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Abstract--This paper gives a complete analysis of the problem of aeroassisted return from a high Earth orbit 
to a low Earth orbit with plane change. A discussion of pure propulsive maneuver leads to the necessary change 
for improvement of the fuel consumption by inserting in the middle of the trajectory an atmospheric phase to 
obtain all or part of the required plane change. The variational problem is reduced to a parametric optimization 
problem by using the known results in optimal impulsive transfer and solving the atmospheric turning problem 
for storage and use in the optimization process. The coupling effect between space maneuver and atmospheric 
maneuver is discussed. Depending on the values of the plane change i, the ratios of the radii, n = rE/r2 between 
the orbits and a = r2/R between the low orbit and the atmosphere, and the maximum lift-to-drag ratio E* of 
the vehicle, the optimal maneuver can be pure propulsive or aeroassisted. For aeroassisted maneuver, the optimal 
mode can be parabolic, which requires only drag capability of the vehicle, or elliptic. In the elliptic mode, it 
can be by one-impulse for deorbit and one or two-impulse in postatmospheric flight, or by two-impulse for 
deorbit with only one impulse for final circularization. It is shown that whenever an impulse is applied, a plane 
change is made. The necessary conditions for the optimal split of the plane changes are derived and mechanized 
in a program routine for obtaining the solution. 

1. INTRODUCTION 

It has been known since the pioneering work by Lon- 
don[l]  that the use of aerodynamic forces to assist in the 
orbital transfer can significantly reduce the fuel con- 
sumption as compared to the pure propulsive mode. For 
the classical analyses, we refer to the monograph by 
Vinh[2] and the recent review by Walberg[3]. In the 
published literature, when atmospheric flight is involved, 
the aerodynamic vehicle, referred to as the Orbital Trans- 
fer Vehicle (OTV), is always considered in the form of 
a particular flying apparatus with a set of specified phys- 
ical parameters. These restrictions prevent any gener- 
alization of the fine results obtained. Furthermore, there 
is always a mathematical difficulty for a smooth tran- 
sition from atmospheric dynamics to space dynamics in 
the vacuum due to different preferences in the selection 
of the appropriate coordinate systems for describing these 
two phases. As a consequence, not much effort has been 
done to analyze the coupling effect between space ma- 
neuver and atmospheric maneuver and its subsequent 
influence on the performance index, which is here the 
total characteristic velocity for the combined propulsive 
atmospheric maneuver. As an illustration of the fact that 
orbital flight and high altitude atmospheric flight at hy- 
personic speeds can be considered as an integral problem 
in astrodynamics under a global optimization to find the 

~Paper presented at the 34th Congress of the International 
Astronautical Federation, Budapest, Hungary, 10-15 October 
1983. 
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combined optimal trajectory for the OTV, we consider 
the problem of minimum-fuel aeroassisted retum from 
a high Earth orbit (HEO), with radius r,, to a low Earth 
orbit (LEO), with radius r2, with occasional maneuvers 
inside an atmosphere with radius R, while performing a 
plane change of an angle i. 

2. OPTIMAL PLANAR RETURN 

We first consider the case of aeroassisted planar return 
from HEO to LEO, with no plane change, i = 0, and 
then see how the optimal strategy can be modified to 
also perform a plane change. 

The different transfers are shown in Fig. 1, and the 
analysis depends on the ratios of the radii 

r~ r 2 
n = --, a = --. (1) 

r 2 R 

We use the circular speed at LEO as unit speed and 
calculate the dimensionless velocities 

V A V~ 
v ~ p / r 2 '  A vl - X / p  / r2' (2) 

where p is the gravitational constant. For pure propulsive 
maneuver, the optimal mode is either the Hohmann trans- 
fer with characteristic velocity 

1 2 
J v . = v n ~ -  1 + ( n -  l) nt-~n+ 1) (3) 



12 N. X. VINH and J. M. HANSON 

N 

ESCAPE 
Fig. 1. Planar return from HEO to LEO. 

o r  the parabolic mode with characteristic velocity 

In the parabolic mode, the vehicle will go parabolic 
from HEO to infinity and then return via another parabola 
for circularization at LEO. The parabolic transfer is more 
economical than the Hohmann transfer when n > 
11.938765. 

For aeroassisted maneuver, we can apply tangentially 
a decelerating impulse at HEO to send the OTV along 
a descending elliptic trajectory for grazing the atmos- 
phere at the distance R. At this perigee, atmospheric 
drag will work to reduce the apogee from HEO to LEO 
for circularization. The total characteristic velocity for 
this aeroassisted-elliptic mode is 

 vAE= [ ----7- 

•/ 2 
1 - . ( 5 )  

a + l  

Another way for achieving a grazing trajectory is to 
first send the OTV from HEO into a parabola and then 
return without fuel consumption from infinity along a 
grazing parabola. The total characteristic velocity for this 

aeroassisted-parabolic mode, including a final cost fol 
circularization at LEO is 

( X / 2 -  1) ~ /  2 
A v , w -  ~ + 1 - x/ . (6) 

a + l  

The process of reducing the apogee through atmos- 
pheric drag acting at perigee, at distance R, requires 
several passages, but the work done by Cruz and his 
group at the Jet Propulsion Laboratory[4] has shown that 
the reduction can be achieved in one pass without sig- 
nificant increase in fuel consumption. 

Upon comparison between these modes, we have the 
results shown in Fig. 2. In particular, the AP mode is 
better than the P mode when a < 2(Xf2 + 1). Later on 
in the analysis, we shall consider the ratio a~ between 
the HEO radius and the radius of the atmosphere. Hence 
we define 

?'1 
al = ~ ,  or n~ = a~. (7) 

For a geosynchronous orbit (GEO), taking r~ = 42, 
164 km, R = 6498 km, we have at = 6.4888. The line 
representing a GEO, net = 6.4888, which is a hyperbola 
in the (n, a) space, is plotted in the dashed line in Fig. 
2 and it is entirely in the AP region up to a value a = 1.99, 
hence up to a very high LEO. 



Optimal aeroassisted return 13 

5 

,~ = r 2 / R  

. . . .  2 (4~+ i) 

P A R A B O L I C  

4. 

H O H M A N N  

AERO- PARABOLIC 

\k(GEO) 

I 
% I 

% I 
I " ~  I ! 

5 I 0  11.939 

Fig. 2. Regions of optimality for planar return. 

n= r l / r  2 

Figure 2 represents the section i = 0, for planar re- 
turn, in the global assessment of optimality for the prob- 
lem of return with plane change in the three-dimensional 
(n, a, i) space. Before achieving that in the next section, 
when we consider all the subspaces, i = constant, one 
pertinent remark is in order. For i # 0, the Hohmann 
transfer becomes the two- or three-impulse mode, and 
the characteristic velocity increases as the plane change 
angle increases. On the other hand, when the optimal 
mode involves a parabola, the fuel consumption, for any 
prescribed n and a, remains the same as for the planar 
case since the plane rotation can be achieved without 
cost at infinity. Hence, if the P or AP mode is optimal 
in the planar case, it remains optimal, with the same 
cost for any plane change. As a consequence, when a 
LEO is such that a = r2/R <- 1.99, the optimal return 
from GEO, for any plane change, is through the AP 
mode and the process only requires drag capability of 
the vehicle. 

3. OPTIMAL RETURN WITH PLANE CHANGE 

We now consider the optimal return with a prescribed 
plane change i and construct the different regions of 

optimality in the (n, a) subspace. As noticed above, the 
P and AP sets in the section i = 0 are both minimal 
sets. As the plane change i increases, they increase at 
the expense of the Hohmann set. 

From the work of Marchal[5], it is known that when 
i :¢ 0, the Hohmann transfer becomes a two- or three- 
impulse transfer, which must be compared with the par- 
abolic transfer. The results are summarized in Fig. 3. 

A two-impulse transfer is achieved via a generalized 
Hohmann transfer orbit connecting HEO to LEO with 
plane changes i~ and i2. The impulses are applied or- 
thogonally to the position vectors and at the angles 6, 
and 62 with respect to the plane of the transfer orbit. The 
solution is obtained by solving the system 

r 
sin (6~ + it) / 2 

sin 61 - ~/n + 1' 

r 
sin (6, + i2) _ . / .  2n  

sin 62 ~ n  + 1 

sin 6~ + n sin 62 = 0, it --t- i 2 = i. 

(8) 
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From this, we compute the characteristic velocities explicit solution for the two-impulse transfer along the 
separatrix. 

sin i~ s i n  i 2 

Avt - k/-~n sin 6,' Av: = - s i n  6----2~' (9) 

In the three-impulse scheme, the impulses are also 
orthogonal to the position vectors with successive plane 
changes i:, i2 and i3. The first impulse is designed to 
make the plane change ij and at the same time propel 
the OTV into a higher orbit with apogee at distance r~x. 
At this point, the second impulse is applied for a plane 
change i2 and a reduction of perigee to the LEO level, 
at distance r2. The third impulse circularizes the orbit 
with the last plane change i3. If we use the plane of the 
first transfer orbit as reference plane to measure the thrust 
angle 6~ and 62, and the plane of the second transfer 
orbit as reference plane to measure the thrust angle 61, 
then the solution is obtained by solving the system 

f 
sin (6~ + i,) _ . / .  2x 

sin 6~ ~ / x  + 1' 

sin (62 + 6 )  _ + 1 
sin 52 + 1 (10) 

/ 

sin (63 - i3) / 2nx 

sin 63 - ~ / ~ £ +  1 

x s i n 6 ,  + sin62 = O, 
nx sin 63 + sin (62 + 6) = O, 

i I + i2 + i3 = i ,  

(2nx + 1) sin is n cos 63 ~/nx + 1 cos 6~ 
+ 

x(nx + l) s in6,  (nx + 1) (x + l) X/x + I 

(n - 1)cos62 
- -  ~ 0 ,  

(x + 1) X/(x + l)(nx + I) 

From this, we obtain the magnitudes of the impulses 

sin i~ 

3Vl - X/-nn sin 6~' 

sin i, / 2 

3v_, - s i - -~  ~/nx(,~: + 1)' 
s i n  i 3 

A v  3 = 
sin 63" 

The two finite-time transfers have to be compared with 
the parabolic mode which consists of sending the vehicle 
into escape for plane rotation at infinity without cost and 
return to LEO for circularization. On the other hand, the 
two-impulse transfer is the limit of the three-impulse 
transfer when x --~ 1. This leads us to obtain the para- 
metric equations for the separatrix between two and three- 
impulse regions as shown in Fig. 3. Let 

k = N/3(2n + 1). 

After extensive algebraic manipulation, we have the 

cos5,  = - ~  1)' 

c o s 6 ~ -  k(k +6n 1_____~) / ~ -  3).1) 

{13) 

For each prescribed n, we compute the thrust angles 
and easily deduce i~ and i2 from eqns (8). Their sum 
gives the limiting plane change angle i, beyond which 
the three-impulse transfer is more economical. At this 
limit, we have for the characteristic velocities in explicit 
form 

/ 
. 

(k + 3) / 2(k - 3) 
Avl 

- 6 ~ n ( n  + l ) [ k - - - 1 )  
1 

A v  2 = - 
6 

2(k - 3) k(k + 1) 
× n(n + l~k  ~- 1) 

(14) 

By setting their sum equal to the cost for parabolic 
mode, as given in eqn (4), we have the equation for 
calculating the value n where the three modes are equal. 
This point, shown in Fig. 3, is now known accurately 
to be 

n = 6.67347605 (15) 
i = 377389301. 

In the figure, the limiting points on the axes are also 
accurately known as n = 11.938765 and i = 
60 °. 1848448. 

Figure 4 shows the different regions of optimality for 
the case of i = 30 °. In the section i = constant, the P 
and AP modes are always equal at a = 2(V~ + 1). 
The comparison between the H mode and the AP mode 
is straightforward. For any prescribed value i, the H 

(11) mode, which can be a two- or a three-impulse mode, 
depends on the value of n, as determined by the explicit 
analysis described above. Once its characteristic velocity 
has been computed using these equations (which have 
been derived using the theory of the primer vector[6]), 
it can be compared with the characteristic velocity for 
the AP mode as given in eqn (6) as a function of the 
two parameters n and a. The limiting curve can then be 
generated in the (n, a) space. 

For i ~ 0, the AE mode requires lifting capability of 
the vehicle. As shown in the next section, the only ve- 
hicle parameter involved in the analysis is the maximum 
lift-to-drag ratio E* which is taken as E* = 1.5 for the 
computation in the present analysis. To perform the AE 
transfer, we first use a deorbiting scheme, with or with- 

(12) 
out plane change and by one or two impulses to enter 
the atmosphere at a small angle 7'~ and speed V,, The 
optimal atmospheric turning yields a maximum plane 
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change and an exit at a shallow angle with residual speed 
V t. necessary for an ascent to apogee at LEO for circu- 
larization. If this maximum plane change exceeds the 
prescribed value i, then the cost is the same as for the 
planar case, and just as in the optimal modes P and AP, 
the plane change is free of additional fuel consumption. 
If the maximum plane change is less than the required 
plane change, the discussion is more subtle since the 
total plane change must be optimally distributed between 
the spatial phase and the atmospheric phase. This will 
be discussed in detail in Section 5. 

Figure 5 shows the different regions of optimality for 
the case of i = 50 °. As can be seen in the figures both 
the H set and the AE set are regressive as the plane 
change increases. When i = 60.185 °, the Hohmann set 
disappears. 

4. OPTIMAL ATMOSPHERIC TURNING 

For a smooth transition from atmospheric flight to 
flight in the vacuum, it is convenient to use the modified 
Chapman's variables[7] 

/ 

p A C L . / r  V 2 V 2 
Z - ~ / ~ ,  u - - (16)  

2m gr p / r  

to represent the altitude and the speed variable, and the 
dimensionless arc length 

s = cos 7 dt (17) 

to replace the time as the independent variable. The drag 
polar used is the parabolic drag polar 

Co = Coo + K C~ (18) 

with the condition at maximum lift-to-drag ratio 

Ct = CL* = N/Coo/K, 

Co = Co* = 2Coo, (19) 

E* = CL*/Co*. 

Then, if cr is the bank angle, atmospheric turning can 
be achieved through the modulation of the vertical and 
the lateral component of the normalized lift coefficient 

CL CL 
C = ~ cos or, S = ~ sin or. (20) 

With a Newtonian gravitational field, and a locally 
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exponential  a tmosphere,  and with the spherical coordi- Hamiltonian 
nates as shown in Fig, 6, we have the universal dimen- 
sionless equations of  motion H = -k2Zpz tan 7 

dZ 
- -  k 2 Z tan 7 

ds 
du kZu(1 + C z + S 2) 
- -  = - (2 - u) t an ) '  
ds E* cos ? 
dy k Z C  1 

- - - +  1 - -  
ds cos 7 u (21 ) 
dO cos ~u 

ds cos q~ 
d4, 
- -  = sin q/ 
ds 
d~u k Z S 

ds cos 2 y 
cos ~ tan ~ .  

17 

[ ~ u ~ l _  + c 2 + s 2) 
- P" [ E* c o s y  

+ (2  - u) tan 7'] 

P: kcos Y 
cos q/ 

+ P0 ~ + P,~ sin 

+ p~, - cos ~' tan ~b . 

(22) 

The maximization of  the Hamiltonian with respect to 
the controls C and S leads to the optimal law 

In these equations,  the only physical characteristic of  
the OTV is its maximum lift-to-drag ratio, E* ,  and the 
nature of  the atmosphere is specified by the constant 
value k -~ = fir, called Chapman ' s  atmospheric parame- 
ter. For Earth 's  atmosphere,  we take the value k 2 = 900, 
and for the OTV, we consider the case E* = 1.5 for 
the computation.  

Introducing the adjoint variables p .  we form the 

E*  Pi. E*  p~, 
C = S - (23) 

2u p,,' 2u p,  cos 7" 

Along the optimal trajectory, the adjoint component  
p .  for any variable x, satisfies the adjoint equation 

dp, OH 

ds Ox 
(24) 

× 

Z 
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Fig. 6. Spherical coordinates for atmospheric flight. 
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It is known that the problem has the following inte- 
grals[2] 

H = co, po = c~,p¢, = c2s inO - c 3 c o s 0  
p~ = c~ sin ~b + (c2 cos 0 + c3 sin 0) cos ~b, (25) 

N. X. VINH and J. M. HANSON 

In summary, besides the six state equations (21), we 
have four equations providing directly the controls C and 
S and the accessory variables F and G. Their integration 
requires guessing only three initial parameters Ce, S, and 
G~ at the initial entry time, while Fe can be computed 
from the Hamiltonian integral, with co = c~ = 0: 

where the c~ are constants of integration. In this problem 
of optimal turning, we are concerned with speed deple- 
tion and heading change without prescribing the final 
arc length s¢ and final longitude 0~. Hence, by the trans- 
versality condition 

Co = O, c, = O. (26) 

With four integrals, only two of the remaining adjoint 
equations need be integrated. Their integration requires 
guessing two initial values which, together with c., and 
c3, constitute a four-parameter problem. By normalizing 
the adjoint variables, we are led to a three-parameter 
problem. 

The difficulty in estimating these parameters can be 
alleviated by using the controls C and S, as given in 
eqns (23), to replace the adjoints. By taking the deriv- 
atives of these equations, using the equations for the 
adjoints according to the optimality condition (24), we 
have directly the equations for the control 

dC 2C 1 F k2 F 
ds - E*----u (C + E* tan ;~) + cos2--~/ [ 

E* (2 - u) kZ 1 C: ] ,  
+ 2u + -2- ( - - 3 S  ~)sin) '  

(27) 

and 

d S _  2SC + S t a n T ( k Z C  + 1 + ~) 
ds E*u cos 7 

G cos 
- S tan q5 sin ~u (28) 

COS 7' 

E* (2 - u) 
-k2F tan 7 tan }' 

2u 
kZ 

- -  ( 1  - C 2 - S 2) 
2 cos ~' 

- S c o s T c o s ~ u t a n ~ b  + C ( 1 -  ~)  

+ Gsin~u = 0. 

(32) 

As a matter of fact, because of this relation, we can 
delete one of the differential equations. 

4.1 Transversality conditions 

At the initial time, s~ = 0, we have the values of the 
state variables 

0, = 4~e = ~u, = 0, 
Z~ = 0.0002, 
y~, u, prescribed. 

(33) 

The value Ze has been selected so that for a typical 
OTV, the atmospheric force is slightly felt to have a 
small but detectable effect on the incoming Keplerian 
trajectory. The initial angle Ye is very small, of a few 
degrees, and is just sufficient for the required plane change 
to be accomplished. The initial value of ue is computed 
when the descending trajectory for atmospheric entry has 
been specified. 

It is proposed, for a prescribed speed depletion, to 
maximize the plane change i, that is the function 

J = - c o s i l  = - c o s  Or cos ~t. (34) 

At the final, exit point, we have 

where F and G are defined as the ratios Zj = Z,., U~ = prescribed, 7~ = free. (35) 

E*Zpz E*p~ 
F - G = (29) 

2u Pu " 2u p,," 

The equations for F and G can also be easily obtained 
a s  

dF 2F 

ds E*u 
- - ( C  + E * t a n y )  

kZ 

+ 2 cos 7 
- - ( 1  - C 2 - S 2)  ( 3 0 )  

We have the transversality conditions 

OJ 
P~j - sin q~I cos ~uy 

0~bi 

OJ 
P~t - - cos ~b I sin q/r 

0q/  
OJ 

P;~ - O. 
07) 

(36) 

From the eqns (23) and (29), these are expressed as 

and 

dG 2G 

ds E*u 
- -  (C + E * t a n T )  

S 
+ - - -77,  cos )' cos q/. 

cos~ q~ 

Cj = 0, G_! _ tan q51 cos yy (37) 
Sf tan q/I 

(31) 

In summary, to search for the optimal trajectory, we 
must guess the initial values C,., S~ and G~ while com- 
puting F~ from the Hamiltonian integral (32). At the final 
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altitude Z s = Ze, used as stopping condition, the con- 
dition of u s and the two transversality conditions (37) 
are used for matching. Since Ce and S, have physical 
meaning, and for small lateral range G remains small, 
the correct guessing is relatively easy. 

4.2 Numerical Results 
The solutions have been generated for several values 

of u, = V~/(tl/R), and the results are presented in Fig. 
7. In this figure we have plotted X/--uu r = VflX/Iz/R vs 
u,, using the plane change i as parameter. The plot gives 
the complete graphical solution for the case of E* = 1.5 
ranging from circular entry, ue = 1, to parabolic entry, 
ue = 2, and for plane change from 0 ° to 60 °. For ex- 
ample, taking ue = 1.25, that is an entry speed 
V, = 1.118 V, where V,. is the circular speed at distance 
R, a reduction to circular speed, u s = 1, will provide a 
maximum plane change of just over i = 9 °. If a 23 ° 
plane change is desired, the final speed is V s = 0.837 

V c • 

Figures 8 to 11 show the behavior of the state and 
control variables for two typical optimal turning trajec- 
tories, one leading to supercircular speed exit, u s > 1, 
shown in dashed lines, and the other leading to subcir- 
cular speed exit, u s < 1, shown in solid lines. In both 
cases, the entry speed variable is ue = 1.733, and this 
corresponds to entry speed for a direct return from GEO. 
The plane change obtained in the first case is 20.°9 and 
for the second case, it is increased to 42.09. The abscissas 
in the figures are the longitudes. FiF~ure 8 shows the 
variations of the speed V u  = V~ Vgr, and the altitude 
from the entry point. From definition (16), we have the 
linear change in the altitude 

flAh = log (Z/Ze). (38) 

It is seen that for large plane change, the trajectory 

19 

gets deeper in the dense atmosphere for turning. It is 
also there that the most speed depletion occurs. It is 
obvious that most of the plane change occurs while the 
OTV is at low altitude as shown in Fig. 9 for the change 
in the heading. At the beginning and at the end of the 
trajectory, the heading is near stationary and the variation 
in the latitude is linear. Figure 10 shows the variations 
of the flight path angle. For supercircular exit, the exit 
angle is approximately 7s = - 1/2 Ye, while for subcir- 
cular exit it is nearly zero. Finally, Fig. 11 shows the 
variations of the normalized lift coefficient 2 = CL/ 
CL.. As seen in the figure, it is near the value 2 = 1 
for maximum lift-to-drag ratio. For the bank angle plot- 
ted in the same figure, as shown in the rear view sketch 
of the vehicle, when cr exceeds 90 ° the lift force is point- 
ing downward. This occurs at the beginning of the tra- 
jectory for a quick descent to low altitude for turning. 
Because of the transversality condition C s = 0, the final 
bank angle is a s = 90 °. For high speed exit, the second 
half of the trajectory is flown with practically no vertical 
lift component. The OTV skips out based on the strength 
of the speed, in ballistic mode. Vertical positive lift 
component is required in the second half of the trajectory 
for subcircular speed exit. Because of this lift compo- 
nent, it is possible to control the flight path angle for 
grazing exit, 7s = 0. The computation of the normalized 
lift coefficient and the bank angle is based on the defi- 
nition (20), explicited as 

S 
2 - CL _ X/-~_, + $2 ' tan a = ~ .  (39) 

CL* 

5. SOLUTION TO THE AEROASSISTED-ELLIPTIC MODE 

We are now in the position to analyze this lifting mode. 
As discussed in Section 3, this is the only mode that 
requires the splitting of the plane change angle between 

i U  e . . . . .  ,.~ . . . .  N T R Y  i =  6 0  ° 5 5  ° 5 0  ° 4 5  ° 4 0  ° 

.......... I//////////////////////, 
, .  ////////////////////////////, 
" 

'" 

o o o o ( 
3 5  ° 3 0  ° 25  2 0  ° 15 I0  5 0 

'/////////////'/, /, ,l/j i, ' / / / / / / / /  
'/, Y/l, ' / / / / / /  

'//'/////'/////, 9 / /  

'////////////, e ,, 

/ 

I I I ! I I I ! I 

O. 4 O.S O.6 O.7 O.8 0.9 I.O I. I 1.2 1.3 I. 4 

Fig. 7. Maximum plane change for prescribed speed depletion. 
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the space phase and the atmospheric phase. The general 
problem is to find the optimal mode and compute its 
solution for given n, a and i. As an example,  we consider 
the case of  n = 2, a = 1.04 and i = 30 ° . With 
R = 6498 kin, for an entry altitude of  h,, = 120 km, 
this corresponds to a LEO at an altitude of  380 km. With 

this value of  a, the P mode is nonoptimal.  A quick check 
of  Fig. 4 rules out the H mode in favor of  the AP mode.  
More precisely, for the H mode,  we use the explicil 
solution in Section 3 to obtain the limiting value 
i = 36.°165 for the three-impulse to become optimal. A 
check of  Fig. 3 confirms this assessment.  For the optimal 
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two-impulse pure propulsive transfer, we obtain 

AvH = 0.486390, 

while for the AP mode, from eqn (6) 

AVAp = 0.302746. 

It remains to be seen that, as shown in Fig. 4, the AE 
mode with two-impulse deorbit is truly optimal. 

First, the following nonoptimal scheme as generally 
(40) accepted in the published literature is considered: a one- 

impulse planar deorbit for an entry angle )'e, followed 
by atmospheric plane change of the required amount with 
a second impulse at exit for ascent and circularization 
at LEO by a third impulse. 

(41) With a~ = na, and using circular speed at LEO as 
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unit speed, the characteristic velocity for deorbit is characteristic velocity for deorbit is now 

A vt = ~nn 1 - (42) 

We also have the value for the entry speed variable 

1 [a~ + (2a, - 3)cos:  y. 

Llv, = ~nn e a~  - c o s :  y ,  

- 2 cos 7~ cos i, - -  c~s; (48) 

U e  - -  

2al (al -- 1) 

a{ - cos ~ ;,~" 

To achieve a plane change of 30 °, an entry angle near 
7, = - 3° must be selected. The equations for optimal 
turning in Section 4 can be used with the same trans- 
versality conditions (37) since the problem is now viewed 
as maximizing the exit speed with a prescribed plane 
change. At exit, we have u s = 0.636873, ~'l = 0. To 
reach LEO at apogee, a second impulse is applied tan- 
gentially at exit. Its magnitude is 

• /  2 ( a  - 1) ~uaul. 
zlv2 = a a2 -- C0S2)7 

(43) With a small entry angle 7e selected, just enough for 
completing the atmospheric turning leading to condition 
(47), the maximized free atmospheric plane change in 
can be computed. To compute the space plane change 
i~, we refer to Fig. 12 where ht is the unit angular 
momentum orthogonal to the plane of the first orbit. If 
O X  is the line of apsides, after deorbit h, becomes h 
orthogonal to the plane of the entry trajectory after ro- 
tating by the angle i~ in the Y Z  plane. After atmospheric 
plane change by the angle in, it becomes h I orthogonal 
to the plane of the final orbit. If I21 is the longitude of 
the ascending node of the final plane, we have h~ = (0, 
sin it, cos i0 and h l = (sin i, sin 12 l, - sin in cos ~2 l, 

(44) cos io). Hence, we have the relation 

At apogee, the third and final impulse required for 
circularization is 

(45) 
¢2 (a  - 1) 

.4~,s = I - a~ cos7~,~ cos 7j. 

The total characteristic velocity of this nonoptimal 
mode is found to be 

zlv = 0.364077. (46) 

Hence, although there is fuel saving as compared to the 
Hohmann mode, which is the best pure propulsive mode, 
the fuel consumption is still higher than that for the AP 
mode. 

As an improvement toward obtaining the best solution, 
a preliminary numerical study shows that in this region, 
any attempt to add more atmospheric plane change, called 
forced plane change, at the expense of reducing the value 
u s to be less than the necessary value for climbing to 
LEO, will lead to higher fuel consumption. Hence, the 
optimal condition is that zJv2 = 0, and from eqn (44), 
we have 

2a (a - 1) 
(47) / ~ f  - -  (12 -- COS2 7!; 

h i ' h i  = c o s i  
= cos il cos in - cos -QI sin il sin io. (49) 

Because of the effect of nonzero entry angle, entry 
starts behind the X-axis by an angle co such that 

2a, (a~ - 1) sin 7, cos ?, 
sin oJ = (50) 

a~ - (2a, - 1) cos: 7e 

After evaluating this angle, we can compute t2j from 

sin q-'r = sin i,, cos [0j - (~o + (2j.)], (51) 

where the longitude 0j in atmospheric flight is measured 
from the OXe  axis passing through the entry point. Be- 
cause of the spherical trigonometry relations (49) and 
(51), the initial plane change i~ is slightly higher than 
the complement i - i,,. 

If this AE mode with one-impulse deorbit is followed, 
we have )'e = - 3  °, u,. = 1.349538 from eqn (43), and 
co = 115527 from eqn (50). The free atmospheric plane 
change provides i, = 125107 with the elements at exit 
being Oj = 34?942, q~j = 45291, 7t = 15177, u I = 
1.014363 and Vr  = 115332. Thus £2~ = 25945 and the 
preliminary plane change is it = 175903 from eqn (49). 
The total characteristic velocity for this maneuver is 

A v  = 0.253613, (52) 

If the exit condition satisfies this relation, then m 
postatmospheric flight, the only impulse required is the 
last impulse as given in eqn (45). In this case, the at- 
mospheric plane change is called free plane change since 
we have optimally used the required speed depletion for 
plane change. 

If we use one single impulse for deorbit while also 
making a plane change iE, then the entry value u,, is still 
as given in eqn (43), but due to the plane change, the 

which shows a net improvement over the forced atmos- 
pheric plane change as given in eqn (46). Furthermore, 
this mode is now seen as better than the AP mode. 

Finally, it is a simple exercise to show that under the 
present situation, to deorbit for an entry angle 7~ = - 3° 
while achieving a propulsive plane change ip = 17.903 °, 
a two-impulse scheme is better than the one-impulse 
mode. For a two-impulse deorbit, the first impulse is 
applied orthogonally to the position vector at HEO, to 
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propel the OTV into a higher elliptic orbit reaching an 
apogee at a distance r , x  while making a plane change 
i~. The required characteristic velocity is 

3x 2 cos i] (53) 
~v,  = \-~ + 1 +------5 

At this apogee, a second orthogonal impulse is applied 
to return the vehicle for reentry at the prescribed angle 
},e while making the remaining propulsive plane change 
i 2 = it, - -  i I .  The required characteristic velocity is 

x [ a~x2 + (a'x~ + a l x  - x - -  2) cos ~ y~ 

k (x + 1) (a~x z cos2 G) 
(54) / 

_ 2 . / i ~  ( a , x  - !)  
x + 1) (a~x 2 - cos 2 Ye) ]],,2 

X cos y~ cos (i x - il) 

For a given it,, the minimization of the sum zJv~ + 3v2  

with respect to x and i, leads to the conditions for optimal 
two-impulse deorbit. But, it should be noticed that by 
going out to a larger distance, x > 1, the entry speed is 
now higher as computed from 

2al  x (a j x  - 1) 
u~ a~ x'- - cos 2 ~,~ (55) 

As a consequence, the free atmospheric plane change 
i, is also higher, thus reducing the propulsive plane change 
i x. In other words, there is coupling between space and 
atmospheric maneuver. To solve this problem, for each 
value of x, we minimize the sum 3 v~ + d v2 with respect 
to i, to have 

/ 
d v ,  ~ /  2 (a lx  - 1) 

sin i, = ~ ~ x  3 (a~ x 2 - cos-" ~',.) 

× cos )'e sin (it, - i~). 
(56) 

This gives the optimal condition for splitting the pro- 
pulsive plane change i x. By changing i] into ip in eqn 
(49) we have the equation for the total plane change in 
the case of two-impulse deorbit. The longitude of the 
ascending node g2~ is still given by eqn (51) but now the 
angle to is obtained from 

2a , x  (a, x - l) s inyecos7~ 
sin to = (57) 

atx-  - ( 2 a , x  - 1) cos 2 ?,. 

Using x as parameter for optimization, we can com- 
pute ue and the optimal atmospheric plane change io, and 
then the total propulsive plane change i x as for the one- 
impulse case. The condition (56) gives the optimal split 
between i~ and i> The total cost for the transfer is the 
sum d v ,  + Av2 + A v  i. In this way, we can search for 
the optimal value of x. The computation has been done, 
and now with higher entry speed, it requires the entry 
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angle 7, = - 3?5 with the optimal va luex  = 1.463 pro- 
viding u~ = 1.504644. With  these values of  entry angle 
and entry speed the optimal atmospheric turning starts 
with C, = - 0 . 2 4 3 8 3 ,  S~ = 1.01008617, and G~ = 
- 0 . 2 4 3 8 8 3 .  The end results are i~ = 167765, 0j = 
32?965, ~u s = 157791, Yl = 17294 and u r = 1.01327. 
This gives o9 = 107.411, (2 s = 37189 and ip = 137246. 
This angle splits into i: = 2?059, i, = 117187 with the 
total characteristic velocity 

N. X. VINH and J. M. HANSON 

The characteristic velocities are respectively 

[ a ( a  + 1) u I + 2a 2 
Av3 

L a + l  

/ 2aul  t,2 7 
- 2 a ~ a  + 1 c o s i 3 J  

and 

(62) 

AVopt = 0.22969.  (58) 

A refined calculation shows that, for an absolute op- 
timal solution, there is a very small  plane change at the 
last impulse.  

We notice that the effect of  nonzero entry angle 7~ and 
exit angle yr on performance computat ion is small  since 
by adding linearly the plane changes we have 30701, 
and if zero entry and exit angle are used, the cost was 
determined as 0.22625.  This leads us to devise a com- 
puter program for a prel iminary computat ion of the AE 
mode. 

First, the optimal atmospheric  problem is solved for 
five values of  u~ ranging from circular entry, u,. = 1, to 
parabolic entry,  u¢ = 2, leading to plane change from 
0 ° to 60 ° in increments  of  1 °, with resulting final speed 
u t. The results were stored in a data file. Figure 7 rep- 
resents a graphical display of  the solution. For any value 
of u~, and atmospheric plane change i,, cubic splines 
are used to obtain Ur. For fractions of  a degree, linear 
interpolation was used. With  this, the global optimal 
problem becomes a parametric optimizat ion problem. 

The preatmospheric  maneuver  is propulsive with one 
or two impulses.  By going out a distance r~x, with graz- 
ing entry,  ?'e = 0, the entry speed is 

2a ,x 
ue - . (59) 

a~x + 1 

With plane changes i~ and i: at the impulses,  we have 
the characteristic velocities 

LI v, = \ x + 1 x +-----~ cos i, (60) 

and 

Av: - L(x + ]~(g,x +- ]) 

X/(x + 1)(a~x + 1) 
(61) 

Similarly,  for the propulsive postatmospheric  maneu-  
ver, at exit angle ){~ = 0, and exit speed u s, we consider 
the general  case where a possible zl v3 with plane change 
i 3 is required immediately  at exit to boost  the vehicle to 
LEO for circularization by a A v4 with plane change in. 

l: 1 '2 + 3 2 cos i4 . (63) mY4 = ~- l 

If  ip is the total propulsive plane change,  we have the 
constraint  

il + i,. + i3 + i4 - i r, = 0. (64) 

By selecting a value x, we choose the entry speed ue(x). 
By selecting a value for the atmospheric plane change 
i,, we choose the exit speed us(io). Hence,  x and i,,, or 
equivalently ue and u I, are the ultimate parameters for 
optimization.  With  io selected, we have the value 
ip = i - i~. For each pair of  values x and io, the optimal 
distribution of  the propulsive plane changes is obtained 
by introducing the Lagrange multiplier q to handle the 
constraint  (64) and by minimizing the augmented func- 
tion 

J = ~ A v ,  + q ( i~  + i2 + i3 + i4 - i~,). (65) 
~=1 

We have then the necessary condit ions 

s i n i l  = - n  q A v l  (66) 

2 sin i2 
= - n q A v :  (67) 

x ~ / ( x  + l ) (a ,x  + 1) 

a ~ a  + 1 s ini3  = - q z l v 3  (68) 

~ sin i4 = - q  Av4. (69) 

For each x and io, the eqns (66)- (69) ,  together with 
the constraint  (64), are solved for the propulsive plane 
changes,  and subsequently,  by iteration on x and in, the 
optimal solution is obtained.  

For a given triplet (n, a,  i),  the program first searches 
for the no-extra-cost  a tmospheric  plane change with 
ip = O. With this, we have i~ = 0, Av~ = O, x = 1; 
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that is, the first impulse is inoperative. The planar deorbit 
is by one impulse which is here represented by Llv_,. The 
entry speed is given by eqn (59) with x = 1. With i3 = 0, 
Av3 = 0, and from eqn (62), we have the exit speed. 
Hence, we obtain 

2a~ 2a 
u, - , u,, - . (70) 

a , + l  a + l  

These conditions provide the maximum atmospheric 
plane change io. with the same cost as for planar return. 
If the prescribed i is less than this value, we simply 
waste more energy during atmospheric flight. It is only 
in the case where i > i,. that we have plane change in 
the propulsive mode, ip ~ 0. But in this case, not all 
the propulsive plane changes are always present. 

First, as noticed above, we have the case of optimal 
one-impulse deorbit, denoted by AE1. The first impulse 
is inoperative and it = 0, x = 1. For ip ¢ 0, the plane 
change i2 never vanishes since for i, = 0, with q ¢ 0, 
to satisfy condition (67), we have LI v2 = 0, which leads 
to (a~ - 1)2x 2 = 0 and hence the case where a, = 1. 
For the case AE1, we have two possibilities in postat- 
mospheric flight. First, with i 3 = 0, Av3 = 0, the exit 
speed is as given in eqn (70), just necessary for a climb 
to LEO. We have the case of free atmospheric plane 
change, and only one impulse is required for circulari- 
zation with plane change i 4. By eqns (63) and (69), 
i 4 = 0 only in the limiting case where a = 1. Next, we 
have the case where i3 ~ 0, and the value u I is less than 
the one given in eqn (70). This is the case of forced 
atmospheric plane change, and two impulses are required 
in postatmospheric flight. The mode AE1 occurs for 
small values of i and/or  near the origin, n ~- 1, a ~ 1, 
as shown in Fig. 4. 

As shown in Figs. 4 and 5, we have mainly the case 
of two-impulse deorbit, denoted by AE2. Because of 
high entry speed, this mode leads to i 3 = 0 ,  hence to 
free atmospheric plane change. Two impulses are re- 1. 
quired for deorbit and one last impulse is necessary for 
circularization. Plane change occurs whenever an im- 2. 
pulse is applied although the last plane change i4 is gen- 
erally small because the AE mode is optimal for low 3. 
LEO. For that reason, in the complete example above, 
we have set both i 3 = 0 ,  i4 = 0, for the sake of clarity 
in the discussion. 4. 

This program, with the approximation Ye = 0, Yl = 0, 
has been used to find the regions of optimality in the 
section i = constant as depicted in Figs. 4 and 5. In 5. 
between these figures, when i ~ 40.°3 the point where 

6. 
the three modes H, AP and AE are equal occurs on the 
n = 1 axis, at the point a ~ 2.39. Then, beyond Fig. 7. 
5, the AE mode disappears when i reaches the value of 

25 

about 59 °. Finally, as mentioned above, the H mode 
disappears when i = 60°185. 

6. CONCLUSION 

This paper gives a complete analysis of the problem 
of aeroassisted return from a high Earth orbit to a low 
Earth orbit with plane change. A discussion of pure 
propulsive maneuver leads to the necessary change for 
improvement of the fuel consumption by inserting in the 
middle of the trajectory an atmospheric phase to obtain 
all or part of the required plane change. The variational 
problem is reduced to a parametric optimization problem 
by using the known results in optimal impulsive transfer, 
and solving the atmospheric turning problem for storage 
and use in the optimization process. The coupling effect 
between space maneuver and atmospheric maneuver is 
discussed. Depending on the values of the plane change 
i, the ratios of the radii, n = rt/r 2 and a = r2/R and 
the maximum lift-to-drag ratio E*, the optimal maneuver 
can be pure propulsive or aeroassisted. For aeroassisted 
maneuver, the optimal mode can be parabolic, which 
only requires drag capability of the vehicle, or elliptic. 
In the elliptic mode, it can be one-impulse for deorbit 
and one- or two-impulse in postatmospheric flight, or 
by two-impulse for deorbit with only one-impulse for 
final circularization. It is shown that whenever an im- 
pulse is applied, a plane change is made. The necessary 
conditions for the optimal split of the plane changes are 
derived and mechanized in a computer program for the 
solution. 
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