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Abstract-We investigate a vector calculus for graphs and networks. thereby initiating 
a corresponding classification and structure theory. In particular. any network G( V. E. 
u, c) may be decomposed as 

G = G, 3 G2 8 G3, 

where G, is divergence-free and curl-free. G2 is divergence-free but not curl-free. and 
G3 is curl-free but not divergence-free. A number of questions, implications. and future 
directions are discussed in this semi-expository study. 

1. INTRODUCTION 

Recently graph theory has been applied to fluid dynamics in some interesting ways: see 
Gustafson and Hartman [l] for its use in resolving questions about finite element subspaces 
for the Navier-Stokes equations. It is an intriguing idea to try to go the other way: what 
can fluid dynamics say to graph theory? Our purpose is to consider some of the ne\i 
theorems, structures. and questions so induced. 

For simplicity we restrict our attention to planar graphs, and regard them as two- 
dimensional. From the conceptual viewpoint, this restriction corresponds in the usual 
setting of vector calculus to looking only at the rotation: 
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As will be seen, even in this limited setting, the possible notions of the curl of graphs and 
networks are several. However, the considerations will apply as well to three-dimensional 
structures where the fluid dynamical analogues would have even larger play. 

An orientnfion u of a graph G( V, E) results in a directed graph G( V, E, a), by assigning 
a unique direction a(e) to each edge e E E. More analysis is possible from a network 
G(V, E, cr, c), where the capacity function c assigns a numerical vlaue c(e) to each e E 
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E. Thus V denotes the set of vertices: E the set of edges; cr = 2.1. 0: c > 0. We may 
also write, with c any real number, G( V, E. c) for the same effect. W’e follow the graph 
theory notation and terminology in [2]. 

In Sec. 2 we will consider the specific question of the curl of graph-theoretic entities. 
Some motivating examples are presented. For lack of a more direct approach, ue proceed 
analogously to [I], utilizing flow vector fields on the graph and decomposing the graph 
in terms of them. This allows a large number of decompositions from vvhich, in principle, 
one may take his pick of curl representations according to his needs. On the other hand. 
one might prefer a unique curl resulting from a more geometrical formulation, as we 
indicate in our analyses. 

Because [ 11 may not be accessible to the reader, we include in Sec. 2 some explanation 
of how the approach of [I] works. For further details, especially as to its application to 
determining the dimension and bases of the French finite element schemes. ive refer to 
[Il. 

In Sec. 3 we give the network decomposition theorem stated in the abstract. From the 
descriptive development of Sec. 2, and by use of the results of [I 1, the proof is immediate. 

In Sec. 4 we comment on a number of the interesting questions and possibilities raised 
by this initial investigation. Among these are a general vector calculus of graphs. vorticity 
and invariance properties desired in the resultant structure theory, a historical prospective, 
and a possible link to the Atiyah-Singer index theory. 

2. THE CURL OF A GRAPH 

We begin with a very specific question: given a directed graph G( L’. E, a). vvhat is its 
“curl”? One may prefer to ask, what is its “divergence”? Immediately one sees the 
possibility of a general decomposition of a graph into three parts: (1) its potential com- 
ponent; (2) its solenoidal component: (3) its irrotational component. This we will prove 
in the next section. 

Our approach is as follows. Given an oriented graph G(V, E. u), associate with it a 
flow vector field Cr( V. E, (T). For simplicity let the digraph be planar: then the flow field 
will have two components u = (hi, ~1~). In general, the flow field will have at least as 
many components as the minimum dimension in which the graph exists. The flow vector 
field I/( V, E, a) is defined on the edges e E E, and for simplicity one may initially visualize 
it as defined to be constant on each edge. Notice that in so doing we are led to, essentially. 
representing G( V, E, a) in terms of networks G( V, E. c) but with c as a vector field. 
Moreover, as the following example shows, we are further led to networks G(V, E, CO. 

cl) where co is a vector field on the vertices and c, a vector field on the edges. 
At this point let us describe the setting and methods of [I]. A viscous incompressible 

fluid motion in a vessel R is modelled continuously by its momentum equation 

111 - yilu + (II . G)II = -cp + f. 

with the incompressibility constraint 

v . 11 = 0. 

and appropriate initial and boundary conditions. In the finite element schemes treated in 
[II, the domain R is first triangulated, then “incompressible” approximation spacesAPX1. 
APX2, . . . , of increasing order, are set up on the triangulated R, and finally a discretized 
momentum equation is followed in time through the chosen incompressibility subspace. 

The only APXi we shall consider here are APXl, a finite difference approximation. 
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Fig. I. An element example. 

and APE, a quadratic element approsimation. Moreover. \ve have no need for the m+ 
mentum equation. 

There is an easy way to understand the analysis of [I]. by first looking at the APX2 tit 
on the single element T shown in Fig. I. The problem is to specify a vector field 61 = (6). 
&) in which 6, and ~$2 are restricted to be polynomials of degree at most 2. The means 
of carrying out this specification is depicted in Fit c. 2. Recall that any vector field u permi:s 
a decomposition (Helmholtz Theorem) 

in which u’ is both curl-free and divergence-free. u’ is divergence-free but not curl-free. 
and u’ is curl-free but not divergence-free. 

How is this carried out analytically? Let any two vertices of the triangle T be specified 
by A; and A.j and the corresponding midedge by Aii. In barycentric coordinates. 

~(.‘) = ~ (lAil - X,)~(Ai) L ~ C A;A,~(,~ij), 
i= I i<j 

The incompressibility constraint is to be satisfied in a weak sense according to 

I c.c$ = I m . I1 = 0. 
T i,: 

The modelling of [II for APXZ is now carried out as follous: First we specify r$ at the 
vertices. This corresponds to the “potential” component as depicted in Fig. 2. Along an! 

Potential 

Component 

Solenoidal 

Component 

Fi* *. 2. A flow space decomposition. 

lrrotational 

Component 
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and we agree to guarantee incompressibility by requiring this quantity to be zero on each 
edge. Thus & at AU is completely determined and so is its potential component u’. 

We next define the tangent vectors ~1-0 = (Aj - Ai)i 1 Aj - A; 1 and the normal vectors 
yii = (& - &). T o specify the solenoidal component uZ of 6, we specify a value of zero 
at the vertices and an arbitrary value ciipij at the midedges. Then along any edge one has 
incompressibility in the sense: 

Finally, the irrotational component u3 of 6 is determined as zero at the vertices, as an 
arbitrary dijyij at the midedges, and must satisfy: 

It follows that the dimension of the subspace of a quadratic which fits on an arbitrary 
admissibly triangulated domain I? is twice (because it is a vector field of two components) 
the number of interior vertices (interior only because in the setting of [I], b is specified 
to be zero at boundary vertices to meet a Dirichlet boundary condition) from its u’ com- 
ponents, plus the number of interior midedges from its u’ component, plus whatever comes 
in finishing the fit Lvith the u3 component. The scheme ofAPX2 also requires the continuity 
of cb across element boundaries. At this point. we refer to [I] and simply assert the result 
obtained by graph theory that the u3 component still allows further degrees of freedom 
equal to the number of interior vertices plus the number of interior “holes” in R. 

Let us summarize this description in graph-theoretic terms. 

EXAMPLE 1. Consider the graph G = K3 having three vertices and edges as in Fig. 
1. Let us. analogous to the finite element scheme APX2 analyzed in [l]. use a flow space 
I/( V, E, cu. cl) of quadratic functions u = (u,, u2) defined on the element T. The flow 
space function u may be specified by its values at the three vertices, its three normal 
components at midedges. and its three tangential components at midedges. as indicated 
in Fig. 1 and Fig. 1. This gives the vertex and edge assignments of co and cI , respectively. 

PROPOSI-IIOY I. In the quadratic flow space, Example I decomposes as in Fig. 2. 

Orltline ofpr-oaf. The irrotational component can have sources but no vortices; the 
solenoidal component can have vortices but no sources: the potential component can have 
neither. From the analysis of [I]. the decomposition follows, the details as described 
above. 

Thus, for Example I, with G = c( V, E, co, c I ). curl G is represented by the u2 com- 
ponent, curl G being zero on the other two components. 

Let us consider another example, somewhat closer to networks themselves. This is 
analogous to the finite difference formulation APXl in [ 11. Virtual nodes are added to the 
original grid to permit differencing at each original grid point. 



Thr curl of graphs and networks l-19 

EXAMPLE 1. Consider the netuork shown in Fig. 3. 

This graph G(V. E. a) came from a grid of S vertices and has been completed (under a 
left to right. bottom to top convention) by the addition of 7 virtual vertices. The flow 
space U( V, E, a) of functions is taken to be the assignment of a real value (representing 
capacity) to each of the edges, horizontal or vertical, as shown in Fig. 3. Imposing a local 
solenoidal condition corresponds to a net flow of zero at each vertex, from which one 
obtains two basis elements for I/( V, E. a) corresponding to flows through the large and 
small cycles in the graph. This gives us the combined potential (which is solenoidal and 
irrotational) and solenoidal component u’ + u’ of a flow space element u. The it-rotational 
component u3 of u is then taken to be u - (u’ + u’). Curl G is represented by the u2 
component of the field. 

One may find useful the following interpretation of divergence-freeness of a network 
such as that in Fig. 3. 

PROPOSITION 1. For the APXl flow space U(V, E, a), where S is the vertex-edge 
incidence matrix of the graph G, 

Outlitw of proof. 

div G = 0 if and only if .Slr = 0. 

Recall that sij = + 1, - 1, or 0 if the jth edge is directed away from. 
into, or neither, respectively. for the ith vertex. This is the same set-up, although incidence 
matrices vvere not used there, as used in the analysis ofAPX1 in [I]. and the result follows. 

The incidence matrix for Example 2 is shown in Fig. 4. The edges and vertices of the 
directed graph of Fig. 3 have been numbered from left to right, starting at the lowest level. 
The incidence matrix may be seen to be an equivalent formulation of the Eq. 3.1.1 of [ 11. 

It would be interesting to have a matrix formulation for curl-freeness of a graph. similar 
to that for divergence-freeness given in the above proposition. 

From Example I we concluded that the curl of G should have the geometrical meaning 
of the middle diagram in Fig. 2. From Example 3. where the geometrical meaning of the 
curl was less clear, we were led to cycles and incidence matrices to analyze div G = 0. 
Whatever graph context remains in Example 1 would appear to contain that needed to 
ascertain curl G there. What is left over’? From Example I it vvould appear that all that 
remains in Example 2 is the fact that there are two cycles. The number of cycles is given 
by the “inner dual” of the graph, [3], defined as follows. For a plane graph G (a particular 

C . a . . w 0 

0 0 0 

Fig. 3. X network example 
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Edges 

1 234567 8 9 10 11 12 13 14 15 
1000000 00 0 0 0 0 0 0 
0100000 00 0 0 0 0 0 0 
0010000 00 0 0 0 0 0 0 
0001000 00 0 0 0 0 0 0 

-1 0 u -1 1 0 1 00 0 0 0 0 0 0 
0 -1 0 0 -1 1 0 00 0 0 0 0 0 0 
0 0 -1 0 0 -1 0 10 0 0 0 0 0 0 
0000000 010 0 0 0 0 0 
0 0 0 0 0 o-1 O-l 0 1 0 0 0 0 
0000000 00 10 10 0 0 
0000000 -! 0 -1 0 0 1 0 0 
0000000 00 0 0 0 0 1 0 

0000000 0 0 0 -1 0 0 -1 ! 

0000000 0 0 0 0 -1 0 0 -1 
0000000 0 0 0 0 0 -1 0 0 

Fig. 4. Corresponding incidence matrix 
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plane drawing of a planar graph), the inner dual G” of G has the inner faces (the faces 
with finite area) of G as its points. and two points of G* are adjacent whenever their 
cycles (faces) in G have a common edge. 

Let us therefore consider two more examples, but now without regard to the flow space 
approach put forth above. 

EXAMPLE 3. In graph G, independent of directions and flow spaces. there are 4 face 
cycles available. Let us take this as a coarse measure of curl in the graph. Its dual counts 
them but has no divergence. This may be taken as an instance of the relation div curl G 
= 0 which intimates (far from conclusively) that cycles, as a coarse measure of curl. are 
not inconsistent with a possible vector calculus of graphs. 

EXAMPLE 4. Example 4 contrasts two graphs with the same number of faces (4) and 
a third with a “hole” in it. See Fig. 6. Intuitively, one feels that (b) should have more 
“intrinsic curl” than (a), and (c) more than twice that of(b). 

The inner dual G” of (a) is a path (P,) which has no cycles. that of(b) is a quadrilateral 
cycle with four vertices (CA). and (c) has as its inner dual the octagon cycle with eight 
vertices (C,). There is one more (exterior) dual point for cases (a) and (b), and two more 
for case (c). 

Graph G 

Fig. 5. Duality. 

Dual G’ 
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(a> (b) 

Fig. 6. Homology. 

The first graph (a) is an outerplanar graph. sometimes called a “ladder” in the literature. 
Its co-cycles have cardinalities _ ‘-5 in the sense that for any integer rf between 2 and 5 
inclusive, there is a set of n edges constituting a minimal disconnecting set for the graph. 
For (b) the cardinalities are 1-1 and for (c) they are 2-6. 

From these two further examples we conclude that the dual of a graph can be associated 
with our notions of what the intrinsic curl of a graph or network should be. and that full 
(including exterior dual components) are needed. An argument for the inclusion of con- 
siderations of co-cycle cardinalities and cut sets is less clear. 

The approach we have taken in the present study. to be elaborated in the next section. 
distinguishes cases (a), (b), and (c). For example. consider the quadratic APXZ scheme 
used above in Example 1 and Proposition I and found in [I] to have dimension 

d = dim V, + dim V1 + dim V3 

= Z (number of interior vertices) + (number of interior midedges) 

+ (number of interior vertices + number of interior holes). 

This formula was found for the case of zero boundary conditions and for a certain class 
of triangulated domains. Let us remain within that context, so to complete the triangu- 
lations of (a), (b), and (c), draw a diagonal from the upper left corner to the lower righ: 
corner of each square. We then arrive at the delineation (a) d = 0 + 7 f 0 = 7. (b) d 
= 2 + 8 + 1 = 1 I, and (c) n = 0 + 17 + 1 = 18. 

3. A GRAPH DECOMPOSITION 

Turning then to the approach of Sec. 2, we now obtain the network decomposition 
theorem. 

THEOREM 1 (NETWORK DECOMPOSITION THEOREM). A directed graph G = G( I’, E. GI 

or a network G( V, E, ccl, L’ , ) may be decomposed as 

where: G, is divergence-free and curl-free, 
Gz is divergence-free but not curl-free, 
G3 is curl-free but not divergence-free, 

and then 

curl G = curl G1 
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Ourline of proof. Establish any vector field over the graph domain and decompose 
it. See [l] for examples. For each vector field. the theorem holds. 

We would like to insert a clarification here. XII of the schemes APXi treated in [I] 
were divergence-free vector subspaces. This was because the application was to incom- 
pressible flow. They also satisfied a Dirichlet boundary condition (vanishing) on the bound- 
ary of the domain (triangulation) being treated. But any vector field. no matter whether 
divergence-free or not. and regardless of boundary condition, possesses the Helmholtz 
decomposition into potential. solenoidal. and irrotational parts. If the vector field is al- 
ready divergence-free. so much the better, since the irrotational part is already absent, 
and to represent curl G one needs only to eliminate the potential component. 

Clearly Theorem 1 allows too many solutions: each user with his vector field obtains 
a curl G, but they may not agree. Theorem 1 may be regarded as an example of an existence 
proof needing more information for a uniqueness proof. 

As we saw in the previous section. it leads to some geometrical and representation 
insights, e.g., re U(G2) as the curl representation component. Moreover, the represen- 
tation approach we have taken allows more freedom in distinguishing curls of different 
graphs. 

To illustrate the latter point. consider the examples of the previous section. In Example 
I, a quadratic flow space was imposed. but should a cubic flow space be deemed advisable, 
one could take into account further graph geometry, e.g.. further subdivision of edges, 
departure from the rectangular orientation, in arriving at a curl G. More to the point, 
perhaps, after Examples 2 and 3 we suggested that a coarse measure of curl G is the 
number of cycles. But even the piecewise constant flow space of Example 2. contains 
more information than that, and delineates, for example, the case of a large cycle con- 
taining a small cycle, as in Example 7. from other graphical configurations containing two 
cycles. Moreover, as shown by Example 4, it is desirable to distinguish the relative ori- 
entations and juxtapositions of the cycles in the graph. 

Let us consider one more example to further illustrate this point. 

EXAMPLE 5. Consider the triangulated domain of Fig. 7 in which a center simplex is 
missing. We employ, for simplicity, a piecewise quadratic vector flow field over the (un- 
directed) graph, such as APX2. previously considered. Under the requirement of a zero 
boundary condition, one finds that the dimension of this divergence-free subspace is 37. 
The u3 component contributed dimension equal to the number of interior vertices plus 
number of interior holes. 3 + I = 4. This corresponds to the three small cycles and one 
large one in the inner dual of the graph of Fig. 7. If one chooses only the u2 component 
to represent curl G, one loses this contribution of “net curl zero.” 

The representation by vector field thus allows curl G to distinguish between types of 
cyclicity. As pointed out at the end of the last section, it connects to topological inter- 

Fig. 7. Undirected triangulation graph. 
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pretations of curl G involving cohomology (Example 3) and homology (Example 4) of the 
graph or network. Moreover. the choice betueen lou.er and higher order vector fields 
with prescribed conformity (continuity) betkceen their local representations allows alter- 
natives in curl G. 

4. FURTHER CONSIDERXTIONS 

4. I. Vector calc~rlirs of graplls 

We have considered a very specific question. that of the conceptual investigation of 
the curl of a graph-theoretic structure. To do so. we tvere naturally led to the question 
of the decomposition of the structure into its curl-free and non-curl-free parts. 

Evidently, one could go further, to attempt to develop a full graph structure theory 
properly encompassing all of the important notions of vector analysis and of the exterior 
differential calculus. 

The view that we have taken is that this would be done more advantageously after. 
rather than before, further analysis of a specific question such as that of curl G. 

4.3. Clrrl and vorticit) 

In fluid dynamics, the curl of the velocity field 1’ is the important quantity. vorticit!. 
I(‘. For graph structures, curl G should have vorticity properties such as: 

(i) curl G is itself solenoidal in the graph theoretic sense of the latter. if one recalls 
Example 3, and 

(ii) curl G should measure the limit of the “circulation” of the graph. in a graph theoretic 
sense, shrinking to the point at which one is measuring curl G. 

4.3. Representations nnd insarirrnts 

From the various flow spaces allowed (see [I] and references therein). from desired 
invariance properties, and perhaps by using representations I/y for the relevant groups 
in the plane, one may be able to select preferred representations of the graphs and de- 
termine irreducibles for them. This would correspond to determining curl G by exponen- 
tiation. 

For example, div 11, curl 11, and grad 6 are invariant under the rigid motions, e.g.. 
rotations and translations, in the plane. The same properties are desired for div G, curl 
G, and grad G, along with perhaps additional properties of finite subgroups related to the 
geometry and group structure of G itself. 

4.4. Graph theoretic comparisow 

A digraph G( V, E, u) is eulerian if and only if it is connected and, for each vertex, the 
outdegree and indegree are equal, and it may be thus interpreted as divergence-free; recall 
Example 2. It may be partitioned into cycles. In taking the latter as a measure of curl G. 
one is looking at a global curl G. To obtain local curl G, one may again resort to flou 
space representations, which, as noted earlier, correspond to putting local network quan- 
tities onto G. One could, in fact, allow the capacities co and cl to be complex or group 
valued, if curl interpretations so justified. 
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Interpretations of curl G in terms of homology and cohomology classes came into our 
analysis. While vve would not be opposed to a “final outcome” involving them. we hold 
for the moment to our view expressed in Sec. 4.1 above. That is. at this point we wish 
to continue to assert the question of curl G from the physical and intuitive sides and to 
further expose the question, without anticipation of an algebraic solution which could 
foreclose other useful vievvpoints and interpretations. 

4.6. A historical perspecti\,e 

The relationships between graph and network theory and applications are historically 
pervasive, all the way from the pioneering early work by Kirchhoff [4] and Maxwell [5] 
on electrical circuits to Kron’s attempt [6] to model the Schrodinger Equation in terms 
of equivalent electrical networks. The solutions of the Dirichlet Problem and other dif- 
ferential equations by means of nets and circuits go back at least as far as Wiener and 
Weyl in the 1920s and already involved notions such as contravariant and covariant vec- 
tors, exterior forms, and the like. in increasing generality. But we are not aware of specific 
attention given to the vector properties of a graph structure per se, or to the use of fluid 
dynamic continuous or finite element methods to arrive at analogies sufficient to enable 
the determination of those vector properties of a graph. 

Nonetheless, vve have asked ourselves, for historical perspective, which past treatments 
to our knowledge bear comparison, and one which comes to mind is that of Eckmann 
[7]. There, the following generalization of a discrete version of the Dirichlet Problem was 
considered: given a function II on the vertices of a subgraph R of a graph K, determine 
I[ in K-R such that, on each vertex therein, u is the average of its values on all adjacent 
vertices. It was shown in [7] that there exists a unique solution to this “Dirichlet Problem” 
if and only if the subgraph R has at least one vertex in each component of K. Stated 
another way, the condition on R corresponds to the necessity of knowing the boundary 
data on the entire boundary in the classical Dirichlet Problem, and the condition on II in 
K-R corresponds to the classical mean value characterization of harmonic functions. 

The proof in [7] depends on a unique representation of a chain with real coefficients 
as the sum of a harmonic part (a chain which is both a cycle and a co-cycle), a boundary, 
and a co-boundary. One could argue a conceptual parallel between that representation 
and the unique decompositions of vector fields used in the approach of the present article. 
On the other hand, certainly in [7], there was no attempt to define or discern vector 
properties. e.g., curl, of the graph or network K itself from, for example, functions defined 
on K. In [I]. where we were concerned with the modelling of div 11 = 0, and in the 
following papers [8, 91 where, among others, we calculate ilrl (the Laplacian of II) by the 
graph theoretic methods of [I] and apply it to Dirichlet and Stokes flow problems, we do 
not concern ourselves with the intrinsic vector properties of the graph, grid, or network 
itself. In other words, the perspective of the present paper is that of a vector calculus of 
(not on) graphs. 

4.7. An analogy 

To conclude, we wish to note an analogy with the celebrated Atiyah-Singer Index 
Theorem. In the Atiyah-Singer theory [ 101, one calculates the index of an elliptic operator 
on a manifold in terms of the Chern classes. In our theory one calculates the curl of a 
graph in terms of. in our interpretation of Sec. 4.5, certain topological invariants. In their 
theory, the elliptic partial differential operators are of second order and the index problem, 
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by use of adjoints. is a null space problem. In our theory, the partial differential operator 
is a first order one and the representation approach of Sec. 3 enables a decomposition to 
null spaces for the curl. 

The parallel with [IO] is heightened when one recalls that Atiyah and Singer were really 
studying the first order Dirac operator. The distinction of the present study from [IO] 
remains as stated in the previous section, the perspective here being that of a vector 
calculus of graphs (or. if one prefers. manifolds), not on them. This does not rule out a 
theory embracing to advantage both perspectives within a single structure. 
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