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In this paper, rigorous application of stepwise refinement 
is explored. The steps of definition, decomposition, and 
completion are described, where completion is a newly 
introduced step. This combination of steps extends the 
use of stepwise refinement to larger systems. The notions 
of range, active objects, and backlog interface are intro- 
duced. Verification of incomplete programs via interactive 
testing is described. The paradigm is demonstrated in an 
example. The relationship between the paradigm and the 
current programming languages is considered. It is argued 
that the WHILE-DO loop is a harmful construct from this 
point of view. 

1. INTRODUCTION 

Stepwise refinement is one of the oldest and most 
widely used methods of program design [3,4,10,11]. 
Recently, a new interest in stepwise refinement has ap- 
peared in connection with software environments, 
where stepwise refinement is the methodology sup- 
ported by specialized tools of the environments [ 1,2,5- 

91. 
The quality of a software design methodology can be 

characterized by the following interrelated criteria: 

1. The generality of the methodology, i.e., the size of 
the domain of application. 

2. The ease of use of the methodology. 
3. The consistency of the methodology. 

The meanings of the first two criteria are obvious. 
To explain the third criterion, we assume that a pro- 
gram design is a sequence of decisions that lead to a 
finished program. The role of the methodology is to 
guide the designer and give advice as to what decision 
should be made at any particular moment, and on what 
particular information to base that decision. A meth- 
odology is consistent if it gives appropriate guidance in 
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all decisions to be made during a program design. Con- 
versely, if it gives poor advice or no advice for some de- 
cisions, it is inconsistent. 

The current stepwise refinement methodology is well 
suited to the design of small programs; the methodology 
has found its way into introductory programming texts 
[ 3,111. However, problems arise when larger programs 
are to be designed by stepwise refinement. Then the 
methodology becomes difficult to use, and in fact, it be- 
comes inconsistent. The reason is that it is geared solely 
toward the decomposition of objects (procedures and 
data). There is at present no organized way to deter- 
mine the full set of objects to be decomposed. It is as- 
sumed that this set is somehow known in advance. This 
is particularly burdensome in the case of variables, 
where the programmer is required to determine and de- 
clare all of the variables of the program before starting 
the decomposition process [3,10]. This is only realistic 
for toy programs. For larger programs, we need a tech- 
nique different from decomposition, which will help us 
to determine the set of all objects, and to do this in 
small increments. In this paper, the technique is called 
completion. 

Another problem which has to be addressed is the 
validation of partial programs. When designing me- 
dium-sized systems, the validation cannot be postponed 
until the system is finished, and hence, it has to be done 
on partial systems. Various methods have been pro- 
posed for such validation [ 9,131. However, at present, 
the most realistic method of validation is by means of 
testing. A method commonly used is to replace the un- 
defined objects with stubs which approximate the func- 
tion of those objects. We are suggesting a method called 
interactive testing, where undefined parts of a program 
are hand-simulated by the programmer, using stubs to 
support the simulation. The advantage is that this is a 
universal method which can be applied in all cases; it 
makes the methodology explained here consistent. 

This paper is divided into four sections. Section 2 
contains the basic ideas, Section 3 provides an example, 
and Section 4 contains a discussion of some language 
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constructs from the point of view of stepwise 
refinement. 

Although the paper is self-contained, familiarity 
with stepwise refinement as presented in [3,10,11] 
should be helpful. 

2. DEFINITIONS 

Programs and software systems consist of objects (pro- 
cedures, functions, variables, etc.), and their relations 
(procedure calls, function calls, access to variables, 
etc.). Complicated programs consist of many objects 
and many relations among them. Even a purely me- 
chanical process such as typing of all of the objects in 
the whole program cannot be done in one stretch; it has 
to be divided into smaller and more managable steps. 
The creative process of programming is of course much 
slower. We must carefully untangle the web of relations 
among the objects of the target program, and introduce 
objects and their relations one after the other. During 
program design, the program consists of two parts: the 
existing part, which is the actual program so far stored 
in the computer, and the intended part, which is every- 
thing not yet written. At the beginning, the existing 
part is empty and the whole program is intended. At 
the end, the intended part is empty and the whole pro- 
gram is existing. Program design is a sequence of incre- 
mental steps, each adding something to the existing 
part and deleting something from the intended part. 
Throughout the process it is assumed that although the 
intended part has not yet been written, the designer has 
a good grasp of its function and its inherent structure. 

For the sake of simplicity of explanation, we shall 
assume that the system consists only of variables, pro- 
cedures, and functions (they will be called by the ge- 
neric name “objects”). Also, we will assume that there 
are only two kinds of relations among the objects. The 
relation “read” means that the value of a particular 
variable is being read in a procedure. The relation 
“write” is the complementary relation. 

The range of a variable A is the variable A plus all 
procedures or functions which either read or write the 
variable A. The range of a procedure P is just the pro- 
cedure P, and similarly for functions. 

In a typical situation, the existing part contains 
names of as yet undefined variables, procedures, or 
functions. For example, the existing part may contain a 
reference to a procedure “read-data,” but the body of 
the procedure has not yet been defined. We will call ob- 
jects of this kind active objects, and the set of all active 
objects at a particular time is called the backlog inter- 
face. The backlog interface is in fact the interface be- 
tween the existing and the intended parts of the system. 

The backlog interfaces are the documentation on 
which the design decisions of stepwise refinement are 
based. Although the backlog interface is not a part of 
the code itself, we recommend that the programmer 
keep an updated backlog interface at all times, making 
it a part of the program documentation. In this paper, 
we assume that the backlog interface is kept in a graph- 
ical form, where the active variables are denoted by 
ovals, active procedures and functions are denoted by 
rectangles, and the relations “read” and “write” are de- 
noted by arrows, as in Figure 1. 

The basic steps of stepwise refinement are dejinition 
and decomposition [lo]. Dejinition is a step in which 
we define an active object in terms of the programming 
language. If the object is a procedure, we will define its 
body; if it is a variable, we will give its type. An impor- 
tant property of definition is that the smallest unit of 
definition is a range. Every definition step means that 
one or several ranges are defined at once. (Another rule 
governing definition appears in Section 3, step 4.) De- 
composition is a different step, in which an active object 
is defined in terms of new active objects. Decomposition 
and definition are the only steps in stepwise refinement 
as presented by [lo]. 

There is an alternative way to introduce new active 
objects during program design. We will call this alter- 
native step ‘2ompletion.” In a completion step, we will 
examine all active objects and try to determine whether 
they can function correctly, or whether they need to 
refer to some other objects in order to be able to func- 
tion. There are two situations which call for the intro- 
duction of new objects: first, two procedures may need 
to communicate with each other, and hence there is a 
need for a variable which will facilitate this communi- 
cation. Second, a variable may need an initializing pro- 
cedure which will allow it to function correctly. This 
initialization is not a consequence of decomposition, 
and hence the set of procedures has to be enlarged to 

Figure 1. The backlog interface after Step 2. Note that it 
contains relations “read” and “write” which have not ap- 
peared in the previous code. These relations have to be sup- 
plied by the programmer, who has an insight into the in- 
tended part of the program. 
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include initialization. An existing part of a program is 
complete when no new objects need be introduced by 
the process of completion, i.e., all communications 
among procedures have been served by appropriate 
variables, and all variables have been properly initial- 
ized. Completion steps are conceptually as easy as de- 
composition and definition, and they extend the meth- 
odology to handle medium-size programs, where the 
ultimate set of objects cannot be predicted in advance. 
Our methodology requires a completion step after each 
decomposition step. 

In the methodology, we also provide some supporting 
activities that are helpful in the design process. One of 
these is an update of the backlog interface. As new ac- 
tive objects are introduced, they are added to the back- 
log interface, while objects that have been defined are 
removed from the backlog interface. 

It is also useful to keep the list of all relations (based 
on read and write) among the active objects, so that the 
ranges are easily determined. When a new object is in- 
troduced, new relations are added to the list; when an 
object is defined, all of its relations will be removed 
from the list. 

Whenever a program part is complete, it can be 
tested. The testing is based on the assumption that 
while no code for the intended part exists, the program- 
mer knows what the functions of the currently active 
objects are and can hand-simulate their functions. The 
hand-simulation is supported by stubs which control the 
interaction between the programmer and the existing 
part of the program. This is illustrated by the example 
in the next section. 

In summary, the methodology is a sequence of steps 
described by the following: 

Introduce the original main program; 
REPEAT 

define all objects of one or several ranges 
OR 

BEGIN 
decompose selected objects; 
complete the existing program 

END; 
update the backlog interface; 
interactively test 

UNTIL all objects are defined. 

3. AN EXAMPLE 

In this section, we will illustrate the methodology by an 
example of a program which reads any date of this cen- 
tury (i.e., any date from l/1/1900 to 12/31/1999), 
and prints the corresponding day of the week. 

We will write the program in an idealized PASCAL- 

like language. Some comments on current program- 
ming languages appear in Section 4. 

As a starting step, we will describe the whole pro- 
gram as a call of one procedure: 

Step 0. 

BEGIN 
read and calculate date 

END.- - - 

The procedure is then decomposed: 

Step 1. 

PROCEDURE read and calculate date; - - 
BEGIN 

Read date; 
calc&te distance; 
determine the day; 
print the-lay;- 

END. - 

By “calculate distance” we mean a procedure which 
determines the number of days between the date pro- 
cessed and a fixed “origin” date. To keep the number 
small, the distance will always be represented as the 
total distance MOD 7. 

The next step after decomposition is the completion 
step. We observe that information is passed from read- 

data to calculate distance, from calculate distance to 
determine-the-day, and from determine the day to 
print the day. Hence we need three variables?0 facil- 
itateIhe communication. Corresponding to the stepwise 
refinement philosophy, the question of the types of these 
variables will be postponed for later consideration: 

Step 2. 

VAR 
date, distance, day; 

Figure 1 contains the composite backlog after Step 2. 
Verification of the program will be done via inter- 

active testing, where stubs of active objects will support 
the interaction with the programmer. The stubs for ac- 
tive data and output data will be the most general type 
available, i.e., a sufficiently long string of characters, 
while stubs for procedures will support a dialog with the 
programmer. When writing the stubs, the backlog in- 
terface in Figure 1 is a handy tool. 

Step 3. 

VAR 
date, distance, day, output: ARRAY [ 1. ,601 OF CHAR; 

PROCEDURE read date; - 
BEGIN 

writeln(‘Execute read date.The date is:‘); - 
read(date) 

END; 
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PROCEDURE calculate the distance; - - 
BEGIN 

writeln(‘The date is’, date); 
writeln(‘Execute calculate_the_distance.‘); 
writeln(‘The distance is:‘); 
read(distance) 

END; 
PROCEDURE determine-day; 

BEGIN 
writeln(‘The distance is’, distance); 
writeln(‘Execute determine-day.‘); 
writeln(The day is:‘); 
read(day) 

END; 
PROCEDURE print-the-day; 

BEGIN 
writeln(‘The day is:‘, day); 
writeln(‘Execure print the-day.‘); 
writeln(The output is.?) 
read(output) 

END; 

The program, together with the stubs, would be 

translated into the programming language we are using 
(see Section 4), compiled, and executed. Execution 
would generate the following dialog between the com- 

puter and the programmer: 

COMPUTER: 
PROGRAMMER: 
COMPUTER: 

PROGRAMMER: 
COMPUTER: 

PROGRAMMER: 
COMPUTER: 

PROGRAMMER: 
COMPUTER: 

Execute read date. The date is: 
12/S/1984. - 
The date is 12/S/84. 
Execute calculate the distance. 
The distance is: - - 
3 
The distance is 3. 
Execute determine day. 

- The day is: 
WEDNESDAY 
The day is WEDNESDAY. 
Execute print-the-day. 
The output is: 
WEDNESDAY 
(finishes the execution of the 
program.) 

The dialog illustrates the correctness of the existing 

part of the program. 
In the next step, we will define the variables day and 

distance and their respective ranges. 
Step 4. 

VAR distance:integer; 
day:Array[ 1 . .9] OF char; 

PROCEDURE determine-day; 
BEGIN 

CASE distance OF 0:day: = ‘Sunday’; 
1:day: = ‘Monday’; 
2:day: = ‘Tuesday’; 
3:day: = ‘Wednesday’; 
4:day: = ‘Thursday’; 

END 
END; 

5:day: = ‘Friday’; 
6:day: = ‘Saturday’; 

PROCEDURE print-the-day; 
BEGIN 

writeln(The day is’, day) 
END; 

PROCEDURE calculate-distance; 
BEGIN 

distance-procedure (distance) 
END; 

Note the way in which the procedure calculate_dist- 
ante was defined. The procedure is in the range of both 
the variable distance (defined), and the variable day 
(undefined), hence it must contain a part which deals 
with both variables. This part was called distance pro- 
cedure. The only way distance procedure can deal-with 
both defined and undefined vafiables is to equip it with 
an actual argument which is the known variable, and 
keep it in range of the unknown variable. This is a 
purely mechanical and general step, applicable wher- 
ever a procedure (or function) is in range of both un- 
defined and defined variables. 

In a similar way, we also deal with functions, where 
the value to be returned is treated as another. argument. 
The updated backlog interface is illustrated in Figure 
2. 

For the verification process, we may reuse the stubs 
of the procedure read date and the variable date. The 
procedure distance_pricedure has the following stub: 

Step 5. 

PROCEDURE distance procedure (VAR distance:INTEGER); - 
BEGIN 

writeln(‘Date is’, date); 
writeln(‘Execute distance procedure’); 
writeln(‘Distance is:‘); - 
read(distance) 

END; 

The dialog will have a form analogous to the dialog 
of Step 3. In the next step, we will decompose the var- 
iable date and the procedure read date: - 

Step 6. 

VAR date:mm; 
dd; 
zz; 

Figure 2. The updated backlog interface after step 4. 

D/m 
date \[ . dlstancegmcedure(VAR distance:INTE.GER) 
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distancegrocedure(VAR distance:INTEGER) 

Figure 3. The current backlog interface after step 6. 

PROCEDURE read date; 
BEGIN 

read mm; 
read-dd; 
readzz; 

END; - 

The program is complete, hence no new objects are 
obtained by the process of completion. The current 
backlog interface is illustrated in Figure 3. 

Note that distance procedure has not been decom- 
posed, hence it “inhe&” arcs from all components of 
the former variable date. Also we made an assumption 
that procedures reads dd and read zz will check the 
correctness of the values read (rejecting dates like 2/ 
30/ 1982) which created the need of arrows from mm 
to read dd and read zz. 

Agam, at this moment we may test the program in 
the style of Step 3. 

The next step is the definition of variables dd and zz 
and their respective ranges. At this moment, we have 
to decide how robust the program is to be, i.e., what 
kind of input errors it must be able to recover from. At 
one extreme, we may declare zz:1900. .1999 which 
means no robustness at all, because every input error in 
zz will abort the run of the program. The other extreme 
is to declare zz:ARRAY [ 1. .4]OF CHAR, in which 
case no typing error will cause an abort. A compromise 
solution chosen here declares zz:INTEGER, where the 
program will recover from many errors (all incorrect 
integers), but abort with others (non-numerical sym- 
bols). 

Step 7. 

VAR dd,zz:INTEGER; 

PROC read dd; 

BEGIN - 

writeln(‘Enter the day.‘); 

read(dd); 
WHILE dd < 1 OR dd > month length DO _ 

BEGIN 

writln(‘Incorrect. Enter a different day.‘); 

read(dd); 

END 

END; 

PROCEDURE read zz; 
BEGIN 

writeln(‘Enter the year.‘); 

read (zz); 

WHILE(zz < 1900 or zz > 1999) 

OR February AND (dd = 29) AND (ZE MOD4 20) 

DO 

BEGIN 

writeln(‘Incorrect. Enter a different year.‘); 

read(zz) 

END 

END; 

PROCEDURE distance procedure(VAR distance:INTEGER); 

BEGIN 

distance:=(distance mm+dd+(zz-1900)+(zz- 1901)DIV 4) MOD 7; 

IF (zz MOD 4 = 07 AND zz # 1900 AND late month 

THEN distance: = distance + I 
END; 

The backlog interface after Step 7 (and a completion 
step) appears in Figure 4. Again, we may test the pro 
gram with the help of stubs. 

The logical step to select now would be to define mm 
and its range. However, in order to demonstrate the 
completion step for procedures, let us make a minor de- 
tour and decompose distance mm instead. If we want 
to rationalize this selection we may argue that at this 
moment, we are still undecided about the format of 
mm, the options being: 

VAR 
mm:INTEGER; 

and 

VAR 
mm:ARRAY [ 1 . .3] OF char. 

The value of distance-mm will be computed in a loop, 
in which the lengths of individual months are 
accumulated. 

Step 8. 

FUNCTION distance mm:INTEGER; - 
BEGIN 

distance mm:INTEGER; 
WHILE-not over DO - 

Figure 4. The backlog interface after Step 7 (and a comple- 
tion step). 
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BEGIN 
distance : = distance-mm + month-increment; 
next month 

END; - 

When completing this program, we first notice that 
not over, month increment, and next month have to 
communicate through a variable. Let us call this 

variable 

VAR 
month; 

This variable is read in not-over, it is read in mon- 

th increment, and it is both read and written in 
next month. Tracing the code of function distan- 
ce mm, it is obvious that this variable is read before 
being written, and hence it is not properly initialized. 
The program cannot work as it has been written, and it 
must be completed by the appropriate initialization. Let 

us introduce the procedure init_month, and then func- 
tion distance mm will have the following form after the 

step of completion; 

CORRECTED FUNCTION distance_mm:INTEGER; 
BEGIN 
distance_: = 0; 
init month; 

WHILE not-over DO 
BEGIN 

distance mm: = distance-mm + month increment; 
next month 

- 

END - 
END; 

The current backlog interface is shown in Figure 5. 
Again the program can be tested in the style of Step 3. 

In the last step, we will define both mm and month 
and their respective ranges. 

Figure 5. The backlog interface after step8. 

Step 9. 

VAR 
mm,month:INTEGER; 

PROCEDURE read-mm; 
BEGIN 

writeIn(‘Enter the month.‘); 
read(mm); 
WHILEmm>12ORmm<1DO 

BEGIN 
writeln(‘Incorrect. Enter a different month.‘); 
read(mm) 

END 
END; 

FUNCTION month_length:INTEGER; 
BEGIN 

CASE mm OF 
1,3,5,7,8,10,12:month_length: = 31; 
4,6,9,11 :month length: = 30; 
2 :month-length: = 29 - 

END 
END; 

FUNCTION February:BOOLEAN; 
BEGIN 

IF mm = 2 THEN February: = False 
ELSE February: =TRUE 

END; 
FUNCTION late month:BOOLEAN; 

BEGIN - 
IF mm>2 THEN late month: =TRUE 
ELSE late month: = FALSE 

END; - 
PROCEDURE init month; 

BEGIN - 
month: = 0 

END; 
FUNCTION not over:BOOLEAN; 

BEGIN - 
not over: = month I mm 

END; 
FUNCTION month_increment:INTEGER; 

BEGIN 
CASE month of 

13 5 7 8 10,12:=month increment:=31; 7 9 9 , , 
4,6,9,11 : = month-increment: = 30; 
2 : = month-increment: = 28 - 

END 
END; 

PROCEDURE next month; 
BEGIN - 

month: = month + 1 
END; 

4. LANGUAGE CONSIDERATIONS 

In Section 3, we used an idealized PASCAL-like lan- 
guage. In general, we are constrained by the real-world 
languages in which programs are written. In this sec- 



Stepwise Refinement Revisited 

tion, we will suggest how to use stepwise refinement in 
some of the current programming languages. PASCAL is 
the language which we use as an illustration, but the 
comments apply to other programming languages as 
well. 

The first, most obvious consideration is that PASCAL 
does not allow code to be written in the sequence sug- 
gested by stepwise refinement. Instead, the program- 
mer has to go back and forth, and he must respect the 
order of statements of PASCAL with the resulting loss of 
original clarity and purpose. Some syntax-directed ed- 
itors [7-91 allow a more flexible order in which state- 
ments may be entered, but the program-if printed 
out-is still organized according to the rules of the orig- 
inal language. We believe that a methodology-oriented 
program organization has some very important self- 
documenting properties, and hence this is a considera- 
ble loss. 

When writing programs by stepwise refinement, pro- 
cedures and functions of previous sections can either be 
considered to be closed procedures and functions, or 
their bodies can be macroexpanded at each occurrence 
of the call. 

Macroexpansion was used in [ 10,l 11, and it is con- 
siderably better from the point-of-view of the efficiency 
of the resulting program. However, in the macroex- 
panded text, the original structure and the original 

steps are lost, and hence the clarity of the code is sub- 
stantially diminished. 

Moreover, certain PASCAL constructs are not suitable 
for macroexpansion and require more complicated pro- 
cessing. The most notable example is the WHILE-loop. 

Suppose that we have a loop of the form 

WHILE condition DO body; 

where condition is a boolean function. 
If it decomposes into 

FUNCTION condition:Boolean; 
BEGIN 

prepare condition; 
condition: = result of preparation - - 

END; 

then the resulting text of the loop should be: 

prepare conditon; 
condition: = result of preparation; - - 
WHILE condition DO 

BEGIN 
body; 
prepare condition; 
condition: = result of preparation - - 

END; 

87 

As seen in this example, the decomposed body of the 
function “condition” appears in two places in the new 
text. This fact may explain why beginning program- 
mers find the WHILE loop so confusing. It also causes 
considerable difficulty when specialized editors sup- 
porting stepwise refinement in PASCAL [8] are 
implemented. 

Note that this problem does not arise in REPEAT- 
UNTIL loops or in the LOOP-EXIT-END LOOP con- 
struct of ADA [ 121, which are more natural constructs 
from the point-of-view of stepwise refinement. Of 
course, it also does not arise when we allow closed func- 
tions to be used and do not invoke macroexpansion. 

When using closed functions and procedures as the 
constructs for stepwise refinement, the declarations of 
variables without types (as in Step 2, Section 3) become 
meaningless, and are best dealt with as comments in the 
text. Also note that the organization of the declarations 
in standard PASCAL leads to an almost complete loss of 
the methodology-oriented order, with the consequent 
loss in the clarity of the program. 

The reasonable compromise is to combine macroex- 
pansion or textual processing to merge small steps, and 
deal with larger steps as closed subroutines. 
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