A $\phi 80$ Function Inhibitory for Growth of Lambdoid Phage in Him Mutants of Escherichia coli Deficient in Integration Host Factor

II. Physiological Analysis of the Abortive Infection

MARK A. MOZOLA,1 DEBRA L. CARVER, AND DAVID I. FRIEDMAN2

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109

Received August 23, 1984; accepted September 20, 1984

Derivatives of phage λ with the rightmost 3% of the genome (the QSR region) from the related phage $\phi 80$ fail to grow at low temperatures (e.g., 32°C) in Escherichia coli hosts deficient in either protein component of IHF (integration host factor), the products of the himA and hip/himD genes. The abortive infection of λQSR in mutants defective for IHF was studied in detail. This infection is characterized by a lack of cell lysis and an inhibition of phage DNA replication after an initial period of normal synthesis. An inhibition of host DNA replication also occurs after a similar period of apparently normal synthesis, and the abortive λQSR infection is lethal to the host. An assay of β-galactosidase activity in λQSR-infected cells provided indirect evidence that RNA and protein synthesis continue late into the abortive infection. The defective growth is imposed by the product of the rha gene located in the (QSR)80 genetic material. Two-dimensional electrophoretic analysis of phage proteins produced in ultraviolet (uv)-irradiated phage-infected host cells has demonstrated the existence of a protein that is encoded or whose synthesis is regulated by the rha locus. Based on these findings, possible roles for a HimA-Hip/HimD-controlled rha gene product in a late stage of $\phi 80$ development are discussed.

INTRODUCTION

In the accompanying paper (Mozola and Friedman, 1984), we described the genetic analysis of rha, the element responsible for the inability of lambdoid phage $\phi 80$ and λQSR hybrid phage to grow lytically in HimA and Hip/HimD mutants of E. coli K12 at 32°C. The himA and hip/himD genes encode, respectively, the α and β subunits of IHF (integration host factor; Nash and Robertson, 1981; Miller et al., 1981). Complementation analysis suggests that this growth restriction of λQSR in himA− and hip/himD− cells is mediated by a trans-acting diffusible gene product encoded by the rha locus. The locus encoding this function (or controlling its expression) has been found only in the QSR region of phage $\phi 80$ and not in other lambdoid phages that have been studied. Most of our experiments have employed himA+ bacteria as the IHF defective host; this paper will focus on work with the himA82 and himAΔ82 mutants.

In addition to the growth restriction of $\phi 80$ and λQSR phage, four other examples of IHF involvement in the lytic growth of bacteriophage are known. Phage Mu is unable to grow lytically in HimA− and Hip/HimD− mutants (Miller and Friedman, 1980; Yoshida et al., 1982). The block to Mu growth apparently occurs at an early step, as Mu DNA synthesis (B. Waggoner and M. Pato as cited in Yoshida et al., 1982) and late RNA synthesis (Yoshida and Howe as cited in Yoshida et al., 1982) are defective in a HimA− host. HimA− cells survive the abortive Mu in-
Infection (Miller and Friedman, 1980). Mutants of Mu capable of growing in HimA mutants (MunuA) have been isolated (Miller and Friedman, 1980; Yoshida et al., 1982) and map within or near the Mu A gene (Yoshida et al., 1982), a Mu function expressed early in infection (Wijffelman and van de Putte, 1974).

Lambdoid phage 21 and a λ-21 hybrid (hybrid 33) carrying the leftmost 5% of the chromosome from 21 are also incapable of lytic growth in himA- and hip/himD- mutants (M. Feiss, personal communication). Mutants of λ-21 hybrid 33 able to grow in HimA- strains have been isolated; these variants carry mutations (her) that map at the left end of the chromosome in the 21 analog of the λ Nul gene (M. Feiss, personal communication), a gene encoding a protein directly involved in DNA packaging (Hohn, 1975; Becker et al., 1977). Therefore, in the case of 21 and λ-21 hybrid 33, the block to lytic growth in HimA- and Hip/HimD- mutants is manifested at a late stage in the phage development process.

Two mutants of λ also exhibit growth defects in himA- or hip/himD- hosts. The mutant λcin, which has an alteration in the t31 terminator (Wulff, 1976; Rosenberg et al., 1978), does not grow in himA or hip/himD mutants (Williams et al., 1977; Miller et al., 1979). This phenotype has not been studied in detail and is not understood. A recently isolated λ mutant, λcos154, grows poorly in himA- or hip/himD- hosts. This phage has a single base pair change in a site thought to be required for the recognition of a host factor that participates in the cleavage reaction at the cos site that generates unit-size λDNA molecules for packaging into phage particles (Bear et al., in press). A reason why λcos154 grows in him+ bacteria is suggested by in vitro studies which show that either of two host factors are required for cleavage at cos, IHF, or a previously undescribed protein (Gold and Becker, 1983; M. Gold, personal communication). Presumably, it is this second protein that acts at the site eliminated by the cos154 mutation.

In addition to its role in λ lysogeny, then, IHF is potentially involved in a variety of processes associated with the lytic growth of E. coli bacteriophage. In this paper, we report results of a physiological analysis of the abortive infection of λ(QSR)so in himA- hosts at 32°, undertaken in an attempt to determine at what stage of the lytic cycle λ(QSR)so development is blocked in hosts defective in IHF. Toward this end, we have measured five parameters of the infection process: host cell killing, host cell lysis, phage DNA synthesis, effects on host DNA synthesis, and, indirectly, through an assay of β-galactosidase activity, RNA and protein synthesis. In addition, using two-dimensional polyacrylamide gel electrophoresis, we have analyzed specific patterns of phage protein synthesis in λ(QSR)so-infected bacteria in an attempt to identify a protein or proteins encoded or whose synthesis is controlled by the rha locus.

MATERIALS AND METHODS

Bacterial and Bacteriophage Strains

Most of the E. coli and bacteriophage strains used in this study are described in the accompanying paper (Mozola and Friedman, 1984). The following additional strains listed with relevant markers were used. Bacteria: K2524 (Δlacu168), obtained from M. Smith; K3057 (a derivative of K2524 carrying a BMG 67 prophage), constructed in this laboratory; K3058 (a derivative of K3057 carrying the himAD82 mutation), constructed in this laboratory. Phage: BMG 67; a λimm21lac phage, relevant details of its structure are shown in Fig. 7.

Media

Media for propagation of bacteria and phage have been described (Miller and Friedman, 1980; Mozola and Friedman, 1984). 3M-L medium used in thymidine-incorporation assays contains (per liter) 100 ml 10X M9 salts (per 100 ml: 6 g Na2HPO4, 3 g KH2PO4, 0.5 g NaCl, and 1 g NH4Cl), 2.5 ml 1 M MgSO4, 20 ml 20%
maltose, 50 ml 20% Difco casamino acids, 100 ml 10× nucleotide base mix (2 mM each adenine, guanine, cytosine, and uracil in 0.015 M KOH), and 10 ml 2 mg/ml tryptophan. The medium is mixed from separate sterile solutions. RM medium used for protein-labeling experiments contains (per liter) 40 ml 25× RM salts (per 100 ml: 2.5 g NH₄Cl, 3.75 g KCl, 6.2 g KH₂PO₄, and 14.2 g Na₂HPO₄), 0.4 ml 0.25 M CaCl₂, 1 ml 1 M MgSO₄, 0.3 ml 10 mM FeCl₃, 1.6 ml glycerol, and 20 ml 20% maltose. The medium is mixed from separate sterile solutions. RM-Mg is RM + 10 mM MgSO₄. TS buffer contains (per liter) 3.7 g Na₂HP₂O₄, 3 g KH₂PO₄, and 4 g NaCl adjusted to pH 6.0. For preparation of protein extracts, SDS lysing solution contains (per 462 ml) 50 ml 0.5 M Tris (pH 6.8), 80 ml 15% SDS, 10 ml glycerol, 40 ml 2-mercaptoethanol, and 272 ml distilled water. Lysis buffer contains (per 10 ml) 5.7 g urea, 0.2 ml Nonidet P-40, 0.5 ml 2-mercaptoethanol, 0.4 ml pH 5-7 ampholines (LKB), 0.1 ml pH 3-10 ampholines (LKB), and 4.2 ml distilled water.

Cell Survival Assay

To test the degree of survival of phage-infected bacteria, cultures infected as in complementation experiments (Mozola and Friedman, 1984) were titered for surviving bacteria after the initial adsorption period. Titering was done in duplicate on TB plates and the plates were incubated at 32°C.

Cell Lysis Assay

Lysis of phage-infected bacteria was assayed by following changes in turbidity of the cultures at intervals postinfection. Cells were grown in LBMM at 32°C to a concentration of approximately 2 × 10⁸/ml and subdivided 10 ml each into side-arm culture flasks. The cells were infected with phage at a multiplicity of infection (m.o.i.) of 5 and incubated at either 32°C or 42°C in a shaking water bath. Turbidity measurements were taken at the time of infection and at 30-min intervals thereafter using a Klett-Summerson colorimeter equipped with a red filter.

³H[Thymidine] Incorporation Assays

For assay of phage-specific DNA synthesis by [³H]thymidine incorporation, bacteria were grown in 3M-L medium at 32°C to a concentration of 2 × 10⁸/ml. To inhibit host DNA synthesis, mitomycin C (Sigma) was added to a concentration of 80 μg per ml of 2 × 10⁸/ml cells. An aliquot of cells was reserved for the untreated control and stored on ice. Bacteria with mitomycin C were incubated in the dark at 37°C for 10 min. Treated and untreated bacteria were then pelleted by low-speed centrifugation and resuspended to a concentration of 1 × 10⁸/ml in 10 mM MgSO₄. For each sample, 2 ml of concentrated cells were infected with phage at an m.o.i. of 5 and incubated on ice in the dark for 20 min to facilitate adsorption. The infected cells were diluted into 18 ml prewarmed 3M-L in culture flasks in a shaking water bath at 32°C. An aliquot was removed, treated with chloroform, and assayed for unadsorbed phage. At intervals between 1 and 90 min after dilution, 1-ml aliquots were removed and added to tubes containing 1 ml of 3M-L plus 10 μCi of [methyl-³H]thymidine (ICN) at 32°C. After a 1-min pulse, incorporation was stopped by placing the tubes on ice and immediately adding 2.5 ml of an ice-cold mixture composed of 1 part of a 1 mg/ml solution of nonradioactive thymidine and 1.5 parts of 15% trichloroacetic acid (TCA). After at least 30 min on ice, the TCA-insoluble material was collected by suction filtration on 2.4-cm diameter Whatman GF-C glass fiber filters. The filters were washed with 40 ml of ice-cold 5% TCA, followed by 10 ml of room-temperature 95% ethanol. The filters were dried under a lamp for 5 min, and radioactivity was counted in vials containing 4 ml of scintillation cocktail. Experiments measuring total host plus phage DNA synthesis were performed exactly as described above except that the mitomycin C treatment was eliminated. Background levels of radio-
activity were established by adding TCA and 3M-L+[3H]thymidine simultaneously to uninfected samples 5 min after dilution. For mitomycin C-treated cultures, the background was on the order of 100-200 cpm. For untreated cultures, the background was 1000-2000 cpm.

Production and Measurement of β-Galactosidase

Bacteria were grown in LBMM to approximately 2 × 10^8/ml, pelleted, and resuspended in 0.1 vol 10 mM MgSO_4. Phage were added to an m.o.i. of 5 and allowed to adsorb for 20 min on ice. Infected cells were diluted 1:10 into LB medium. The bacteria were incubated at 32°, aliquots removed at the indicated times, placed on ice, and then assayed for β-galactosidase using essentially the method outlined by J. Miller (1972). Aliquots were removed at t = 0 to assay phage adsorption.

Analysis of Phage Protein Synthesis

Pulse labeling of infected cells. Phage-infected bacteria were pulse labeled with [35S]methionine by a procedure modified from that described by Murialdo (1979). Bacteria were grown in RM medium at 32° to a concentration of 5 × 10^8/ml, pelleted, and resuspended in RM to a concentration of 4 × 10^9/ml. The concentrated cells were spread in a thin layer and irradiated with uv light (General Electric lamp No. G8T5) at a dose of 6.0 × 10^3 ergs/mm^2 while being agitated on a rotary shaker. MgSO_4 was added to the cells after irradiation to a final concentration of 10 mM. Cells (4 × 10^8, 0.1 ml) in 5-ml glass centrifuge tubes were infected at an m.o.i. of 5 and adsorption was carried out on ice in the dark for 30 min. Phage added were from lysates dialyzed against 10 mM Tris (pH 7.4) plus 10 mM MgCl_2. After adsorption, RM-Mg medium prewarmed to 32° was added to a final volume of 0.5 ml and the samples were incubated in a 32° shaking water bath. At 30 min post-adsorption, 40 μCi of [L-35S]methionine (Amersham) was added and incubation continued for 15 min at which time incorporation was stopped by chilling the tubes in a 0° ice-water bath. The tubes were stored on ice until all samples had been collected.

Preparation of protein extracts. To each tube prepared as described above, 3 ml RM at 4° was added and the cells were pelleted by centrifugation at 4° in a Sorvall SS34 rotor at 12,000 rpm for 10 min. Protein extracts were prepared according to a procedure obtained from P. Bloch. The pellets with a residual amount of medium (total volume about 5 μl) were vortexed until a slurry was formed and transferred to 1.5-ml microfuge tubes. SDS lysing solution (13 μl) was added and the samples were incubated in a boiling water bath for 4 min to lyse the cells. Lysis buffer (100 μl) was added and the samples were stored at -70° until used.

Two-dimensional gel electrophoresis. Two-dimensional electrophoresis of proteins was performed according to the procedures of O'Farrell (1975). A 30-μl sample was loaded onto the first-dimension isoelectric focusing gel, which was run to equilibrium and establishes an effective pH gradient of about 4.5 to 7.0. Polyacrylamide gels (15%) were used in the second dimension. The gels were run in a 4° cold room at 4.5 W per gel (constant power) until the bromophenol blue dye front was about 1 cm from the bottom of the gel (4 to 5 hr). The proteins were fixed and stained with Coomassie blue and destained as described by O'Farrell (1975). The gels were placed onto Whatman chromatography paper and dried under vacuum over a boiling water bath for 2 hr. Kodak XAR-5 X-ray film was used for autoradiography, which was for 5 to 11 days depending upon the age of the sample used for electrophoresis.

RESULTS

Cell Survival

The fraction of HimA^+ or HimA^-cells in a culture surviving infection with λ or λ(QSR)_so phage was measured. Results are shown in Table 1. Although the infec-
TABLE 1

<table>
<thead>
<tr>
<th>Phage</th>
<th>Percentage of cells surviving infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K936 (himA42)</td>
</tr>
<tr>
<td>λcl− (QSRrha+)₈₀</td>
<td>17</td>
</tr>
<tr>
<td>λcl−</td>
<td>7</td>
</tr>
<tr>
<td>λPam3</td>
<td>100</td>
</tr>
</tbody>
</table>

Note. Cell survival following phage infection at 32° was assayed as described under Materials and Methods.

infection there is a delay of about 30 min as compared to the λcl− infection.

In the case of the himA+ host, all cultures show complete lysis by 120 min (Fig. 2). By comparison of Figs. 1 and 2, it can be seen that for the productive infections, lysis is somewhat more rapid in a himA+ than in a himA- host. In both himA+ and himA- hosts at 42°, the λcl− infection leads to lysis earlier than does the λcl− (QSRrha+)₈₀ infection. There is no difference at 32° in the lysis patterns of λcl− and λcl− (QSRrha+)₈₀-infected himA+ cultures.

The results of these experiments show that there is no cell lysis resulting from the abortive infection of the himA42 host at 32° by λcl− (QSRrha+)₈₀. However, as

![Fig. 1. Lysis of phage-infected himA42 cultures.](image-url)

Cell Lysis

Cell lysis following λ or λ(QSR)₈₀ infection was assayed turbidimetrically. The results of infections of himA42 (K936) are shown in Fig. 1 and those of himA+ (K37) in Fig. 2. At 32°, lysis of the λcl−-infected himA42 culture is evident by 90 min postinfection and complete by 180 min. In contrast, the λcl− (QSRrha+)₈₀-infected himA42 culture shows no lysis; the turbidity of the culture increases continually until it reaches a plateau at 180 min. At 42°, both the λcl− and λcl− (QSRrha+)₈₀-infected himA42 cultures show complete lysis. However, in the λcl− (QSRrha+)₈₀ infection there is a delay of about 30 min as compared to the λcl− infection.

In the case of the himA+ host, all cultures show complete lysis by 120 min (Fig. 2). By comparison of Figs. 1 and 2, it can be seen that for the productive infections, lysis is somewhat more rapid in a himA+ than in a himA- host. In both himA+ and himA- hosts at 42°, the λcl− infection leads to lysis earlier than does the λcl− (QSRrha+)₈₀ infection. There is no difference at 32° in the lysis patterns of λcl− and λcl− (QSRrha+)₈₀-infected himA+ cultures.
shown in Fig. 1, the λcl (QSRrha+)\textsubscript{80}-infected culture reaches a plateau in turbidity at 180 min, rather than continuing to grow. In comparison, the uninfected culture shows 50% higher turbidity at this time. This property of the himA-infected culture is consistent with the high degree of cell killing observed in the abortive infection of the himA-host by X\textsubscript{cl}(QSRrha+) at 32°.

\section*{λ(QSR)\textsubscript{80} DNA Replication}

Rates of phage-specific DNA synthesis during λ(QSR)\textsubscript{80} infection of himA+ and himA\textsubscript{42} cells were measured by assaying incorporation of \(^{3}H\)thymidine (\(^{3}H\)Tdr) into trichloroacetic acid (TCA)-precipitable material. E. coli DNA synthesis was inhibited by pretreatment of uvra-himA+ (K484) or uvra-himA\textsubscript{42} (K1675) bacteria with mitomycin C (MC) using a procedure adapted from that of Young and Sinsheimer (1967). Results of an assay of phage DNA synthesis in himA\textsubscript{42} at 32° are shown in Fig. 3.

Untreated, uninfected cells show an approximately fourfold increase in the rate of \(^{3}H\)Tdr incorporation during an 80-min time course. This is consistent with the measured doubling time for K484 and K1675 in 3M-L medium at 32° of approximately 45 min. A 10-min pretreatment of the cells with 80 μg MC/ml of \(2 \times 10^9\) ml cells results in an approximately 20-fold reduction in the rate of \(^{3}H\)Tdr incorporation as measured at 1 min post-infection (time after dilution of the phage-infected or uninfected control cultures into prewarmed medium). By 10 min post-infection, the rate of \(^{3}H\)Tdr incorporation in the MC-treated culture is almost 100-fold lower than that of the untreated culture and decreases further with time.

An analysis of the phage-infected MC-treated himA\textsubscript{42} cultures reveals the fol-
lowing. By 10 min postinfection, phage-specific DNA synthesis is evident in all cultures with one exception. The replication-defective \(\lambda CI^+ Pam3 \) infection parallels that of the MC-treated uninfected culture and thus serves as an infection-positive and replication-negative control. We look next at the productive infections by \(\lambda CI^- \) and the Rha\(-\)mutant \(\lambda (QSRrha\Delta 01)^80 \) (see accompanying paper, Mozola and Friedman, 1984). At 20 to 25 min postinfection, a transient depression in the rate of \([\text{H}]Tdr \) incorporation is observed, and after 25 min postinfection, the rate of \([\text{H}]Tdr \) incorporation increases until a maximum is reached at 70 to 80 min postinfection. At this time, the rate of \([\text{H}]Tdr \) incorporation in these infections is 20-fold above background levels. By 80 or 90 min postinfection, some cultures show decreasing rates of \([\text{H}]Tdr \) incorporation, indicating that the phage infection cycle is nearing an end.

Looking next at infection by \(\lambda CI^- (QSRrha^+)^80 \) in the \(\text{him} A^- \) host, there is an obvious defect in DNA replication. At early times, up to 20 min postinfection, \([\text{H}]Tdr \) incorporation follows the pattern of the \(\text{him} A^+ \) infection. After 20 min, however, the rate of DNA synthesis drops rapidly and reaches a basal level not appreciably above background by 50 min postinfection. The turnoff of phage DNA synthesis at late times seen in \(\lambda CI^- (QSRrha^+)^80 \) in K1675 is a consequence of the host being \(\text{him} A^- \), because under \(\text{him} A^+ \) conditions at 32\(^\circ \) \(\lambda CI^- (QSRrha^+)^80 \) shows a pattern of \([\text{H}]Tdr \) incorporation indistinguishable from those produced by \(\lambda CI^- \) and \(\lambda (QSRrha\Delta 01)^80 \) (Fig. 4).

Effect of \(\lambda (QSR)^80 \) Infection on Host DNA Synthesis

The effect of \(\lambda CI^- (QSRrha^+)^80 \) infection on DNA synthesis by \(\text{him} A^+ \) and \(\text{him} A42 \) bacteria was measured by an assay similar to that used for investigating patterns of phage-specific DNA synthesis, except that the bacteria were not treated with mitomycin C prior to infection and the isogenic \(wra^+ \) strains K37 (\(\text{him} A^+ \)) and K936 (\(\text{him} A42 \)) were used. In this assay, total DNA synthesis, both phage and host, is measured. Figure 5 shows the patterns of total DNA synthesis in the \(\text{him} A42 \) host at 32\(^\circ \). The infection with \(\lambda CI^- Pam3 \), defective for phage DNA synthesis, shows an approximately twofold reduction in the rate of total DNA synthesis in comparison to an uninfected culture. Infection with \(\lambda CI^- \) produces, except at early times, rates slightly higher than those for the uninfected culture, suggesting that somewhat more than 50% of the total DNA synthesis observed in this infection is \(\lambda \) specific. This, of course, is based on the assumption that \(\lambda CI^- \) has the same effect on E. coli DNA synthesis as does \(\lambda CI^- Pam3 \). Similar findings have been reported by Cohen and Chang (1970) in a study of the effects of \(\lambda \) infection on E.
PHYSIOLOGY OF LAMBDOID PHAGE INFECTION

Not only is XcII(QSRrha+)~ defective for DNA synthesis at late times in the himA host at 32°, it also exhibits a profound effect on host DNA synthesis. From 15 to 20 min postinfection, total DNA synthesis is higher in the XcII-(QSRrha+)~ infected culture than in the XcII-Pam3 infection. This correlates with the early phage-specific DNA synthesis exhibited by XcII-(QSRrha+)~ under HimA- conditions (see Fig. 3). However, by 30 min postinfection, a marked decrease in total DNA synthesis is observed. The rate remains low throughout the remainder of the experiment. At 70 min postinfection, total DNA synthesis in the XcII-(QSRrha+)~ infected culture is reduced approximately eightfold in comparison to the uninfected culture. The XcII Pam3-infected culture shows only a twofold reduction in total DNA synthesis compared to the uninfected control. Since the XcII Pam3 phage is defective for λ-specific DNA synthesis, the additional reduction in total DNA synthesis seen with λcI (QSRrha+)~ can only be explained by a further inhibition of E. coli DNA synthesis.

Expression of the lacZ gene, whose product is β-galactosidase, was used to assay the effect of infection with (QSR)+ phages on transcription and translation. In the system we employed (see Fig. 7), a cloned lacZ gene is located on a λimm21 prophage vector and is under the control of E. coli metabolism, although they observed somewhat higher rates of DNA synthesis attributable to λ.

Figure 6 shows results of an assay of total DNA synthesis in the himA+ host (K37) at 32°. The incorporation pattern seen in the XcII-(QSRrha+)~ infection parallels that produced by XcII- infection, showing that the himA- allele is responsible for the enhanced inhibition of DNA synthesis observed in the XcII-(QSRrha+)~ infection of K936.

Expression of lacZ following Infection with λ(QSR)+

Fig. 5. Effect of λ(QSR)+ infection on host DNA synthesis in himA42 at 32°. Total DNA synthesis in phage-infected K936 was assayed as [3H]Tdr incorporation into TCA-insoluble material as described under Materials and Methods. ○, Uninfected cells. Infections: □, λcI+; ■, λcI (QSRrha+)~; Δ, λcI Pam3.

Fig. 6. Effect of λ(QSR)+ infection on host DNA synthesis in himA+ at 32°. See legend to Fig. 5. ○, Uninfected cells. Infections: □, λcI+; ■, λcI- (QSRrha+)~; Δ, λcI Pam3.
Fig. 7. Relevant features of the λimm21lacZ transducing phage BMG 67. BMG 67 was constructed from a λ cloning vector designed to test promoter activity (M. Gottesman, D. Court, R. Zagursky, and S. Sullivan, personal communication). Top: A map of the relevant regions of the phage is shown. Portions of λ, including p2, nutR, and tr1, have been cloned into a BamHI site downstream of the tr2 terminator. The lacZ gene has been cloned into an EcoRI site downstream of Q. The map is not drawn to scale. Middle: The transcription pattern in the absence of the λ N antitermination function is shown. Since the phage is carried as a prophage, the promoters are repressed. Transcription of lacZ initiates only at the cloned λ promoters, p2 and pR. However, in the absence of the N protein, most transcription is terminated before Q and lacZ. Therefore, only small amounts of β-galactosidase are synthesized. Bottom: The transcription pattern in the presence of the λ N function is shown. Following infection with λ(QSR)80, N protein is synthesized and acts at nut sites to render subsequent transcription resistant to the tr1 and tr3 terminators and partially resistant to the t6s terminator. This transcription results in the synthesis of Q protein and therefore high levels of β-galactosidase. The Q protein is an antitermination function acting at a site downstream of the pR promoter. The transcription of lacZ in the presence of N represents the combined antitermination activity exerted by both the N and Q proteins. Note that the infecting phages used in these experiments have the Q gene from φ80 which does not influence transcription initiating at the λ pR promoter. An indication of the level of transcription is shown by the nature of the line; the thicker the line, the greater the transcription, with the least amount of transcription represented by a dashed line.

of a cloned phage promoter (M. Gottesman, D. Court, R. Zagursky, and S. Sullivan, personal communication). This phage is called BMG 67. Full expression of lacZ requires that the λ N transcription antitermination function be supplied in trans. Because λ(QSR)80 phage expresses N, this system can provide a measurement of transcription and translation following infection with that phage. Moreover, the requirement for N means that genes located both on the phage and bacterial (prophage) genomes must be transcribed and translated in order for high levels of β-galactosidase to be expressed.

Results of a representative experiment are shown in Table 2. Two bacterial hosts carrying BMG 67 as a prophage were used in this experiment; K3057 (himA+) and K3058 (himAΔ82). There is little interference with the expression of lacZ in the λcI(QSRrha+)80 infection of the himA+ host K3058 at 32°. The level of β-galactosidase activity is fourfold above background at 20 min postinfection and eightfold above background at 40 min postinfection. The significance of these increases is apparent when compared to the increases observed following infection with λcI (QSRrhaΔ01)80, a derivative that grows normally in himA+ hosts. In this case the levels of β-galactosidase expressed are 9- and 13-fold above background, respectively, at 20 and 40 min. Thus, there apparently is not a general shutdown of RNA and protein synthesis in the abortive λ(QSR)80 infection, even at times in the infection considerably later than the point at which inhibition of DNA synthesis is observed. An answer to the question of whether or not the twofold difference in stimulation of β-galactosidase activity
TABLE 2

ASSAY OF β-GALACTOSIDASE ACTIVITY IN λ(QSR)so-INFECTED CELLS

<table>
<thead>
<tr>
<th>Lysogen</th>
<th>Superinfecting phage</th>
<th>Time postinfection (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>K3057</td>
<td>None</td>
<td>440</td>
</tr>
<tr>
<td>(himA⁺)</td>
<td>λcl⁻ (QSRrha⁺)₉₀</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>λcl⁻ (QSRrhaΔ₀)ₙ₀</td>
<td>480</td>
</tr>
<tr>
<td>K3058</td>
<td>None</td>
<td>115</td>
</tr>
<tr>
<td>(himAΔ₈₂)</td>
<td>λcl⁻ (QSRrha⁺)₉₀</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>λcl⁻ (QSRrhaΔ₀)ₙ₀</td>
<td>155</td>
</tr>
</tbody>
</table>

Note. β-Galactosidase activity in phage-infected cells at 32°C was assayed as described under Materials and Methods. The units of activity were calculated using the method described by J. Miller (1972).

seen in the himA⁻ infections with λcl⁻ (QSRrha⁺)₉₀ and λcl⁻ (QSRrhaΔ₀)ₙ₀ reflects a small reduction in transcription or translation imposed by the rha⁺ allele awaits further study.

For purposes of comparison, we have included data on lacZ expression in K3057 (himA⁺) following infection with the two phages. Infection with both phages results in higher β-galactosidase activities in the himA⁺ bacterium than in the himA⁻ host. In this case, the level of stimulation is the same for both phages.

Proteins Encoded or Controlled by the rha Locus

Results of the physiological experiments described above, together with the genetic analysis presented in the accompanying paper (Mozola and Friedman, 1984), suggest that a trans-acting protein is responsible for the growth defect, negative-complementation phenomena, and inhibitory effects on DNA replication associated with the Rha phenotype. In light of this, we looked for proteins encoded by the rha locus which are expressed in the abortive infection of λ(QSRrha⁺)₉₀ in a HimA⁻ background. In these experiments, we used electrophoretic analysis of proteins synthesized following phage infection of uv-irradiated himA42 cells at 32°C to look for a rha-encoded protein. Proteins were pulse labeled with [³⁵S]methionine between 30 and 45 min after infection, which represent a period approximately midway through a productive λ infection cycle under the growth conditions used here. Two-dimensional electrophoretic separation of proteins was carried out by the method of O’Farrell (1975). In this procedure, proteins are separated by charge (isoelectric focusing) in the first dimension and by molecular weight through an SDS-polyacrylamide gel in the second dimension.

Figure 8 shows the two-dimensional pattern of background host proteins produced in uninfected uv-irradiated K1675 (uva⁻ himA42) cells at 32°C labeled with [³⁵S]methionine between 30 and 45 min postinfection. Figures 9 through 11 show...
the patterns of proteins labeled following infection with λ^+, $\lambda(QSRrha^+)_{80}$, and $\lambda(QSRrha\Delta01)_{80}$. One candidate for a protein encoded or controlled by the rha region is observed. A protein of approximately 7000 to 8000 molecular weight (7K–8K) is present in the $\lambda(QSRrha^+)_{80}$ gel (Fig. 10; marked by arrow), but is absent from the uninfected (Fig. 8), λ^+ (Fig. 9), and $\lambda(QSRrha\Delta01)_{80}$ (Fig. 11) samples. Besides the 7K–8K spot, no other differences were noted in the patterns produced by the rha^+ and $rha\Delta01$ infections. Thus, the appearance of the 7K–8K protein correlates with the presence of an intact rha region on the phage. The demonstration of synthesis of this protein under conditions of the abortive infection supports our hypothesis that rha encodes a diffusible gene product responsible for the inhibition of phage growth observed in HimA^- and Hip/HimD^- hosts at 32°. Other differences between the protein patterns of the λ^+ and $\lambda(QSRrha^+)_{80}$ infections are evident; these are not thought to involve rha, but presumably arise from other differences between the QSR regions of λ and $\phi80$ and will not be considered here.

We have also analyzed the patterns of phage protein synthesis under conditions permissive for growth of $\lambda(QSRrha^+)_{80}$, i.e., in a $uwrA^+\text{HimA}^+$ strain at 32°. A spot corresponding to the 7K–8K protein discussed above is seen in the $\lambda(QSRrha^+)_{80}$ infection, but not in the uninfected, λ^+, $\lambda(QSRrha\Delta01)_{80}$, or $\lambda-80\text{hy95}$ samples, and thus again correlates the synthesis of the 7K–8K protein with an intact rha locus (data not shown). Furthermore, this result indicates that rha is expressed in the himA^+ host, but that this expression is not deleterious to phage growth under himA^+ conditions.

DISCUSSION

The abortive infection of $\lambda(QSR)_{80}$ in himA^- cells at 32° is characterized by: (1) cell killing, (2) absence of cell lysis, (3) an inhibition of phage DNA synthesis after an early period of apparently normal synthesis, (4) a marked inhibition of host DNA synthesis, and (5) continued RNA and protein synthesis. These results, as well as those of the genetic analysis presented in the accompanying paper, are best explained by postulating the existence of a diffusible protein product encoded or controlled by the rha locus that is responsible for the observed inhibitory effects on phage and host physiological processes. A protein encoded or controlled by the
The rha locus has been identified on 2-D gels; this protein is synthesized during the abortive λ(QSR)₈₀ infection in a himA₄₂ host. To simplify the discussion, the consequences of the abortive infection of λ(QSR)₈₀ phage will be referred to as the Rha phenotype with no intention of distinguishing whether the phenotype is caused directly by the rha gene product or by another product under control of the rha gene product.

The defect in DNA synthesis is the most obvious deficiency observed when a rha⁺ phage infects a him⁻ bacterium at 32°C. Whether or not this defect is the direct cause of the abortive infection has not been established. We also do not know if the (QSR)₈₀-associated inhibitions of phage and host DNA synthesis are caused by a common function. The fact that both phage and host DNA synthesis are inhibited at similar times postinfection is consistent with a common function operating on both types of replication. The finding that the Rha inhibitions of both phage and host DNA synthesis are not seen until 25 min after initiation of the infection is consistent with location of rha within the late operon transcribed from p₉₂ (see accompanying paper).

Although these studies do not lead to a definitive model explaining the Rha phenotype, they do provide a basis for informed speculation about Rha. It is likely that rha is not present to confound Him workers and therefore we suggest that the rha gene product or its agent has a role, albeit dispensable, in normal lytic growth of φ80. The defect in the him⁻ infection is likely, then, to be a failure in the normal control or modulation of Rha expression in the absence of significant IHF activity.

How might uncontrolled Rha expression be manifested? The defect in DNA synthesis might be the cause of the various Rha phenotypes. For instance, inappropriate Rha activity might produce abnormal or "dead-end" forms of phage DNA that are unsuitable for DNA packaging. This would explain both the lack of phage production in the abortive infection (see accompanying paper) and the lack of cell lysis. The inhibition of host DNA synthesis could also result directly from rha gene product activity, or indirectly from a general host cell response to the abortive phage infection. A similar sequence of events has been proposed by Toothman and Herskowitz (1980a, b, c) to explain the phenomenon of Rex-dependent exclusion of superinfecting lambdoid phage by certain λ lysogens, in which an abortive phage infection resembling that of λ(QSR)₈₀ in a himA⁻ host takes place. A role for an IHF-regulated φ80 function in phage DNA replication or packaging is not unreasonable in light of the observed defect in growth of Mu in HimA mutants and the demonstrated role for IHF activity in lambdoid phage DNA packaging (see Introduction).

Considering the apparently normal DNA synthesis pattern exhibited by λ(QSR)₈₀ during the first 20 to 25 min of the abortive infection of himA₄₂, it is tempting to speculate that the primary defect in the abortive phage infection may be a failure to switch from early Theta form to late rolling-circle DNA replication (reviewed by Furth and Wickner, 1988). Such a situation exists in a λgam⁻ infection; normally Gam protects an intermediate DNA structure in the Theta form.
to rolling-circle transition from attack by the *E. coli* RecBC nuclease (Enquist and Skalka, 1973). A λgam - infection, although defective for rolling-circle replication, still produces a phage burst (unlike the abortive λ(QSR) 30 infection) since monomeric DNA can be recombined by homologous recombination functions (ARec or E. coli RecA) to produce dimers suitable for packaging (Enquist and Skalka, 1973; Dawson et al., 1975, 1976). A himA mutation does not interfere with this type of recombination as evidenced by the fact that a λbiol1 phage (which is red - and gam -) grows in HimA - hosts at both 32 and 42° (Miller and Friedman, 1977). Thus, although it is possible that the rha gene product plays a role in late DNA replication, it is likely that the early phage DNA synthesis seen in the abortive rha + infection does not lead to intact progeny monomers, but instead produces incomplete or aberrant DNA structures unsuitable for packaging. Preliminary results of experiments analyzing the fate of λ(QSRrha +) 30 DNA during the abortive infection are consistent with this idea. λ(QSRrha +) 30 DNA is not degraded in any gross manner in himA42 at 32°, but it appears that cos cleavage to generate unit-size DNA molecules for packaging does not occur (A. Granston, personal communication).

A second explanation for the Rha phenotype is that rha encodes a function involved in cell lysis. The location of rha in the late operon near known lysis functions is certainly consistent with this hypothesis. In the abortive λ(QSR) 30 infection of himA42 at 32°, the rha gene product, not under normal HimA-Hip/HimD control, may act prematurely in the phage infection cycle and damage the cell membrane. The importance of the membrane in energy generation and macromolecular synthesis could explain why such damage might lead to loss of energy from the cell and subsequently a cessation in both phage and host DNA synthesis, death of the host cell, and abortion of the phage lytic cycle. However, the finding that RNA and protein synthesis continue at late times in the abortive infection argues against a hypothesis of general energy loss from the cell.

IHF could exert its control or modulation of Rha activity in either of two ways. First, IHF could regulate the level of synthesis of the rha gene product. According to this idea, in the absence of active IHF in the himA - host, control of rha expression is altered leading to improper expression of Rha which results in the abortive infection. The abnormal expression could be either in the amount or time at which the gene is expressed. There is precedent for postulating such a role for IHF. Synthesis of both the λint and cII gene products is normally controlled by the level of IHF (Miller, 1981). Second, IHF might modulate the activity of Rha either by interacting directly with the Rha function or with a site on the nucleic acid where that function normally binds. Consistent with this latter idea is the fact that IHF is a DNA-binding protein (Nash, 1981). A definitive elucidation of the mechanism of Rha-IHF interaction should prove useful in further defining the role of IHF in cellular metabolism.

ACKNOWLEDGMENTS

We thank Harvey Miller, Don Court, Andrew Granston, Bob Weisberg, Elliot Juni, and Robert Bender for valuable discussion. We are particularly indebted to Martin Smith and Ruth Van Bogelen for extensive assistance with the protein gels. We also thank Emma Williams for help in preparing the manuscript. This work was supported by grants from the National Institutes of Health to D.I. F.

REFERENCES

