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A large class of theories with unusual symmetries is constructed and discussed from a unified 
viewpoint. These are statistical models with symmetries which correspond to an interpolation 
between standard globally-invariant theories and theories with a local symmetry. The models 
describe the dynamics of U(1) (or Z(N)) variables, e i÷, located at the sites of a lattice of arbitrary 
dimension and geometry. We describe a classification of these theories based on what we call their 
symmetry  index: the value of n for which the hamiltonian of a d-dimensional system is invariant 
under the transformation ~b ( x 1 . . . . .  x d ) ~ q~ ( x 1 . . . . .  x a ) + A ( x t . . . . .  x d ) , where A satisfies a set of 
n linearly-independent constraints. We discuss how the critical properties and the structure of 
topological defects of a model are determined by d and n. 

1. Introduction 

The  most  usual  types of statistical models are those with either a global symmetry  

(such as the Is ing or x - y  models), or a local gauge symmetry.  However, a n u m b e r  

of in te res t ing  models  recently discussed in  the l i terature [1], among  which are some 

theories  thought  to describe some of the properties of l iquid crystals and  helical 

magnets ,  have symmetry  properties which are in termediate  between global and  local 

symmetr ies .  In  this paper  we discuss a scheme capable of systematically classifying 

such theories. As we shall discuss below, the groupings of our classification scheme 

are a lmost  cer ta inly  related to universal i ty  classes. Fur thermore ,  models which have 

these u n u s u a l  symmetries typically have mul t ibody  interact ions in  their hamil toni -  
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ans. Thus our classification scheme may be thought of as a systematic procedure for 
classifying many  theories with multibody interactions. 

The key to our classification procedure is the introduction of a new quantity, n, 
which we call the symmetry index of the theory. Roughly speaking, n is a measure of 

the dimension of the subspace over which the gauge function of the theory is 
constrained. To  be more precise, let us consider (as we shall in the bulk of this 
paper),  a U(1)-invariant theory of a single field, e ~*, ~ ~ ( -  ~r, rr], associated with the 
sites of some hypercubical lattice in d dimensions. Then we can construct theories 
with a hamiltonian, H(¢) ,  which is invariant under the transformation 

dp(X 1 . . . . .  Xd) "4 ~ ( X  1 . . . . .  Xd) + A ( x  1 . . . . .  Xd).  (1.1) 

I f  A satisfies a set of n linearly independent differential constraints, the theory 
will be said to have a symmetry index equal to n. When n = 0 (n = d)  the theory will 
have a truly local (global) symmetry. (Actually, as we shall see below, there seems to 
be no simple way of writing an n -- 0 theory with just one field, a fact perhaps not 
surprising to aficionados of gauge theories.) For 0 < n < d the theory has a symme- 
try which is of  a new type and is, in a certain sense, intermediate between local and 
global symmetries. 

There are many  different kinds of differential constraints which can be imposed 
upon A. However, the simplest kinds of linear differential constraints are those of 
the form AiA = 0, with A i a first-order differential operator in the xi direction, 
which force A to be independent of x~. In much of this paper  we will deal explicitly 
with theories whose gauge functions satisfy such constraints, but the majority of our 
results apply to a much broader class of theories, as we shall discuss below. 

In subsect. 2.1 we will present our classification scheme. We shall also introduce 
the notion of compound symmetries, that is, situations in which A is constrained 
(e.g. constant) on different subspaces, S 1 . . . . .  Sj (which may have different dimen- 
sions) of a d-dimensional space, but is not similarly constrained over the entire 
subspace spanned by S t . . . . .  Sj. Because theories of the type we are discussing are 
rather unusual, it is he lpful  to have some simple, useful realizations of them. 
Therefore, in subsect. 2.2 we will construct a hierarchy of theories for all n and d. 
These theories, with gauge functions satisfying constraints of the form A ~A = 0, will 
generally be  the simplest non-trivial realizations of a model for a given n and d. In 
subsects. 2.3 and 2.4 we will return to our general classification scheme and will 
present  a discussion of the duality properties and topological excitations of theories 
with 0 < n < d. Sect. 3 includes a brief discussion of a recently proven generalization 
of the Mermin-Wagner  theorem [2] which shows that a U(1)-invariant theory with 
n ~< 2 in any dimension has no long-range order for T > 0 [3, 4]*. This result is 
indicative of the usefulness of our classification procedure: the value of n is clearly a 

* Several specific examples of n = 2 three-dimensional theories are discussed in detail in [4]. 



342 F.C. A lcaraz et al. / Statistical theories with unusual symmetries 

relevant parameter in determining the critical properties of a theory. Relative to 
usual globally-symmetric statistical models, it is, in a certain sense, a generalization 
of the concept of dimension. In this section we also speculate about the kinds of 
symmetry breaking that may occur for general n and d, and describe the extensions 
of our results to theories whose gauge functions satisfy more complex constraints. 
This last point is important, since some of the models germane to liquid-crystal 
systems are of this type. Finally, sect. 4 consists of a brief summary and conclusions. 

2. Index-n symmetries 

2.1. THE CLASSIFICATION SCHEME 

Consider a U(1)-invariant theory of a single field, s ( r )  = C +<r), with ¢ ~ (-~r ,  ~r]. 
Suppose, for simplicity, that the theory is defined on a d-dimensional simple 
hypercubic lattice. (This restriction is not necessary, but will make our presentation 
easier.) We associate the spins with the sites of the lattice. We shall be interested in 
discussing theories without explicit long-range interactions and with hamiltonians 
which are invariant under the transformation 

q~(xl . . . . .  Xd) ---, ¢ ( X  x . . . . .  Xd) + A ( x . + x  . . . . .  Xd) ,  (2.1) 

in which A is an arbitrary function of its arguments. Such a theory will be said to 
have a symmetry  index equal to n. (In fact, many of our considerations will apply 
equally well to theories where A is a function of all d coordinates, but satisfies n 
conditions of the form OjA = O, j = 1 . . . . .  n, where the Oj are certain linearly-inde- 
pendent  differential operators. This will be discussed in more detail below.) 

In general we will consider theories whose hamiltonians have the form 

s (q(p)  

where the fp are functions of a linear combination of q ( p )  q,'s and the Cpj are some 
set of constant coefficients. The coordinate of ~j is x + ~, and since we assume there 
are no explicit long-range interactions, I'~1 is finite. Although our considerations are 
really more general, it will be helpful to think of the interactions in (2.2) as being 
defined on the k-dimensional (k ~< d)  simplices of the d-dimensional lattice. For 
example, nearest-neighbor interactions along links, four-body interactions around a 
plaquette, etc. We shall discuss the more general case later. 

What  kinds of symmetries can our theories have? To begin, we note that if a 
theory has an index-n (n < d)  symmetry then, afortiori,  it has an index-n' symmetry 
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with d >/n '  > n. This lower symmetry is just the symmetry expressed by considering 
those transformations in which A is a function only of a subset of the coordinates 
x , +  1 . . . . .  x d. A theory in which these are the only symmetries and in which there is 
only one subspace for which (2.1) is satisfied will be said to have a simple index-n 

symmetry.  A theory for which (2.1) is valid for several distinct sets (xn+ 1 . . . . .  Xd} 
will be said to have a multiple index-n symmetry. It  is also possible for a theory to 
have an index-n symmetry (simple or multiple) as well as a distinct index-m 

symmetry  (also simple or multiple) with m > n (i.e. such that (Xm+ t . . . . .  X d ) is not a 
subset of {xn+ 1 . . . . .  Xd) ) but not an index-(n + m) symmetry. Such a theory will be 

said to have a compound symmetry. 
In addition to symmetries of the form (2.1), it is possible to construct theories with 

symmetries such that H ( ¢ )  is invariant under the more general transformation (1.1) 
in which A is a function of all coordinates, but satisfies a set of n constraints of the 

form 

0 1 A  = OzA . . . . .  O.A  = O, (2.3) 

where the Oj are a set of n linearly-independent difference operators. Most of the 
discussion of the next two sections will refer explicitly with theories invariant under 
(2.1), but as will be apparent, most of the main conclusions apply as well to the 
larger class of theories invariant under (2.3). 

2.2. CONSTRUCTING SIMPLE MODELS WITH INDEX-n SYMMETRY 

We shall now construct a hierarchy of simple theories invariant under (2.1) for all 
n and d. Consider the case of a theory with an index-n symmetry. We consider only 
theories that are non-trivial in the sense that they are a priori coupled throughout 
the entire d-dimensional space (although we do allow the possibility that they may 
be trivial in the sense that they may be transformed into a set of finite non-inter- 
acting theories). Then, the simplest theory of the form (2.2) which possesses this 
symmetry  has s = n. Such a theory can be constructed by having one term in (2.2) in 
which the spins at the corners of a ( d -  n + 1)-dimensional element of the lattice 
are coupled together, and n -  1 other terms which are simple two-body, nearest- 
neighbor interactions. The ( d -  n + 1)-dimensional interaction is defined on a (d - n 

+ 1)-dimensional simplex of the lattice whose edges span a specific ( d - n  + 1)- 
dimensional subspace of the d-dimensional lattice, and each of the n - 1 nearest- 
neighbor interactions occurs along one of the n - 1 directions which is orthogonal to 
the subspace spanned by the aforementioned simplex. The Cpj are chosen to ensure 
that the symmetry is satisfied. For example, in these simple cases the cpj may be 
chosen to alternate between + 1 and - 1 as we trace around the simplex where the 
interaction is defined. 
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A few examples will clarify the situation. First notice that this procedure gives no 
theory with n = 0, since for n = 0 one would require a (d + 1)-dimensional simplex 
on a d-dimensional lattice. Without including other fields in the problem, we know 
of no way of constructing such a theory. Turning to the less pathological case of 
n > 0, we see that in three dimensions we can have a multiple index-2 symmetry by 
including in (2.2) a four-body interaction on each plaquette in the (Xx, x2) plane, 
and a nearest-neighbor two-body interaction in the x 3 direction. Then H is invariant 
under  (2.1) with A = A ( x i ) ,  i = 1,2. To obtain a theory with symmetry index equal 
to one for d = 3 we include in H only a single eight-body interaction which involves 
all the spins which lie at the corners of a given elementary cube of the lattice and 
then sum over all such cubes. With the proper choice of coefficients, clj in (2.2), it is 
clear that this theory will then have a three-fold index-1 symmetry, so that the 
hamil tonian is invariant under (2.1) with A = A ( x  i, x j ) ,  i, j = 1,2,3. (This theory is 
actually trivial in the sense that it can be decoupled into a set of non-interacting 
trivial theories. The reason for this can be traced to the fact that the theory has 
index-1 symmetries. This point is discussed in more detail elsewhere [4].) A little 
thought reveals that, in general, a theory designed with the above construction will 
have a ( d -  n + 1)-fold index-n symmetry. (This statement becomes more obvious if 
this hierarchy of theories is considered in continuum notation in which case the 

argument  of  a k-dimensional interaction becomes ~1 ~2 " ' "  ~kt~, where 0 : -  0 / 0 x : . )  

It  is of course possible to construct more complicated theories with similar symmetry 
properties or with different multiples of the index-n symmetry. But the procedure 
outlined above produces, in a certain sense, the simplest such theories. We will have 
occasion here and elsewhere [4] to discuss in detail a few more complicated theories, 
but  for now we turn to an exploration both of some of the general features of 
systems with an index-n symmetry, and also of some of the systematics of the 
hierarchy of theories we have just constructed. 

2.3. DUALITY PROPERTIES 

Let us first describe the duality properties of theories included in our general 
classification scheme. This is most easily done by referring to the following general 
result [5]: an abelian theory of a single scalar field, the hamiltonian of which can be 
written as a sum of k distinct terms, has a dual representation which can be written 
as a statistical theory of k - 1 independent fields. Furthermore, these k - 1 indepen- 
dent  fields can be augmented with a set of dependent gauge fields so that the dual 
fo rm of the theory has a generalized gauge symmetry. After including the extra 
gauge fields, the hamiltonian can be written as a function of an antisymmetric tensor 
field, A~,1,~2 ..... ~,,_2, and the dual hamiltonian will be invariant under a gauge 
t ransformat ion of the general form 

A~, ...... ~,k_2 "* A~, ...... ~,k_+ ~{ 0~, ~, ...... ~'k-~ ) ' (2.4) 
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where ~ is a gauge function with k - 3 indices, the 0~ are a set o f  k operators 
determined by the form of the original hamiltonian, and Z{ ) denotes an anti- 
symmetrized sum over all permutations of #1 . . . .  , #k-2" (For details of the solution, 
and a method for determining the 0~, see ref. [5].) 

Some features of duality transformations that are familiar from more common 
theories apply here as well: if the group of the original theory is ZN, then the group 
of the dual theory will be Z N also. If the original theory has a U(1) symmetry, then 
the dual theory has a Zoo symmetry. If the hamiltonian of the original theory is only 
quadratic (or of a Villain-like form), then so will be the hamiltonian of the dual 
theory. Finally, the coupling constants of the dual theory will be related to those of 
the original theory in a manner dictated by the symmetry group, just as is the case 
with more standard (e.g., globally symmetric) theories. On the other hand, one 
genuine complication that may arise in these more unusual theories is that the 
natural form of the dual lattice may be rather complicated. This is because the 
structure of the dual lattice is naturally determined by the geometry associated with 
the interactions of the original theory rather than simply by the locations of the 
spins themselves, and since the theories under discussion involve multibody interac- 
tions, these geometries can be, in principle, quite involved. 

To illuminate the preceding general discussion, let us look at a few simple 
examples. One of the most interesting classes of theories in our scheme is the index-2 
class. Fortunately, the simple index-2 model in d dimensions given by the construc- 
tion of subsect. 2.2 is self-dual in any dimension, in the sense that the dual theory 
contains two terms with arguments which have the same functional form as the 
original hamiltonian. The procedure for calculating the dual form is an exact parallel 
of that for the d =  2 Z N clock or U(1) x - y  models. The index-3 models in d 
dimensions generated by the construction of sect. 2.2 are dual to a gauge theory of a 
single gauge field, A~, # = 1, 2, 3. Note that although the theory and its dual live in d 
dimensions, the gauge field has only three components. Depending on the form of 
the interactions in the original theory, these components may or may not be simply 
associated with spatial directions. Of course, the simplest example of these theories 
are just the familiar three-dimensional globally-symmetric models, such as the d = 3 
Ising, Z N, or x - y  models, in which the indices of the gauge field can be associated 
with spatial directions. 

As a final example, we refer to a theory which is discussed in greater detail in ref. 
[4]. This is a theory in the index-2 class on a simple cubic lattice in three dimensions. 
The spins in this theory interact via four-body interactions which are defined by 
multiplying together the four spins that lie at the comers of a given elementary 
plaquette of the lattice. (To maintain a simple global symmetry one may define a 
convention which complex conjugates two of the spins in each interaction.) The 
hamiltonian is defined by summing this interaction over all the plaquettes of the 
lattice. The dual to this theory is again a gauge theory of a single gauge field A~, 
# = 1, 2, 3, however, the natural lattice for the dual theory is somewhat complicated. 
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2.4. TOPOLOGICAL EXCITATIONS 

Given an abelian symmetry, we may separate the ensuing "topological excitations" 
into two categories. If the symmetry is discrete (e.g. ZN), then there will be some sort 
of generalized domain-wall excitations. For example, the d = 3 ZN-symmetric clock 
model has orientable domain walls separating regions of spin of different orien- 
tation. In addition, there may be other excitations associated not with the discrete- 
ness of the symmetry group, but rather with its compactness. For example, the 
vortex strings that appear in the U(1)-invariant three-dimensional x - y  model are 
of this type. 

In this subsection we will sketch some general features of this latter type of 
excitation. We expect to find these kinds of excitations in Z N (N > 3) [6] and (more 
simply) in U(1)-symmetric theories. In addition, there may be domain-wall-like 
excitations if the symmetry group is discrete. These will usually have non-trivial 
interactions with the topological excitations generated by the compactness of 
the group. This additional complication, which can greatly enhance the richness 
of the phase structure, should be borne in mind when passing from a U(1)- to a 
ZN-symmetric theory. (For a discussion of such effects in the d = 2 clock models see 
ref. [7].) 

Consider a theory with an index-n U(1) symmetry. As pointed out in ref. [5], the 
nature of the topological excitations is related to the form of the dual theory. The 
form of the dual theory depends on the number of distinct terms in the original 
hamiltonian. If the original theory is a theory of a single U(1) spin and has k distinct 
terms in the hamiltonian, then we will be able to write the theory in terms of 
interacting topological excitations labeled by k -  2 indices. In the simplest cases 
these indices will be associated with spatial directions, so that the topological 
excitations will be interpretable as ( k -  2)-dimensional objects. For example, the 
d = 2 x - y  model can be written in terms of interacting point vortices, while the 
d = 3 x - y  model can be written in terms of interacting vortex strings. 

Since the nature of the topological excitations depends on the number of distinct 
terms in the original hamiltonian, the topological excitations are not determined 
solely by the symmetry index, nor by the spatial dimension. We can say, however, 
that given a (non-trivial) theory with an index-n symmetry, its topological excita- 
tions must be at least (n - 2)-dimensional objects. As we pointed out in subsect. 2.2, 
the simplest theory with an index-n symmetry has n terms in its hamiltonian, and 
these theories will have (n - 2)-dimensional topological excitations. So, for example, 
the simple index-2 theories in d dimensions will have point vortices embedded in a 
d-dimensional space. On the other hand, the index-2 theory described in the last 
subsection, and discussed more fully in ref. [4], whose hamiltonian is a sum over all 
four-body plaquette interactions has topological excitations which are one-dimen- 
sional, string-like objects. 

In the usual familiar theories such as the two- and three-dimensional x - y  
models, there are conservation constraints on the topological excitations. In two 
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dimensions the constraint may (depending on the boundary conditions) take the 
form of an overall charge neutrality condition which states that the sum of vortex 
charges must vanish. In three dimensions, the conservation constraint forces the 
divergence of the vortex-string current to vanish (except possibly, depending on 
boundary conditions, at infinity). That is, it enforces V'rJ ~ = 0, where Jr is an 
integer-valued current representing the vortex string and V~ is a finite-difference 
operator [8]. In the more general cases of interest in this paper, there will again be 
constraints associated with the topological excitations, but they may not take quite 
as simple a form as those discussed above. A review of the derivation leading to the 
constraint on the divergence of the string current for the d -- 3 x - y model shows [8] 
that the fact that the operators that appear in this linear constraint are the V r is 
intimately related to the fact that the operators that appear in the original hamilto- 
nian are also V r. In general cases where the operators defining the interactions in the 
original hamiltonian are other than simple first-difference operators, there will be 
other operators appearing in the constraints on the topological excitations. For 
example, if the original U(1) hamiltonian is of the form (2.2) with s = 3, then the 
string-like topological excitations, Jr,/~ = 1, 2, 3, will satisfy a constraint of the form 
DrJ  r = 0, where the D r are certain finite-difference operators, each one of which 
(when operating on the field ffj) produces the linear combination of ~'s which is one 
of the arguments of one of the terms in (2.2). (Note that, in general,/t  does not refer 
to a space direction but is merely a label related to the index p in (2.2).) 

The formulation of topological excitations we have presented above is quite 
elegant and useful, a statement which becomes apparent after working through 
several examples (see, e.g. ref. [4]). Nevertheless, it may not be the most appropriate 
formulation of the problem in some specific cases. Since the topological currents 
which satisfy the conservation laws like (for the case s = 3) DrJ r = 0 can themselves 
be written in terms of another set of fields (e.g., in the d = 3 x - y  model [8], 
Jr = er~xV~Bx) it may be advantageous for certain purposes to consider the theory as 
a function of a set of variables other than the Jr's. This is particularly so in cases 
such as the ones considered in this paper for which the operators appearing in the 
hamiltonian are more complicated than simple first-order finite-difference (or dif- 
ferential) operators. In such cases it is often difficult to provide a simple interpreta- 
tion of the topological excitations in terms of the original degrees of freedom of the 
theory. This problem does not occur in the simple x - y  model. In that theory, the 
hamiltonian only includes nearest-neighbor terms, so it is quite clear that a vortex 
just  represents the integer-valued part of an angle change as we move from site to 
nearest-neighbor site around a dosed path in the lattice. With more complicated 
interactions such an interpretation is not always possible, and, depending on the 
theory, a close examination may reveal a more intuitively appealing set of variables 
which are functions of the Jr's. Such a situation takes place in the model studied by 
Amit, et al. [9]. In that model the mathematically natural set of topological 
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excitations are point-like vortices in three dimensions, but it is likely that the 
physically natural  set of topological excitations are string-like variables. 

3. Remarks on the phase structure 

Because the theories we are considering here have a very rich symmetry structure, 
a number  of possibilities for symmetry breaking and phase transitions suggest 

themselves. Consider, for example, a theory in four dimensions with an n = 3 
symmetry,  and for definiteness let us focus on the n = 3, d = 4 theory constructed 
according to the prescription in subsect. 2.2. Let (i, j ,  k, l)  denote the four spatial 
directions on the four-dimensional hypercubic lattice with a two-body, nearest- 
neighbor interaction along the /-direction. We may define a number  of different 
correlation functions which can test a number  of different possible types of symme- 
try breaking. For  example, it may be possible to break the n = 3 symmetry without 
breaking the global symmetry. That is, we can imagine a phase of the system in 
which the correlation functions 

C,,=(cos[do(x)-q~(x+Yn)]>, m=i,j,k, (3.1) 

have non-zero values, while the global spin expectation value, (ei*), is zero. (Of 
course, the opposite situation cannot occur.) We can therefore imagine a scenario in 
which there is no symmetry breaking at high temperature, but as we lower the 
temperature  the system proceeds through a sequence of phase transitions leading to 
phases of increasingly greater broken symmetry. On the other hand, it is possible 
that  all symmetry  breaking occurs at the same temperature, so that we go from a 
phase of unbroken symmetry' to a phase in which the symmetry, even the global 
symmetry,  is completely broken. It is not clear which of these options (or other 
possibilities) prevails. But, in any case, we will be confronted with a new type of 
phase transition, and so the problem is well worth pursuing. 

In the special case of an n = 2 (or n = 1) symmetry more is known. It has been 
shown [3] in this case that there is no symmetry breaking in a U(1)-invariant system 
for T > 0 in any dimension. The proof is a generalization of that of the Mermin- 
Wagner  theorem [2] and applies both to the global as well as the full semi-local 
symmetries that the theory possesses. While the proof was presented for the class of 
n = 2 theories invariant under (2.1), it is straightforward to see that it also applies to 
a much  larger set of theories invariant under (1.1) subject to the constraints (2.3). 
This result is a strong indication of the relevance of the symmetry index in 
determining the critical properties of our systems, and suggests that, just  as d = 2 is 
the lower critical dimension for ordinary globally-symmetric statistical theories, 
n = 2 is the lower critical symmetry index for the more general class of theories 
discussed here. 
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Finally, we remark that it would be interesting to study the phase properties of 
theories with 0 < n < d which have discrete or non-abelian symmetries. The latter set 
of theories is particularly intriguing, since it is not clear how to systematically 
generalize our class of theories (or even the simple hierarchy constructed in subsect. 

2.2) to the non-abelian case. 

4. Summary and conclusions 

In this article we have introduced, in a systematic way, a new class of statistical 
theories whose symmetries are neither global nor local, but are something inter- 
mediate between the two. These theories are characterized by a symmetry index, n 
which represents the number of constraints which must be satisfied by the gauge 
function. 

After defining these theories in general terms, we described a procedure for 
constructing a hierarchy of relatively simple, easy to study models with various 
values of n and d. Next we returned to the general classification scheme of subsect. 
2.1 and discussed some of the most important and universal features of duality 
transformations and topological excitations realized by the theories included in this 
scheme. We then briefly discussed a theorem [3] which shows that, for n ~< 2, in any 
dimension, U(1)-invariant theories do not have long-range order. This theorem 
implies that it is not the dimensionality of the system which is involved in 
determining this feature of its critical behavior, but rather, what is relevant is the 
dimensionality of the space over which the symmetry is constrained or effectively 
global. In this sense, the symmetry index represents a generalization of the notion of 
spatial dimension. 

Our results represent the beginning of a classification scheme for a new set of 
theories which are statistically rich and which may be relevant in the description of 
important  physical systems [1]. In addition, it is, to our knowledge, the first scheme 
capable of systematically classifying and describing the phase structure of statistical 
theories with multi-body interactions. 

A number of aspects of these theories have not yet been addressed in detail. For 
example, it is almost certain that our classification scheme is related to universality 
classes. Therefore, a more complete analysis of the critical properties of these 
systems is called for. A knowledge of the general phase structure and critical 
exponents of the models, which could be obtained, for example, by a systematic 
finite-size scaling analysis is needed. Similarly, an analysis of the correlation func- 
tions in the soft, low-temperature phase is lacking. We hope to be able to address 
these points in the near future. 

We are happy to acknowledge the hospitality of the Institute for Theoretical 
Physics, Santa Barbara, where this work was begun. The research was supported in 
part  by NSF grant PHY77-27084. 
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