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We introduce a simple, non-local approximation fo r  the exchange- 
co r re l a t i on  energy of an inhomogeneous electron gas. This approximation 
is  shown to be quan t i t a t i ve l y  accurate in several important l i m i t i n g  
cases. The method is used to ca lcu la te  the non-local exchange- 
co r re la t i on  energy for  density d i s t r i bu t i ons  represent ing quasi- two- 
dimensional e lectron layers.  These energies are compared to the widely 
used three-dimensional loca l -dens i t y  approximation and suggest that  the 
l a t t e r  approximation may contain errors on the order of 10-30% for  layer 
p r o f i l e s  typ ica l  of real systems. 

In an e a r l i e r  paper, ~ we out l ined a simple 
approximation for  ca lcu la t ing  the non-local 
exchange-corre lat ion energy of a very 
inhomogeneous electron gas. The method involved 
a square-well approximation for  the e lec t ron-  
e lec t ron  co r re la t i on  funct ion.  The 
approximation was used to estimate the accuracy 
of the widely used loca l -dens i t y  approximation 
(LDA).2, s In the LDA the exchange-correlat ion 

+ 

energy of an e lect ron at a point  2, mxc(r) ,  is 
assumed to be the exchange-correlat ion energy 
per p a r t i c l e  of a homogeneous e lect ron gas at 

the density n(~). This is an approximation 
which must become inva l i d  for  quasi-2D electron 
layers when the layer becomes very narrow. This 

follows from the observation that ~xc(~) in the 
LDA diverges from the 2D exchange-correlation 
energy expected in that l im i t .  With our 
non-local calculations we attempted to estimate 
at what widths the LDA becomes invalid. The 
main shortcoming of the square-well approx- 
imation (SWA), is that i t  is not quantitatively 
accurate in the l im i t  of a homogeneous system. 
Thus the method cannot provide a general 
alternative to other non-local approximations or 
even to the LDA, although i t  has some clear 
advantages in very inhomogeneous systems. 

In this paper we propose a new 
approximation for the inhomogeneous correlation 

+ 

functions and hence for Exc(r) , which is 
correct in the homogeneous l im i t .  This new 
non-local method is used to provide a more 
rel iable test of the LDA in quasi-2D layers. 

The approximate correlation functions are 

used to calculate ~xc(~) in atomic units, via 
the exact expression: ~ ' 

+ 1 n(~')h(~,~') 
~xc(r) = ~ J d~' + +, 

I r - r  I 
(1) 

÷ ÷ 

The co r re la t i on  funct ion,  h ( r , r ' ) ,  is 
re la ted  to the usual pa i r  co r re la t i on  funct ion 

g ( r , r ' ; ~ ) ,  of an e lect ron gas wi th coupling 
constant ~, 

i 
+ + + ÷1  h( r , r ' )  = j dX g(r , r  ;X) - 1. (2) 

0 
+ ÷  

The function h ( r , r ' )  is a complicated non-local 
function which must, however, satisfy the 
following sum rule. The exchange-correlation 

+ ÷ ÷ ~ ÷ 

hole, defined by n x c ( r , r ' )  = n ( r ' ) h ( r , r ' )  must 
exclude one e lec t ron,  i . e .  

f d~' n (~ ' )h ( r , r ' )  : - i .  (3) 

From th is  s ta r t ingsPo in t  several approximations 
have been studied. ,6 In the SWA we approx- 

÷ ÷ 

imated h ( r , r ' )  by a spherical square-wel l ,  

+ ÷ ÷ ÷ 

= I r - r  4) h ( r , r ' )  -hoe(R{r) - ' I )  ( 

where R(~) is determined at each point  by the 
sum rule (3) and h o is  the magnitude of the 

÷ ÷  

cor re la t i on  funct ion at r : r ' .  In the case of 
the quasi-2D layers,  th is  approximation 
i l l u s t r a t e s  the non-local nature of the 
exchange-corre lat ion hole which goes from a 
near ly spherical 3D hole for  very wide layers,  
to a c i r cu l a r  2D disc when the width goes to 
zero. This approximation was appl ied to t~o 
very inhomogeneous density d i s t r i b u t i o n s  
representat ive of the metal surface and of 
quasi-2D e lect ron layers.  The quan t i t a t i ve  
resu l ts  of those ca lcu la t ions  were much bet te r  
than we had an t i c ipa ted  consider ing the crudeness 
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of the approximation. The success of the method 
was attr ibuted to the property that+the strength 
of the correlations at a radius I r - r ' l  are not 
reduced, or screened, unless some charge is 
present at a smaller radius. We would l ike to 
preserve this in tu i t i ve ly  appealing property of 
"screened correlations" in any extensions of the 
theory. 

The approximation we propose here is a 
correlation function h ( I r - r ' l )  which is a direct 
function of the screening charge inside the 

• + ~ J + ÷ . * radlus i r - r '  . The value of h(Jr-r 'J)  is taken 
to be the same as the value of a corresponding 
homogeneous correlation function, hO(R), at a 
scaled radius R which would contain the same 
integrated charge, i .e.  

Table 1. The non-local exchange-correlation 
energy per electron, in atomic units, in the 
l i m i t  of a 2D layer of electrons. SWA is the 
s~uare-well approximation of Ref. 1, SCA is the 
screened-correlation approximation. These are 
compared to the results of modified RPA 
calculations in 2D. (Here r s is defined by r s = 
(~Ns)-l/2, where N s is the 2D density.) 

~s SWA SCA RPA a 

0.5 -1.73 -1.13 -1.33 
2 -0.43 -0.33 -0.38 
4 -0.22 -0.18 -0.20 

16 -0.054 -0.050 -0.057 

a. References 17 and 18. 

where 

h( l~-~ ' I )  = h°(R;rs ), (5) 

R 3 _ 3 ] d r ~2 ] ~ n(r,~). (6) 
4~n 0 

hO(R;rs ) is the correlation function of a 
homogeneous system at some density corresponding 

to rs = (3/4~n)1/3- This density can be taken 

to be the local density, n(~), or some non-local 
average density i f  the system is very 
inhomogeneous. In this paper we intend to look 
at the 2D l im i t  and the la t te r  approach is 
required. We define r s by a non-local 
generalization of the usual def in i t ion: 

~s dr r2 ~ dRn(r,R) : I . 
0 

(7) 

The inhomogeneous correlation function defined 
by (5) and (6) automatically satisf ies the sum 
rule requirement without any v a r i a t i o n ~ - ~  
parameters. This remains true as long as the 
homogeneous correlation function, or any 

approximation for the homogeneous function, 
sat isf ies the sum rule in the uniform system. 
This can be seen by substituting (5) into the 
sum rule (3) and changing the integration 
variable to R. The large distance behavior for 

~xc(~) that was obtained correctly with the SWA 
is also obtained in this approximation. The 
exchange-correlation hole for an electron at a 
distance z far from a planar metal surface 
correctly localizes the image charge at the 
surface g iv ing ~xc(Z) + -1/4z. Far from an atom 

the cor rect  l i m i t ,  ~ c(~) ÷ - I / 2 r  is also X_  
obtained. Most impor tant ly  th is  approximation 
re ta ins  the ca lcu la t iona l  s imp l i c i t y  of the 
square-well  approximation. No i t e r a t i o n  is 
needed to f ind the appropr iate co r re la t i on  
funct ions.  These funct ions can be constructed 

+ ÷ 

at each point  I r - r ' J  in the process of 
i n teg ra t i ng  the exchange-correlat ion energy, 
Eqn.(1).  The co r re la t i on  funct ion responds at 
each po in t ,  in a phys ica l ly  reasonable way, to 
the inhomogeneous density d i s t r i b u t i o n .  

For the present ca lcu la t ions  we have 
developed a convenient parametr izat ion for  the 
co r re la t i on  funct ion of the homogeneous system. 
The funct ion,  hO(r; rs)  , includes the in tegra t ion  
over the coupling constant I as in Eqn.(2). We 
w r i t e ,  

h°(r;rs ) : -ho(rs)( l  - Qra)exp( lar,c+dr - ~ T  J sJ , 
S 

(8) 

where Q = (1 -ho( rs ) ) /ho( r~ )  and ho(r s) is the 
magnitude of the co r re la t l on  funct ion at the 
o r i g i n .  The parameter a is determined by the 
sum rule (3).  Put t ing (8) in to ( i )  and (3) wi th 

n(~) = n o we obtain an expression for the 
homogeneous exchange-correlation energy,in 
atomic units, 

~c ( r s  ) x  = - i 3ho(r s) ~i~ r(~) - Qr r(~) ~i~( x s x 7 
2 r s ( x  - - )  ~(r-~(_T-- ^ ,4 , ,2 /3  J' L l~J - ~ r s ~ j  

(9) 

where x = c+dr s. The parameters c and d are 
determined by f i t t i n g  this expression to 

0 + 
calculated values/-9 for Exc(r). In our 

calculations we have approximated ho(r s) by the 
corresponding values calculated for the case 
I=1.8, z° We f i t  these values with the 
expression, ho(r s) = 1/2 + 1/~tan-1(.847rs). 

With c = 1.6 and d = .07 the expression (9) 
f i t s  the calculated values of Ceperley and 
Alder, for example, with at most 3% differences 
over the range .I < r s < 20. Motivation for 
these particular parametrizations wi l l  be 
discussed elsewhere. 

Now we wi l l  use these ideas to look at the 
exchange-correlation energy of quasi-2D electron 
layers. We f i r s t  note that in the extremely 
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inhomogeneous l im i t  of an exactly 2D layer, 
(n(z) ~ a(z)) ,  the non-local calculat ion, 
referred to as the screened-correlation 
approximation (SCAt, compares well with the 
expected 2D exchange-correlation energy (Recall 
that the LDA energy diverges in this 2D l im i t ) .  
Results for this l i m i t  are l is ted in Table 1. 
The analysis of the non-local effects for layers 
of f i n i t e  thickness is the same as in 
Reference 1. We calculate the total non-local 
exchange-correlation energy Exc for various 
widths and compare this to the energy 
calculcated within the LDA. In this case the 

LDA is calculated with accurate values of E ° xc 
given by (9). The energy is also calculated in 
a 2D approximation where the 
exchange-correlation energy per electron is 
taken to be the 2D l imi t ing value of the 
non-local approximation. The error for both 
local approximations is defined as the percent 
deviation from the non-local calculat ion. Here 
we look at a quasi-2D layer with the Fang and 
Howard density pro f i le ,  ±I 

i n(z)  = ~ ~I s b 3 z 2 e -bz (10) 

N s i s  the 2D e l e c t r o n  dens i t y  and b i s  a 
parameter which determines the layer width. 
This prof i le  is expected to be a good 
approximation for many inversion and 
accumulation layers.±2, ~3 In Fig. i we plot the 
errors in the 2D approximation and in the LDA as 

a function of w '= w/r~ where r° s = (3/4~no)1/3 

is the value of r s at the prof i le  maximum 
and w ~ Ns/n o : 3.7/b is the layer width. 
Unlike the SWA results the errors calculated 
in the SCA have some weak dependence 

on the value of r ° These results are 
S" 

calculated at r ° = i .  The results of the SCA 
S 

and the SWA are not very d i f ferent .  This 
indicates that inaccuracies in the SWA are 
largely cancelled out in comparing that 
non-local result to the square-well version 
of the LDA. The results in Fig. I ver i fy  that 
the LDA becomes questionable when the width of 
an electron layer becomes much less than the 

in te rpar t i c le  spacing r~. 

For inversion layers and accumulation 
layers in semiconductors we can estimate the 
character ist ic width of a layer with the 
formula, ~ 

w 1.6 [N* (~_)2 ]1/9 (Ii) 
w' ~ rO--~-/3 = v I /3 z 

S 

where N* = (N s + 32/11 Ndepl), Ndepl is the 
depletion layer charge per unit  area, < is 
the d ie lect r ic  constant, m z is the effect ive 
mass perpendicular to the layer and v is the 

0 v a l l e y  degeneracy.  Because o f  the e x t r a  r s 
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The e r r o r  in the LDA and in  the 2D 
app rox ima t ion  when compared to the non- 
l oca l  e x c h a n g e - c o r r e l a t i o n  energy o f  a 

layer of electrons, w' = w/r ° is the 

dimensionless width and r ° is the value 

of r s at the prof i le  maximum. The 
error in the LDA is the absolute 

LDA 
value of (Exc - Exc )/Exc and s imi lar ly  

for the 2D approximation. Both the 
LDA and the 2D approximation 
overestimate Exc. In the square-well 
aporoximation (SWAt both the non-local 

Exc and E LDA xc are calculated with the 

square-well correlat ion function. For 
the screened-correlation approximation 

(SCA) E LDA is calculated with accurate 
xc 

values for the homogeneous exchange- 

correlat ion energy. 

dependence in the present method the SCA results 
in Fig. 1 are not s t r i c t l y  applicable to real 
inversion and accumulation layers. However, we 
w i l l  see that this dependence is not very 
important, at least for the example we look at 

here. Let us f i r s t  ignore the r e dependence 
s 

and use Eqn. (11) and Fig. I to estimate errors 
for Si(100) quasi-2D layers,3,~3, ~" (m z = 0.92 
and ~ = 11.8). We find that the LDA 
overestimates the exchange-correlation energy by 
amounts ranging from 15% at N* = 3x1012 cm -2 to 
26% at N* = Ix1011 cm-2. To check this we 

have recalculated the errors using r~ values 

consistent with EQn. (11) and the def in i t ion of 
w. We find that these errors d i f fer  by only a 
few percentage points from those found with 

Fig. 1. The effect ive r ° for these calculations 
s )vl /3 

is roughly, approximated by r °s (mop/K where 
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mop = 0.19 is the opt ical  mass for Si( lO0). 3 
o This e f fec t i ve  r s varies from i . i  at 

N* = 3xi012 cm-2 to 4.9 at N* = IxlO I I  cm -2. We 
have also used Fig. i to estimate the errors in 
the 2D approximation for these layers. In this 
approximation the layer is assumed to be exact ly 
two-dimensional with density N*. This 
approximation also overestimates the exchange- 
cor re la t ion  energy calculated with the non-local 
theory. The errors are between 16 and 26% for 
densi t ies between ixlO I I  and 3xlO 12 cm -2 and are 
consistent with those calculated by Stern. z5 

In summary, we have proposed a simple, 
Quant i ta t ive method for ca lcu la t ing non-local 
exchange-correlat ion energies in systems with an 
a r b i t r a r i l y  large degree of inhomogeneity. The 
method is accurate in several l im i t s  but is in 
need of fur ther test ing in more well understood 
inhomogeneous systems. Our resul ts for  quasi-2D 
layers provides a guide for est imating the 
a p p l i c a b i l i t y  of the LDA in a given system. We 
suggest that there may be substantial errors in 
the LDA for inversion layers and accumulation 
layers over a wide range of 2D electron 
densi t ies.  As discussed in Ref. i ,  th is over- 
estimate of the exchange-correlat ion energy is 
consistent with the tendency of the LDA to 
overestimate subband energy level 
d i f f e rences .13 ,~ ,  z6 These non-local ef fects 
may also be important in the ongoing problem of 
val ley degeneracy in Si layers.13, zg We have 
made several approximations in applying the 
resul ts contained in Fig. i to electron layers 
in real mater ia ls.  In par t i cu la r  Eon.(12) 
does not take into account the ef fects of 
a possible d iscont inu i ty  in the d ie l ec t r i c  
constant. In the Si-SiO 2 system (~Si : 11.8 
and <Si02 = 3.9) the image potent ia ls  may 

play an important role z3 hut in many other 
systems including ~ny  heterostructures the 
d i e l ec t r i c  d iscont inu i t ies  are probably not 
important. In heterostructures the non-local 
ef fects discussed in th is paper may be 
pa r t i cu l a r l y  important because the layer 
widths are more var iable than in metal-oxide- 
semiconductor systems and can c lear ly  be made 
narrow enough that the LDA must be a 
nuestionable approximation. 
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