii) for these better (unbalanced) system configurations, expected production is maximized by a 
particular unbalanced allocation of workload per machine. 

However, in some practical situations, because of the discreteness of operation times, different raachine 
tool requirements, and limited capacity tool magazines, balancing the workload per machi:r. ~ can be best 
even in some systems with grouped machines. This paper characterizes situations in which ba)ancing is 
optimal: For those systems in which there is no grouping, or pooling machines of similar type into machine 
groups. Also, the fact remains that balancing is the almost universally applied loading objective, at least at 
present. Therefore.. balancing is applicable to some FMS's. 

In this paper we use a single-server CQN model to analyze the optimality of balar~cing for adequately 
l~uffered flexible manufacturing systems in which each operation is assigned to only or:e macaine. We show 
that balancing mar'., izes the expected production in these systems. Specifically, symmetrk mathematical 
programmdng ,and generalized concavity is used to establish the optimality of balanced workloads. The 
appli,_ations of these results are the algorithms to balance in FMS's. In particular, an efficient mean,, of 
implementing a balancing FMS loading objective is provided in Berrada and Stecke (1 ~83). 

There is a related Computer Science literature. Price (1~74), Trivedi and Kinicki (19"/8), Trivedi, 
Wagner, and Sigmon (1980), and Trivedi and Sigmon (1981) mardrrfize throughput in centfol server, ~,ir~g]e 
class, single-se~'ver CQN subject to various cost constraints. The studies optimize different parameters such 
as service rate (of a CPU, say), capacity of servers ( l / O  devices), device speeds, and main memory size:, 
subject to budgetary limitations. The parameters relate cost consideratio~'~s to performance. 

In this paper, a different non-central server CQN of single-server queues is considered. Rather than me 
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budgetary constrahlts of the previous studies, we impose a constraint on total system workload that 
appears as a result of ~ r  unique scaling of workload and throughput. "I~erefore, the objective function and 
consuaints are somewhat different. The motivation of our particular scaling results from our studies of 
optimal machine allocation and optimal workload assignment in FMS's. 

Even though the objective function (to maximize expected production, or throughput) is not concave 
(see Stecke, 1983b), the production function is still well-behaved. In the situations studied here, the local 
maximum (which we prove is a balanced workload) is a global maximum. 

The plan of the paper is as follows. The closed queueing network model is described in section 1. 
Notation and results from symmetric mathematical programming and generalized concavity that are 
required to characterize properties of optimal workloads are summarized in the Appendix. Properties of the 
production function and some preliminary results that are required to establish global optimality of 
balancing for this particular version of the F M S  loading problem are provided in section 2. The main result 
is given in section 3. The paper concludes with a discussion of the relationships between this CQN and 
other models of manufactur~mg systems in section 4. 

I. Closed queueing network model of an FMS 

A flexible manufacturing system can be modeled as a closed network of arbit:'arily-connected queues. 
The particular case of a central server CQN is depicted in Figure 1. There are rn machines and n parts in 
lhe system. The average processing time of an operation by machine i i:~ t,, i = 1 . . . . .  m.  

Routing through the system is arbitrary, and can be described by the relative arrival rates (the q, of 
Figure l j to the machines. These can be obtained by any nonnegative solution to qi = ~,~Pj,~, where the 
p,, 's are first-order Markovian probabilities. Our formulas permit any scaling of the q,'s. For example, if 
the q,'s are scaEd to sum to on,-, q, may be interpreted as the probability that a part leaving the 
'~z~z,~/'unl~ad station (L /UL)  via a transporter goes next to machine i. Therefore, q, is the expected number 
of visits to machine i per visit to the transporter (or L/UL).  Other relevant routing possibilities are 
described in S tecke and Schmeiser (1983). 

A measure of relative workload ass'~gned to machine i is w, (Buzen, 1973; Reiser and Kobayashi, 1975; 
Solberg, I977~. which is defined as the visit frequency times the average processing time, or q,t,, i = 1 . . . . .  
m. These worl:loads ore relative since the q,'s caai be scaled in any manner. 

For our pu "poses w, was scaled, where ~7~ ~ q j t J m  is the average werkload per machine, to provide 

X , = q , t , /  ~ q,t,  / m  . (1) 
. t= l  

X, is a scaled l aeasure of workload, whose values lie between 0 and m, for all i. 

t 1 

t 2 

Figure 1. ~. closed queuemg network model of a flexible manufactur ing system. 
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There are several reasons for choosing this particular scaling: the total amount  of work to be allocated 
among the machines is a fixed constant that equals the total number of machines: z m ~ X, = m; the scakd 
workload is now independent of any particular, chosen scaling of the q,; regardless of the number of 
machines, a balanced loading has a unit workload: X~ = X z = . . .  = X,,, = 1; this particular scaling of 
workload results in the production function (defined in equation (3) being a dimensionless function, whose 
values are also normalized to lie between zero and one; and finally, the workload seal:rig defined by (1) 
allows new alternative definitions of the production function (equation (3)). S~.'e Stecke (1981) or Stecke 
and Schmeiser (1983) for these alternative definitions. These are useful for providing insight into what this 
production function, associated with a CQN model, is. 

A state of the CQN model of an FMS is given by h = (n t . . . . .  rim), where n is the number of parts at 
maclfine tool i, both those waiting and those in process. For all i, n~ ~ {0, 1 . . . .  , n } and Z,"'= ~n, = n. The 
steady-state probability of being in state h is p ( h ) = p ( n  1, . . . ,  n,,,), which for this CQN model has the 
product form solution 

1 

p ( n ) =  G , m , n ;  x ,  ) . . . . .  r,, , 

where 

G ( m  n; X ) =  ~ Xf,X~2 ~(n,. i= 1 m 
• " ° "  ~ m  , ' ' ' ° '  " 

(2) 

It can be seen that the function G(m, n; X)  is the normalizing constant that is required for the 
probabilities, p(h) ,  to sum to 1. For the FMS depicted in Figure 1 with n parts in the system, the expected 
production rate, which is the expected number of parts produced per unit of time, can be defined as a 
function of G(m,  n; X), which in turn is a function of assigned workload, X,. In fact, for a particular 
scaling of q,, the production function, Pr(m, n; X), is given by Reiser and Kobayashi (1975) as 

E x; ,  ... 

e r ( m , n ;  X ) =  G ( m , n -  1; X) _- ,,,+ ... +,,.,=,,-I (3) 
x )  E x ,x; ... x:,:, 

~ | q "  . . .  q - n . t = n  

The alternative definitions, referred to above, do provide additional intuition into just what Pr( m. n" X 
means. For these insights, we refer the reader to Stecke and Schmeiser (1983). 

As an example, the production function for two single machines and any number of parts, n, is 

Pr(2. n; X ) =  

x f , x l ,  
nl + n 2 ~ n - -  I 

n1,4- n 2 ,= r¢ 

n - I  

E x; ' , (2-  x,)"- ' -" '  
t ~ l ~ 0  

gl 

.~,v"'(2 - X , ) " - "  

. s i n c e X ~ + X  2 = m = 2 ,  

x;' - (2 -  x,)" 

X{ '+1 - ( 2 -  Xl) " + l '  
I4' 

after dividing both numerator and denominator by ( 2  - X~ ) - X~ = 2 ( 1  - X I ). 
Many performance measures that can be obtained from CQN models, such as the expected production 

rate, are insensitive to the form of the service time distribution-see Helm and Schassberger (19~;2) ar:d 
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Duld~ovny and Koenigsberg (t981). In fact, for the performance me~ure  of expected production, the 
service time distribution can be arbitrary 

The assumptions of oar CQN model of a flexible manufacturing system are that: 
I. There are n parts (or p~llets) circulating through a sy.,;tem of m machines. 
2. There is a barfer at each machine tool that has the capacity to hold all n parts, including the part 

being ~_,achined. 
3. The queue discipline at each machine tool can be either FCFS, infinite server, LCFS preempt-resume, 

processor sharing (see Baskett et al., 1975), random selection, or one developed by Kelly (1979) which 
aIlow:~ an arbi tra~ distributio~ to be defined at each node. 

The main restrictive assumption is the limited number of allowable queue disciplines, which is why 
product form queueing networks are not used to study scheduling problems. 

Queueing network models have been shown to be accurate in qualitatively predicting steady-state 
behavior of FMS's. For example~ Solberg (1977) compared r~ults  from his CQN computer program, 
CAN-Q, to those ,3f a detailed simulation of the Sundstrand/Caterpillar FMS of Peoria, Illinois (Stecke, 
1977) to fxtd that the performance measures of all machine utilizations and expected production rate 
differed fr.~m those of the FMS by less than 3 percent. Similar results were observed by Kimemia and 
Gershwin ~1978), Secco-Suardo (1978), and Dubois (1983). Queueing network models have also been used 
to model other nc, tamanufacturing systems in which the service time distributions were not exponential, 
w~th encouraging results. For example, Hughes and Moe (1973), Giammo (1976), Lipsky and Church 
(1977), a~Jd Rose (1976, 1978) have verified in empirical studies that queueing network models reproduce 
observed quantifies with reasonable accuracy. Attempts te explain the observed robustness through 
operational analysis can be found in Denning and Buzen (1978) and Suri (1983). 

2. Preliminary results 

The production function given in equation (3) is difficult to characterize analytically. However, it can be 
evaluated numerically using Buzen's (1973) efficient algorithm. The function behaves so well empirically 
that some res,.'archers (i.e., Secco-Suardo, 1978; and So!berg, 1979) have conjectured that it must be 
concave. Conca,rty would be desirable because it would insure that a local maximum, if it exists, is a global 
maximum. However, Stecke (1983b) has showqa that, contrary to conjecture, the ~roduction function is not 
c:.~ncave in g,,~neral, even though it is concave in a few restrictive cases. Fortunately, however, the function 
satisfies weaker generalized concavity conditions, which are a~so sufficient to insure that a local maximum 
is a global maximum. 

Using the Definitions (D) and Theorems (I") i~l the Appendix, we first establish two preliminary results 
on symmetric mathematical p~ogramming which are used subsequemly in section 3 to prove the main 
result. 

P r ~ i f i o n  1. 7he set X of  feasible !oadings is a closed S-convex set. 

Proof. From (11,, we have 

X = x ,  . . . . .  x o , ) t  . 

therefore. X is clearly c~osed. It is also clearly convex and symmetric. Then by T I | ,  X is S-convex. D 

~p~sifi(~n 2. T~e quotieJ~t of  two symmetric function~ m the same variabtes on the same symmetric set X is a 
.~yn zmetric funct~,m. 

Proof. Sul: pose 1:hat f ( x )  and g ( x )  are symmetric functions on the symmetric set X. q'hen by DS, 
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f ( x P ) = f ( x )  and g (xP)=g(x )  

for all ,c ~ X and for any permutation matrix P. Let h ( x ) = f ( x ) / g ( x )  for all x ~ ,< such that g ( x ) ,  O. 
Then 

h(~e )  = / (  ~ e ) / s  (xe )  = / (  ~ ) / g (~ )  = h( ~ ). 

Therefore, h(x) is a symmetric function on X- El 

Proposition 2 will be used subsequently in Lemma 4 to prove that the production function is symmetric. 
Prior to doing that, we prove directly the S-concavity of the production function for two machines, Pr(2, n; 
X), in Theorem 3 that follows. 

Theorem 3. Pr(2, n; X) is S-concave. 

Proof. From (4), we have 

Pr(2, n; X) = 
x ; - ( 2 -  x,)" 

Xi ')+' - ( 2 -  Xl) "+' 

x ; -  x~ 
for X~ * X2; 

x;+,_x;+, '  

= n / ( n + m - 1 ) ,  for X~ = X z . 

Differentiating yields: 

8Pr(2, n; X) 
ax~ 

- (  x; + ' -  x;+' ) , ,x2  "-' + (  x ; -  x ~ ) ( , , +  I)x2 ° 

( x c , ,  _ x ; + , )  ' 

Therefore, 

( x. - x . ) (  OPr(2. n; x )  
" ~, 0X2 

_ 0Pr(2, n; X) t 
aX~ / 

= { ( x , -  x , ) { [ ( .  + ~) :q (xc -  x ; ) - . x : ' (  x; +' 

- [ . x c  - ' ( x c  + ' -  x ;+  ' ) - ( ,, + ~)x,-(xc- x;)] } 

Since the denominator is positive for X~ * X 2, it may be dropped, yielding after simplification" 

(x~- x,){ x;- ,  [(. + ~)x~(x~- x ; ) - . ( x ~  ÷ , -  x ; + , ) i  

+x~.-,[(,, + ~ ) x , ( x c - x ; ) - , , . ( x c  + ' -  xr+')] }. 

which ugon rearranging 

= ( x ~ -  x , ) ( x ?  - x f )  x?o-'--~'x~ ' - . x : - ' x ~ - '  
i = l  

In order to show that (5) is not positive, it suffices to show that 

V 2 ~ y 2 n -  2 -  2t n -  1 X ; -  1 x?"-:-2:x~ ' +. .~ --2 >~ 2x ,  , (61 

since the summation of (5) can be separated into n/2 inequalities of the form (6). Assume that 2i < 2n - 2. 
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Subtracting the RHS from the LHS of (6) yields: 

+ 

= - - ' - 2 ' , -  x ? - - , -  

2i  .-2i - -  g n  - I - 21 ) 2  = Xi  ~ 2  ( X ~  - I - 2 '  - ' -~ 

>10. 

Therefore, (6) holds for all i < n - 1. The proof for 2i > 2n - 2 follows mutatis mutandis and equality holds 
i f i = n -  1. E3 

Next consider the m machine ca~. 

4. Pr(m n; X) is symmetric. 

Prier.  By I)5 mid "I9, Pr(m, n; X) is symmetric if the value of the function remains the same when the 
X, ar~ permuted. 

G ( m , n ;  Z ) =  ~.,V' Z~'Z~'- . . .  X~".  
n 1 + . . . +rim== n 

G ( m ,  n; X )  is symmetric. Since the production function is the quotient of two symmetric functions, by 
Proposition 2, Pr(m, n; X) is a symmetric function of X. El 

If in addition Pr(m, ,z; X) is quasiconcave, then by TI2 Pr(m, n; X) is S-concave and we can use TI5 to 
prove if, at balm~cing is optimal. 

Theorem 5. The production funct, on, Pr(m, .~.: X) ,  is strictly quasiconcave. 

l:~roof. The result is provided in Stecke (1983b). 

2.. Characterizing optimal workloads 

We now state mad prove the main result. 

' ~ o r e m  6. A balanced allocation of  workload maximizes expected production, i.e., 

x * = [ x , , x , _  . . . .  1 . . . . .  ]1 .  

Proof. By Proposition 1, the set of feasible loadings, X, is closed and S-convex. 
By Lemma 4, Pr(m, n; x) is symmetric. 3y TI2, since Pr(m, n: X) is quasiconcave by Theorem 5, then 
Pr(m, n; X) i, S-concave. By TIS, the set X* of points maximizing Pr(m, n; X) over the set X is a closed 
S-convex set. X* is not empty since Pr(m, n; X) ~ [0, 1] for all m, n, and X ~ [0, m]. The symmetric point 
of X is the point [1, 1 . . . .  ,]. By TI4, [1, . .~ 1] ~ X*- 
Therefore. a balanced allocation maximJz ~ fie expected prod:,,-tion. [] 

Balancing is now justified for the s3stems examined here, i.e., FMS's with no pooling of similar 
machines. 

We next provide some numerical results. Specifically, the following computer-drawn graphs demonstrate 
the behavior of the production function. First, Figure 2 is a graph of Pr(2, n; X) as a functio:a of X 1 for 
n = 4, 5 . . . . .  14 and infinity. For each curve, 400 points (X, Pr(2, n; X)) were plotted. ~rhese were 
cMculated using a variatior~ of Solberg's C~N-Q program [1980]. The maximum functional value, also 
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Table I 
Maximum (balanced) production rates and corresponding workloads for two-macb.J~= :,ystems 

75 

n t I .*2 X 1 X 2 Maximum (balanced) 
production rate 

4 1.0 1.0 1.0 1.0 0.800 
5 1.0 1.6 1.0 1.0 0.833 
6 1.0 1.0 1.0 1.0 0.857 
7 1.0 1.0 1.0 ~ 0 0.875 
8 1.0 1.0 1.0 1.0 0.•89 
9 1.0 1.0 1.G 1.0 0.900 

10 1.0 1.0 1.0 1.0 0.909 
11 1.0 1.0 1.0 1.0 0.917 
12 1.0 1.0 1.0 1.0 0.923 
13 1.0 1.0 1.0 1.0 0.929 
14 1.0 i .0 1.0 1.0 0.933 
o~ 1.0 1.0 1.0 1.0 1.000 

t-- 

!.1_ 
z 

11 

° , , t ~  Ii 
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11 

09 .70 
b.I 
I-- 

Z 
IE3 
H-. 
¢2 

,,60 

11. 

°,58 
. 4O  ~ 

N~RKLOFtD 

o0 

.80 i ,~0 1 ,80  ,[JO 

Figure 2. Production rate as a function of woffJoad a~;signed 1o machine 1 for 2.machine systems. 
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Table '~ 
Max~m*tm (b~,lar, ced,  production rates and corresponding workloads for th ree-m~hine  systems 

t ~ a n c e d  Maximum X~' = t, 
production rate production rate 

X ~  = t 2 

4 J2.667 0.667 1.0 1.0 
5 0.714 0.714 1.0 1.0 
6 0.750 0.750 1.0 1.0 
7 0.778 0.778 1.0 1.0 
8 0.8¢'~ 0 . 8 ~  1.0 1.0 
9 0.818 0.818 1.0 1.0 

10 0.833 0.833 1.0 1.0 
1t 0.846 0.846 1.0 1.0 
12 0.857 0.857 1.0 1.0 
13 0.867 0.867 1.0 1.0 
14 0.875 0.875 1.0 1.0 
o-~ 1.000 1.000 1.0 1.0 

1 . 0 0 0  

>.. 
b -  
0"--t 
Z 
ta.. ,880 
Z 
~'--0 

E3 
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° . 7 8 0  
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Z 
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Z 
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0 ~ 1,887 2,riO0 
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Figure 3. Production rate as a function of workload assigned to machine 1 for 3-machine systems. 
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calculated and plotted, was attained at X = [I,1]. Table " displays the calculated optimal allocation ratio:~ 
and the maximum normalized production rate for each n. For q~ = q2 = 0.5 (eech machine is visited half oJ' 
the time on the average), the average processing times, q and t 2, vary so that t 1 + t 2 = 2. The optimal 
allocation occurs when tl = t2 = 1. Then X, = 2q, t i / ( q i t  I + q 2 t 2 )  = t,, where i is 1 or 2. The optimal 
allocation of workload in this system is balanced. 

Figure 3 is a graph of Pr(3, n; X)  as a function of Xt for n = 4, 5 . . . . .  14 and infinity, alone the plane 
X 2 = X 3. It is interesting to note that this two-dimensional slice of Pr(3, n; X)  is nonsymmetric e,,en though 
the entire function is symmetric. The maximum is shown to be at X~ = X: = X 3 = 1. The compuwr program 
generated both the balanced and the maximum normalized productions, as well a.~ the optimal allocation 
ratios. These are shown for each n in Table 2. 

Finally, Figure 4 displays Pr(4, n; X)  for n = 4 . . . . .  14 and infinity along the intersection of the planes 
X~ = X 2 and X3 = X 4. Table 3 # y e s  values for Pr(4, n; X).  Notice that for all finite n, Pr(3, n; X)  > Pr(4, 
n + 1; X).  That is, as the number of machines increases, the actual expected production obviously increases 
but the normalized expected production decreases. The apparent anomaly is the result of the normalization 
of production to the scaling between 0 and 1. 

We conclude that even though Pr(m, n; X)  is not concave for any m >I 2 and n > 2, balancing is optimal 
for all cases (fixed-route FMS's) considered here. 
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Figure 4. Production rate as a function of workload assigned to machine 1 for 4-machine syst~:ms. 
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Table 3 
Maximum (balanced) production rates and corresponding workloads for four-machine systems 

Balanced Maximum X~' = tl 
productio~ rate production rate 

X~ ----- 12 

4 0.571 0.571 1.0 1.0 
5 0.625 0.625 1.0 1.0 
6 0.667 0.667 1.0 1,0 
7 0.700 0.700 1.0 1.0 
8 0.727 0.727 1.0 1.0 
9 0.750 0.750 1.0 1.0 

10 0.769 0.769 1.0 1.0 
11 0.786 0.786 1.0 1.0 
12 0.800 0.800 1.0 1.0 
13 0.812 0.812 1.0 1.0 
14 0.824 0.824 1.0 1.0 

1.000 1.000 1.0 1.0 

4. Discussion 

The results can be related to similar studies of workload allocation in manufacturing systems. Our 
results differ from the finite-buffer stochastic flow shop studies (Hillier and Boling, 1966, 1967; Magazine 
and Silver, 1978) mainly because we assume an adequate buffer at each machine. 

In fact, using our CQN model, the expected production is identical for both flow shops and job shops in 
which each operation is assigned to only one machine. To see this, let t, (the average processing time of an 
operation by machine i) be identical for both systems. The routing mechanism, defined by Markovian 
probabilities p,j, for a three-machine flow shop is given by the following transition matrix: 

o ; 
0 

the routing for the job shop is given by: 

,I-1/3 1/3 1/3) 
pj=[1/3 1/3 1/3 o 

L1/3 1/3 
Then solving balance equations 

m 

j=!  
i =  1 . . . .  , m ,  ( k  ) =  F o r  J,  

for the two systems produces identical, sleody state re~lis. That is, 

q , r ) = q , s ~ ,  i = l  . . . . .  m. 

Since q,, t,. m, and n are identical for both the flow and job shops, the expected production rate is the same 
for both systems. 

Some implications m'e as follows. Under file assumptions of our CQN model (in particular, random 
processing times and adequate buffer at each machine), the two extreme system types (flow and job shops) 
are equally efficient. Intuition indicates that as variability decreases, tLe flow shop becomes more efficient 
than the job shop. 
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The Hillier and Boling (1966, 1967) result is basically the following: 
For a stochastic flow shop with afinite buffer at each machine, the expected production is maximized 
by a specific unbalancing in the workload assigned to each machine. 

Our analogous result is: 
For a stochastic flow shop with an infinite buffer at each machine, the expected production is 
maximized by balancing the workload assigned to each machine. 

In other words, as buffer size increases, the degree of unbalance in the optimal workload decreases, until 
in the limit, a balanced schedule is optimal. 

Appendix. Results from generalized concavity and symmetric mathematical programming 

Definitions and previously published results which are required to prove the optimality of balanced 
workloads are reviewed below. The definitions and results concerning generalized concavity can be found 
in Mangaserian (1969) or Bazaraa and Shetty (1979), those concerning S-concavity can be found in Berge 
(1963), and those on symmetric mathematical programming can be found in Greenberg and Pierskalla 
(1970). 

Let f be a real-valued function mapping X -+ R, where X is a closed subset of R"'. We require the 
following Definitions (D) and Theorems (T): 

DI. f is a quasiconcave function on the nonempty convex set X c_ R "  if and only if (iff) for any two points 
xl, x 2 ~ X, and for all ~ ~ [0,1], 

f (Xx '  +(1 - X)x2) >_, rain{ f ( x ' ) , f ( x 2 ) } .  

DI is not enough to insure that a local maximum is a global maximum. For this to be true we have: 

D2. f i s  a strictly quasiconcave function on tee convex set X c_ R"  iff for any two points x ~, x 2 ~ X, and for 
all X ~ (0, 1 ), with f ( x  I ) ~ f ( x  2 ), 

f ( h x '  +(1 - ~.)x2) > min{ f ( x ' ) , f ( x 2 ) } .  

In order to insure that a global maximum is unique, we require: 

D3. f is a strongly quasiconcave function on the convex set X G R" iff for any two points x I, x 2 ~ X suca 
that x ~ 4: x 2 and for all h ~ (0, 1), 

f ( h x '  + ( 1 -  h )x2 )  > min{ f ( x ' ) , f ( x 2 ) } .  

D4. X is a symmetric set if x ~ 2( =~ xP ~ X for all permutation matrices P, where P is a permutation matrix if 
(i)each row has only one entry equal to one; 

(ii)each column has only one entc~, equal to or~e; and 
(iii) all remaining entries are equal to zero. 

DS. f is a symmetric function on a syrm'netric set X if for any permutation matrix P 

f ( x P ) = f ( x )  for all x ~ X. 
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Dr.  X is S-convex if x ~ X =~ x $  E X for all doubly stochastic matrices S,  where S is a double stochastic 
matrix of order m ff all ef its entries, p,j, satisfy 

(i)/: , j  >/0 for all i, j ;  

(~) 3~ p,j = 1 for all j ,  

(iii) ~ p , , = l  fora l l  i. 
j = l  

D7. f is a (strictly) S-com ave function on an S-convex set X if for any S 

f ( x $ ) ( > ) > ~ f ( x )  for all x E X. 

"[8. Let D be an open interval in R and let f be e. symmetric differentiable function in D "  c R"'. I f  for all 
x = (.~i . . . .  , x , , ) ~  D "  such that x I 4: x 2 we have 

( i ( x  2 - x , )  Of 3 f  (<) 4 0 ,  
ax2 ax~ ] 

then thef,  mction i; (strictly) S-concave in D "  (Berge, 1963, Theorem 5, p. 221). 

1"9. An S-concave function f in R "  is symmetric in the components x I . . . . .  x , ,  of x ~ X; that is, the vahse of  
f ( x  I . . . . .  Xm) remains the same when the x, are permuted (Berge, 1963, Theorem 3, p. 220). 

TI0. I f  D is an o~en interval in R,  a necessary and sufficient condition for a differentiable and symmetric 
functien f to be ~strictly) S-concave in D ~ is that for all xl ,  x2 ~ D, 

Ox, (<).<o 

(Berge, 1963, Theorem 6, p. 224). 

T I  1. Symmetric convex sets are S-convex (but not necessarily conversely). 

1"12. Symmetric (strictly) quasiconcave functions defined on a symmetric convex set X are (strictly) S-concave 
(but not necessarily conversely). 

DI3. A point x = (x 1, x 2 . . . . .  xm) is symmetric iff x, = y ,  V i = 1, . . . ,  m. 

TI4. Every n~nempty S-convex set contains a symmetric point. 

TIS. I f  X is a closea~ S-convex set and f is S-concave on X, then the set X ° of  points maximizing f over X is a 
closed S-convex set (Greenberg anti Pierskalla, 1970). 
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