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Abstract-The method of generatmg equation IS used m order to reduce a weakly nonhnear hyperbohc 
system to the standard form, 1 e the form whxh adtmts an asymptotx treatment based on the averagmg 
pnnclple 

Consider a weakly nonlinear system 

u,, - a%, = 

along with the boundary condltlons 

defined by the followmg canonical form 

pu + EW, x, u, 4, 4) (1) 

u(r, 0) = u(t, 1) = 0, 

a xl = f(x), 
Y(O, xl = F(x) 

CD, f and F are assumed to be continuous with respect to all vanables, a, j3, and E constants, 
o<&el 

The solution of the above problem is sought m the form 

rrh 
u(t, x) = i v,(t) sin - x 

n=, 1 

To satisfy (l), functions v,(t), n = 1, 2, 
differential equations 

, have to obey the followmg set of ordinary 

VI! + 4v,, = &@?I(& VI, v2, 9 VI, VI, 1, n = 1,2, (2) 

with the mltlal condltlons 

v,(O) = f”7 v(O) = F,, n = 1,2, 9 

xn 
where f,! and F,, are the Founer coefficients of f(x) and F(x) with respect to sm - x, n = 1, 

I 

A number of asymptotic techniques can be employed for analysis of the solutions of (2) 
(see, for instance, Bellman[ 11) The purpose of this note 1s to demonstrate how the averagmg 
prmclple can be applied to the analysis of (2) Namely, we show that the method of generatmg 
equation, developed by Bellman, Bentsman and Meerkov[2]. reduces (2) to the standard form, 
1 e to a form which admits an asymptotic treatment based on the averaging prmclple 
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Consider 

V Ill = V2n (3) 
v2n = -Cl&,” 

According to the method of generating equation, the general solution of (3) gives the followmg 
substltutlon for (2) 

vln = yin sin (m,t + yzn), 

V2” = %Yln cos (w,t + Yz,), (4) 
n = 1,2, 

The change of the dependent vanables (4) has been known for a long time However, this 
and the analogous substltutlons has been introduced somewhat ad hoc The method of generating 
equation denves all these and a number of new substltutlons m a formal, regular manner (see 
Bellman et al [2] for more examples) 

In terms of vanables yin, yznr n = 1, 2, , (2) can be rewntten as 

cm (w + Yzn) 
Yin = E @,k yll sin (wt + ~2~)~ y12 sin b2r + yz2), , 

0” 

oyll sin (wr + y2A WY,, sin (w2t + ~221, I, (3 

sin (w + y2J 
Yz* = --E @Jh yII sin (wt + yzl), Y,, sin b2t + y22), , 

YlfJ4 

wyll sin (wt + ~~1, WY,, sin b2t + y22jr I, n = 1,2, 

Equations (5) are m the standard form Applymg the averaging prmclple, from (5) we 
obtain 

= EM 
cos (r&t + 22”) 

Zlll @P, 
r 1 WI 1 

sin (w,t + z,,) 
Z2n = --EM 

I 1 @a 7 

Zl”% 1 

(6) 

where 

1 T 
M {S( , f)} = SC j = hm T 

r I 

SC , t) dt 
T-0 0 

and the existence of the required averages has been assumed 
In some Instances, the structure of (6) IS simpler than that of (5) (For example, sometimes 

(6) admits solution m a consecutive manner whereas (5) does not j When this IS the case, the 
above procedure might substantially slmphfy the analysis of weakly nonlmear hyperbohc sys- 
tems An example of such treatment can be found m Benney and Nle11[3] 
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