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We introduce a simple, non-local approximation for the exchange-

correlation

energy of an inhomogeneous electron gas.

This approximation

is shown to be quantitatively accurate in several important limiting

cases.
correlation

dimensional electron layers.

The method is used to calculate the non-local exchange-
energy for density distributions representing quasi-two-
These energies are compared to the widely

used three-dimensional local-density approximation and suggest that the
latter approximation may contain errors on the order of 10-30% for layer

profiles typical of real systems,

In an earlier paper,* we outlined a simple
approximation for calculating the non-local
exchange-correlation energy of a very
inhomogeneous electron gas. The method involved
a square-well approximation for the electron-
electron correlation function. The
approximation was used to estimate the accuracy
of the widely used local-density approximation
{LDAY.Z,3 In the LDA the exchange-correlation

energy of an electron at a point ?, exc(?), is
assumed to be the exchange-correlation energy
per particle of a homoaeneous electron gas at

the density n(r). This is an approximation
which must become invalid for quasi-2D electron
layers when the layer becomes very narrow. This

follows from the observation that exc(?) in the
LDA diverges from the 2D exchange-correlation
energy expected in that limit. With our
non-local calculations we attempted to estimate
at what widths the LDA becomes invalid. The
main shortcoming of the square-well approx-
imation (SWA), is that it is not quantitatively
accurate in the 1imit of a homogeneous system.
Thus the method cannot provide a general
alternative to other non-local approximations or
even to the LDA, although it has some clear
advantages in very inhomogeneous systems.

In this paper we propose a new
approximation for the inhomogeneous correlation

functions and hence for sxc(;), which is
correct in the homogeneous limit. This new
non-1ocal method is used to provide a more
reliable test of the LDA in quasi-2D layers.
The approximate correlation functions are

used to calculate exc(?), in atomic units, via
the exact expression:“
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The correlation function, hi{r,r'), is
related to the usual pair correlation function

+ > . .
g{r,r';x), of an electron gas with coupling
constant A,

1
h(F, 7' ) = [ dh g(F, ' a) - 1. (2)
0

The function h(;,;') is a complicated non-local
function which must, however, satisfy the
following sum rule. The exchange-correlation

. > >, > > >
hole, defined by ny.(r,r') = n(r'Ih(r,r') must
exclude one electron, i.e.

[ dr' n(rn(e, ') = -1, (3)

From this starting point several approximations
have been studied.5:6 1In the SWA we approx-

imated h(;,;') by a spherical square-well,

h(r, 7' ) = =hg8(R(F) - |F-r'1) (4)
where R(¥) is determined at each point by the
sum rule (3) and hy is the magnitude of the

correlation function at r=r', In the case of
the quasi-2D layers, this approximation
i1lustrates the non-local nature of the
exchange-correlation hole which goes from a
nearly spherical 3D hole for very wide layers,
to a circular 2D disc when the width goes to
zero. This approximation was applied to two
very inhomogeneous density distributions
representative of the metal surface and of
quasi-2D electron layers. The gquantitative
results of those calculations were much better
than we had anticipated considering the crudeness
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of the approximation. The success of the method
was attributed to the property that, the strength
of the correlations at a radius |r-r'| are not
reduced, or screened, unless some charge is
present at a smaller radius. We would Tike to
preserve this intuitively appealing property of
"screened correlations"” in any extensions of the
theory.

The approximation we propose here is a
correlation function h({r-r'|) which is a direct
function of the screening charge ipside the
radius |r-r'|. The value of h{ir-r'|) is taken
to be the same as the value of a corresponding
homogeneous correlation function, hO{R), at a
scaled radius R which would contain the same
integrated charge, i.e.

Table 1. The non-local exchange-correlation
eneray per electron, in atomic units, in the
1imit of a 2D layer of electrons. SWA is the
square-well approximation of Ref. 1, SCA is the
screened-correlation approximation. These are
compared to the results of modified RPA _
calculations in 2D. (Here rg is defined by rg =
(wNg)-1/2, where Ng is the 2 density.)

s SWA SCA RPA?
0.5  -1.73 -1.13 -1.33
2 -0.43 -0.33 -0.38
4 -0.22 -0.18 -0.20
16 -0.054  -0.050  -0.057

a. References 17 and 18.

h(IP-F'1) = hO(R;rg), (5)
where
| L .
R = =— drr2 [ & nir,2). {(6)
dnn O

hO(R;rg) is the correlation function of a
homogeneous system at some density corresponding

to rs = (3/4nn)1/3. This density can be taken

to be the local density, n(¥), or some non-local
average density if the system is very
inhomogeneous. In this paper we intend to look
at the 2D 1imit and the latter approach is
required. We define rg by a non-local
generalization of the usual definition:

s . . ~
]  drv2 [ @n{r,0) =1. (7
0

The inhomogeneous correlation function defined
by (5) and (6) automatically satisfies the sum

rule requirement without any variation of
parameters. This remains true as long as the

homogeneous correlation function, or any
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approximation for the homogeneous function,
satisfies the sum rule in the uniform system.
This can be seen by substituting (5) into the
sum rule (3) and changing the integration
variable to R. The large distance hehavior for

Exc(?) that was obtained correctiy with the SWA
is also obtained in this approximation. The
exchange-correlation hole for an electron at a
distance z far from a planar metal surface
correctly localizes the image charge at the
surface giving e,.(z) » -1/4z. Far from an atom

the correct limit, exc(;) » =1/2r is also
obtained. Most importantly this approximation
retains the calculational simplicity of the
square-well approximation. No iteration is
needed to find the appropriate correlation
functions. These functions can be constructed

at each point [P-r'l in the process of
integrating the exchange-correlation energy,
Egn.{1). The correlation function responds at
each point, in a physically reasonable way, to
the inhomogeneous density distribution.

For the present calculations we have
developed a convenient parametrization for the
correlation function of the homogeneous system.
The function, hO(r;rg)}, includes the integration
over the coupling constant X as in Eqn.(Z?. We
write,

ho(r;rs) = -hy(r (1 - Ora)exp(—(%g-c+drs]

(8)

where Q = (1-ho(rg))/hglrs) and hylrs) is the
magnitude of the corre?at1on function at the
origin. The parameter ¢ is determined by the
sum rule (3). Putting (8) into (1) and (3) with

> 3 :
n(r) = n, we obtain an expression for the
homogeneous exchange-correlation energy,in
atomic units,

3hotrod 1zs, &) - orr 3

3)
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egc(rs) = - L(

2rg X

(9)

where x = c+drg. The parameters c¢ and d are
determined by fitting this expression to

calculated values’~? for ezc(;). In our

calculations we have approximated hy(rg) by the
corresponding values calculated for the case
2=1.8,10  ye fit these values with the
expression, ho(re) = 1/2 + 1/ntan-1(.847r¢).

With ¢ ='1.h and d = .07 the expression (9)
fits the calculated values of Ceperley and
Alder, for example, with at most 3% differences
over the range .1 < r. < 20, Motivation for
these particular parametrizations will be
discussed elsewhere.

Now we will use these ideas to look at the
exchange-correlation energy of quasi-2D electron
layers. We first note that in the extremely
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inhomogeneous limit of an exactly 2D layer,
(n(z) = 8§{z)), the non-local calculation,
referred to as the screened-correlation
approximation (SCA), compares well with the
expected 2D exchange-correlation energy (Recall
that the LDA eneragy diverges in this 2D limit).
Results for this 1imit are listed in Table 1.
The analysis of the non-local effects for layers
of finite thickness is the same as in

Reference 1. We calculate the total non-local
exchange-correlation energy Ey. for various
widths and compare this to the energy
calculcated within the LDA. 1In this case the
LDA is calculated with accurate values of Egc
given by (9). The energy is also calculated in
a 2D approximation where the
exchange-correlation energy per electron is
taken to be the 2D limiting value of the
non-local aporoximation. The error for both
local approximations is defined as the percent
deviation from the non-local calculation. Here
we look at a quasi-2D layer with the Fang and
Howard density profile,i!

n(z) = 2 Mg b3 22 bz (10)

Ng is the 2D electron density and b is a
parameter which determines the layer width.

This profile is expected to be a good
approximation for many inversion and
accumulation layers.!?,13 In Fig. 1 we plot the
errors in the 2D approximation and in the LDA as

a function of w's= w/rg where rg = (3/4mny)1/3

is the value of rg at the profile maximum
and w = Ng/ng = 3.7/b is the layer width.
Unlike the SWA results the errors calculated
in the SCA have some weak dependence

on the value of rs. These results are

The results of the SCA

and the SWA are not very different. This
indicates that inaccuracies in the SWA are
largely cancelled out in comparing that
non-local result to the square-well version

of the LDA., The results in Fig. 1 verify that
the LDA becomes questionable when the width of
an electron layer becomes much less than the

calculated at rg = 1.

interparticle spacing rz.

For inversion layers and accumulation
layers in semiconductors we can estimate the
characteristic width of a layer with the
formula,?

' = L6 (ErJz 7i/0 (11)

- W
w'o= = =
SR VE 2

where N* = (Ng + 32/11 Ndepl), Ngep1 is the
depletion layer charge per unit area, x is

the dielectric constant, m; is the effective
mass perpendicular to the layer and v is the
0

Because of the extra o

valley degeneracy.
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Fig. 1. The error in the LDA and in the 2D

approximation when compared to the non-
local exchange-correlation energy of a

layer of electrons. w' = w/rg is the

dimensionless width and rg is the value

of rs at the profile maximum. The
error in the LDA is the absolute

LDA —
e = Exe )/Exc and similarly
for the 2D approximation. Both the
LDA and the 2D approximation
overestimate E,.. In the square-well
aporoximation ?SWA) both the non-local

value of (E

A are calculated with the

square-well correlation function. For
the screened-correlation approximation
LDA
(SCA) Exc
values for the homogeneous exchange-

is calculated with accurate

correlation energy.

dependence in the present method the SCA results
in Fig. 1 are not strictly applicable to real
inversion and accumulation layers. However, we
will see that this dependence is not very
important, at least for the example we look at

here, Let us first ignore the r: dependence

and use Eqn. (11) and Fig. 1 to estimate errors
for Si(100) quasi-2D layers,3s:3,i% (m, = 0.92
and x = 11.8). We find that the LDA
overestimates the exchange-correlation energy by
amounts ranging from 15% at N* = 3x1012 ¢m-2 to
26% at N* = 1x1011 cm2. To check this we

. 0
have recalculated the errors using rs values

consistent with Eqn. (11) and the definition of
w. We find that these errors differ by only a
few percentage points from those found with

Fig. 1. O for these calculations

s
is roughly approximated by rg (mop/z)vl/3

The effective r
where



42

mop = 0.19 is the optical mass for Si(100).3
This effective r? varies from 1,1 at

N* = 3x1012 em=2 to 4.9 at N* = 1x1011 cm-2. e
have also used Fig. 1 to estimate the errors in
the 2D approximation for these layers. 1In this
approximation the layer is assumed to be exactly
two-dimensional with density N*. This
approximation also overestimates the exchange-
corretation energy calculated with the non-local
theory. The errors are hetween 16 and 2% for
densities between 1x1011 and 3x1012 cm~2 and are
consistent with those calculated by Stern.t

In summary, we have proposed a simple,
quantitative method for calculating non-local
exchange-correlation energies in systems with an
arbitrarily large degree of inhomogeneity. The
method is accurate in several 1imits but is in
need of further testing in more well understood
inhomogeneous systems. Our results for quasi-2D
layers provides a guide for estimating the
applicability of the LDA in a agiven system, We
suggest that there may be substantial errors in
the LDA for inversion layers and accumulation
layers over a wide range of 2D electron
densities. As discussed in Ref., 1, this over-
estimate of the exchange-correlation energy is
consistent with the tendency of the LDA to
overestimate subband energy level
differences.i3,1%,46  Thege non-local effects
may also be important in the onqoing problem of
valley degeneracy in Si layers.i3,19 e have
made several approximations in applying the
results contained in Fig. 1 to electron layers
in rea) materials. In particular Ean.(12)
does not take into account the effects of
a possible discontinuity in the dielectric
constant. In the S-S0y system (kg = 11.8
and kgjg, = 3.9) the image potentials may

play an important role!? hut in many other
systems including many heterostructures the
dielectric discontinuities are probably not
important. In heterostructures the non-local
effects discussed in this paper may be
particularly important because the layer
widths are more variable than in metal-oxide-
semiconductor systems and can clearly be made
narrow enough that the LDA must be a
auestionable approximation.
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