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Scope and purpose-Location problems involve finding the best locations for facilities on some 
surface in accordance with some given objective. We restrict ourselves to finding the best facility 
locations on the plane. The objective in this paper is to minimize the greatest (weighted) distance 
between these facilities and simultaneously between the facilities and some fixed points. Applications 
include: layout of circuits on a board (minimizing the length of the longest wire), location of radio or 
TV stations (minimizing the distance between the stations and the furthest customer), and the 
location of emergency facilities such as hospitals and fire stations. 

Abstract-This paper deals with the location of facilities or “movable” points on a planar area, on 
which there already exist fixed points. The minimax criterion for optimality is used and distances 
among points are assumed to be rectilinear. Two very efficient algorithms for the solution of the 
problem are presented. One is based on a univariate search, and the other on a steepest descent 
method. Some computational results are presented. 

INTRODUCTION 

We deal in this paper with the location of points on a plane. When we have freedom of 
choosing the location of all points, then the problem is known as the layout problem, or the 
quadratic assignment problem [ 51. When all points but one are fixed in place and when the 
maximum distance to all fixed points is to be minimized, then the problem is known as the 
one-center problem; when the sum of all distances to the fixed points is to be minimized it is 
known as the one-median problem [ 131. Here we assume that most points are fixed in place. 
Problems with this assumption include the multifacility minimax problem, when the greatest 
weighted distance in the system is to be minimized [6], and the multifacility minisum 
problem where the weighted sum of distances is minimized [ 131. We investigate a version of 
the final problem. In this paper, each distance is rectilinear (also known as the !I, distance). 
This is the distance measure when connections or travel are allowed only along horizontal or 
vertical directions. 

PROBLEM DEFlNlTION 

We must locate II points on a “board.” We assume that r points are fixed, and s = n - r 
points are “free points” in that their sites need to be determined. Also, a nonnegative weight 
is associated with any pair of points. Typically this weight is zero when there are no 
connections between the two points. The connection can be weighted by any appropriate 
positive multiplier for flexibility in the model. 

Let (xi, yi) be the location of point i for i = 1, , . . ,n. For simplicity of notation we assume 
that the last r points are fixed (their locations given). Let wi, be the weight between points i 
andjfori,j= l,... ,n. Note that wi, = 0 when both i and j are fixed. The weighted distance 
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between points i and j is Fij (X, Y): 

Kj (X3 Y) = Wij [ I Xi - xj I + I Yi - Yj II * 

The minimax problem is 

Minimize,,, {F(X, Y)}, 

where (2) 

F(X, Y) = maxi,j (F,}. 

(1) 

As is known, problem (2) can be decomposed into two one-dimensional problems. 

Lemma 1: 

I Xl - x2 I + I Yl - Y2 I = max{lxl fyi -x2-y21,1x, -Y, --2+~211. 

Prooj 
If the signs of x, - x2 and y, - y, are the same, then I x, - x2 I + 

I y, - y, 1 = I x1 - x2 + y, - y, I and I x1 - y, - x2 + y, I is smaller because it is equal to 

11x1 -x21-b, -Y,II. A similar argument holds for the case when the two signs are 
opposite to each other, and the lemma is easily verified. 

The following transformation decomposes problem (2) into two independent one- 
dimensional problems: 

Ui = Xi + _Vi, 

By Lemma 1: 

and therefore, 

where 

Fij (X, Y) = wij max { I pi - uj I 3 I ui - UjI 1, 

F(X, Y) = max b’(U), F(V)}, 

F(U) = maxij (wij I pi - ~jl), 

F(V) = maxii (w, I ui - uj I }. 

The best solution is obtained by solving for the minimum of F( U) and F(V) independently. 
For simplicity of notation let us rename the UPS as xis, and define Fi, (X) = wij I xi - xi (. 

THE UNIVARIATE SEARCH ALGORITHM 

Since very efficient algorithms exist for the one-center problem [7, 10, 111, i.e. s = 1, we 
propose an algorithm that optimizes in turn the location of single free points. 

Some additional notation is necessary: 

F,(X) = max,5j5n {Fij(X)} for i = 1, . . . , s. (3) 

Then 

F(X) = maxlsiss IFi @)I. (4) 
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Also define 

J(X) = {i 1 F;(X) = F(X)}. (5) 

Since F,(X) are convex, F,(X) and F(X) are convex also. 
One can choose any starting point for the following algorithm. However, we chose as 

starting point the solution to the one-center problem when all free points are forced to be at a 
single point. The weight between this “conglomerate” center and fixed point j is max,.,,, 

iwijl. 

Algorithm 1: (univariate search) 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

Set k = 0, where k is the iteration number. Find a starting point X(O). 

Find J(Xck’). 
Treat all the members of J(X(“)) in turn as single free points and solve the resulting 

one-center problems; relocate the members of J(Xck’) accordingly. Let Xck) be these 

revised locations of the points in J(Xck)). 
If F(Xck’) - F(X’@) > E (where E is a prespecified small positive “stopping criteri- 

on”), then set k = k + 1, X(kt’) = Xck) and go to step (2). 

If J(Xck)) # J(Xck’) update Xck) = Xck) and go to step (2). 

If J(X’“‘) = J(Xck’) stop with ?Zck) as the solution. 

Note that the one-center problem possesses a unique solution point, and therefore, all the 

values in the algorithm are well defined. 

In the following two theorems we prove that the algorithm converges to the optimal 

solution. First, we prove a lemma. Let 4(X) be the transformed vector X after one iteration of 

Algorithm 1, i.e. 4(X’“‘) = X(k+‘). 

Lemma 2: 

If F[$(X)] = F(X), then either J[$(X)] C J(X) or 4(X) = X. 

Proofi 
Each one-center problem has a unique solution. Consider solving the one-center problem 

involving point i E J(X). One possibility is that the new location is different from the 

previous one, and thus Fi (X) decreased and hence J(X) is reduced by the removal of i. If for 

all i E J(X) the solution remains the same, then 4(X) = X, and the lemma is proven. 

Theorem 1: 

Algorithm 1 converges. 

Prooj? 
Since F(Xtk+‘)) I F(Xck’) an since F(Xck’) 2 0, there must be some F” such that d 

limk-, F(Xck’) = F”. Since Xck) are in the convex hull of the points and therefore are 

bounded, there must exist a subsequence X’k” of Xck) such that lim,,, Xckz) = X0. Let 
X’ = 4(X0), X2 = 4(X’), and so on. As 4(X) is a continuous function of X (a solution to a 

one-center problem is continuous as a function of the locations of the points): 

lim X(kI+‘) = hrir $(X(k”) = d(lim X(ko) = 4(X0) = X’. 
i-m I-a 

In the same way: limi_, Xck,+‘) = X’, for t = 0, 1, 2, . . . . Since F(X’) = F” for 

t=0,1,2 ,...) then by Lemma 2, if 4(X’) # X’ then J(X’) shrinks; however after some 
iterations we must have J(X’+‘) = J(X’), and therefore, for that t, 4(X’) = X’. This means 

that lim,,, Xck) = X’, and the theorem is proved. 

Theorem 2: 
Algorithm 1 converges to the optimum. 
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Proo$ 
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By Theorem 1, Algorithm 1 converges to some point X0. Let 

Z = (i,j 1 Fij (X0) = F(XO)), (6) 

and let Z have t members. Also, let i,, . . . , i, be the members of Z ordered so that 
xi, I . . . - c xi,. Every free point, j E Z, must have two points, one to its left, j,, and one to its 
right, j,, such that xj, < xi < xi*, and Fjj, (X0) = Fjj2 (X0) = F(X’). If this were not so (for 
example there is no suchj,), then the solution to the one-center problem forj could have been 
improved by moving pointj to the right. It follows that i, and i, must be fixed points. 

Construct a sequence j,, . . . , j, of i,, . . . , i, such that it meets the conditions: 

(1) i, = 6; 

(2) xjk<xjt+lfork= l,...,u- 1; 

(3) Fjxjk+, (X0) = F(X’) fork = 1, . . . , u - 1; 

(4) j,, is a fixed point. 

(7) 

Such a sequence must exist because if xix is not a fixed point there must be a point to serve 
asj,,,. Note that v I 3. Now: 

F(X”) = wjkjk+, (xjk+, - xjk) for k = 1, . . . , v - 1. 

If we divide each equation of (8) by the weight and then sum up the equations we get 

Xjz, - ~j, = WF(XO), 

where 

u-l 

W= E [llwjkjk+,l~ 
k-l 

Therefore, 

F(XO) = (Xi, - Xj,)/ W. (9) 

Consider now any X. Then: 

F(X) L Wj*j~+, (Xjl+, - Xjh) for k = 1, . . . , u - 1. 

Dividing by the weights and summing up the inequalities as done before for the equalities we 
obtain: F(X) 1 (5 - xj,)/W, Since j, and j,, are fixed points this inequality means: 
F(X) 1 F(p), and X0 must be optimal. 

It is interesting to see what the equivalent theorems are for Euclidean distances rather 
than for the rectilinear distances discussed here. It is easy to verify that Theorem 1 still holds 
for Euclidean distances, but Theorem 2 does not. The univariate search converges to a point, 
but (as seen by the example in the Appendix) it does not necessarily converge to the 
optimum. 

THE STEEPEST DESCENT ALGORITHM 

F(X) is convex but its gradient is not continuous at many points. Moving in the direction 
of steepest descent is similar to moving on an edge of a simplex [ 1, 4, 8, 121. Assume we 
change X by an infinitesimal vector H such that xi is moved to xi + hi. Then 

&_/ (X + H) - F,(X) = Wij [I Xi - Xj + hi - hj 1 - 1 xi - xj I} 

= Wij 6, (hi - hj), 



Layout of facilities with some fixed points 607 

where 

6, = 
’ 

For an infinitesimal H, F(X + H) is determined only by those pairs (i, j) for which 
Fij (X) = F(X). Let 

Then 

I(X) = {(iTi> I Fij (X) = F(X)}. (10) 

F(X + H) = F(X) + maxi,jEqX) {WijSij (hi - hj)}. 

The descent along direction H is 

-[F(X + H) - F (X)]/(HrH)“*. 

Therefore, the steepest descent is obtained when 

max,,,EICx, twijsij (hi - hj)l/[Zh?]"* 

is minimized. Alternatively, 

minimize {iV], 

subject to 

wij6,(hi - h,) 5 M [#I’/* for i,j E Z(X). 

(11) 

It is easy to verify that when M is negative then (11) is equivalent to 

Minimize {Z/z’], 

subject to (12) 

wij6,(hi - hj) 5 - 1 for i, j E Z(X). 

Also, when there is no feasible solution to (11) when M is negative, then there is no feasible 
solution to (12). Note also that hi = 0 when point i is fixed. 

Problem (12) is a quadratic programming problem. Solution procedures for it are well 
known: for example see Beale [2] or Wolfe [ 151. As our objective function is merely a sum of 
squares, we found the following specialized approach useful. The problem is 

Minimize (X’X}, 

subject to 

AXrB. 

(13) 

Applying the Kuhn-Tucker conditions to (13) and setting Y = AX - B yields the solution 

X = ATV, (14) 
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where Vis the solution to 

AATV- Y=B, (Isa) 

VTY = 0, (15b) 

v, Yr 0. (15c) 

Finding a feasible solution to equations (15) is a complementary programming problem as 
presented by Dantzig and Cottle [3]; a solution method is given by Lemke [9]. A computer 
program for a complementary programming solution is presented in [ 141. 

Let H* be the solution to (12). Recall that H* is a vector in the direction of steepest 
descent of F(X). Essentially we will move X in the direction H* until there is a new addition 
to Z(X). In other words, until a new pair (i, j), where (i, j) @Z(X), fulfils Fij (X) = F(X). Let 
the new position of X along H* be X + aH* where a 2 0. 

First, we note that for at least one pair (i,j) E Z(X), the inequality 
wijSij (h 7 - h 7) 5 - 1 will be an equality. For this pair (or pairs): 

F,(X + aH*) = Fij(X) - a = F(X) - a. 

For the entering pair(s), i.e. for those (i, j) @Z(X) that join Z(X), 

Fij(X + uH*)= F(X) - a (16) 

at the point of entry. 
We solve (16) for the smallest possible a. The smallest a for all (i, j) @Z(X) will give us 

the entry point and the pair(s) that enters Z(X). Note the similarity of this approach to the 
concept of the simplex method of linear programming. To find this a, define an uij as the 
smallest positive number such that 

Fij (X + ~ij H*) = F(X) - Uij for (i,j) @Z(X). (17) 

Recall that Fij (X) = wij 1 xi - xj I. Substituting it in (17) and solving for uij yields 

uij = min {a,, a,}, (18) 

where 

[F(X) - Wij(Xi - Xj)]/[l + Wij(hT - hf)] if 1 + W,(hf - hr) > 0 
a, = 

cc otherwise 

I 

[F(X) + Wij(Xi - Xj)]/[l - W,(hr - II:)] if I - Wij(h: - hT) > 0 
u2 = 

m otherwise 1. 

For (i, j) @Z(X) the numerators in a, and u2 are positive and at least one of the 
denominators is positive (because their sum is 2). Therefore, there exists a positive solution to 
aii. Let a* be the maximal a such that F(X + uH*) = F(X) - a; then 

a* = miqi,j)E I(X) Iaijl. (19) 

At X + u*H* we have F(X + u*H*) = F(X) - a*. Let 

I, = {(i, j) 1 uij = a*}; 
Z2 = I(i,.Z) ] (i, j) E Z(X) and Fij (X + u*H*) < F(X) - a*}. 
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Table I. Randomlv generated problems 

609 

No. of No. of 
free ooints fixed ooints 

Algorithm I 

Iter. Time 

Algorithm 2 

Iter. Time 

5 100 69 0. I7 5 0.07 
10 200 2 0.02 2 0.05 
20 400 66 0.32 4 0.17 
40 800 7 0.13 5 0.53 

100 2000 68 1.12 * * 
200 4000 7 0.50 * * 

*Algorithm 2 was not run due to excessively large computer storage needed. 

Then 

Z(X + a*H*) = [Z(X) U I,] - I,. 

We sum up the algorithm as follows: 

Algorithm 2: (steepest descent) 

(20) 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

Set k = 0 (k is the iteration counter); choose a starting point X(O). 
Compute Z(X’O’), F(X’O’). 
Compute H* by (12). If there is no feasible solution, then X@’ is optimal; stop. 
Compute a* by (19). 
Set X (&i-i) = X(k) + a*H*. 

Update Z(X’@) to get Z(X(k+‘)) by (20). 
Update F(X(k+l)) = F(Xck’) - a*. 
Return to step (3) with k = k + 1. 

COMPUTATIONAL RESULTS 

In Table 1, results from randomly generated problems are presented. All parameters 
were generated by a uniform distribution. For each free point we generated 20 weights to a 
group of 20 fixed points and nonzero weights to all other free points. As a starting point we 
employ the solution of the one-center problem obtained by forcing all free points to one site. 
We used (for algorithm 1) t = 10m5 F(X), giving a relative accuracy of 10e5. Time is in 
seconds on a CDC/6400 system; the algorithms were coded in FORTRAN IV. We also 
generated a problem with 750 free points and 15 000 fixed points. We circumvented the need 
for huge computer storage by setting all weights between free points to 10 (this did not 
decrease the “difficulty” of the problem). This problem was solved by algorithm 1 in 49 
iterations and 5.50 set! Note that Algorithm 2 requires more computer memory than 
Algorithm 1. 
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APPENDIX 

In this Appendix we give an example of using Euclidean distances, in which the univariate search may converge 
to a nonoptimal point. 

The problem is described in Fig. Al. 

Fig. Al. An Euclidean Distance Problem. 

Three fixed points are located at D,, 4, D,. The three free points are connected among themselves by weights of 
“l”, and each free point is connected to one fixed point by a weight of 1. The coordinates of the points marked with 
D, 0, R, and S (three points of each type) are given in Table Al. 

Suppose the heuristic achieved a solution R,, RI, R3, where all nonzero weighted distances are equal to 
l/ fi = 0.377 96. Every free point is equidistant with three other equally weighted points and is on the line 
connecting two of them. Hence, Algorithm 1 will not change their locations [7]. 

However, if we rotate the inner triangle and “contract” it a little so that its edges are parallel to the edges of the 
bigger triangle, we can achieve another “equilibrium” solution with a lower maximum distance. The solution 
consists of pionts 0,, 4, 0, which give the optimal objective function of ( fi - I)/2 = 0.366 03. 

Actually, the solution “triangle” can be rotated from the R’s to the s’s and every such solution would be 
terminal for Algorithm 1. With our usual starting point, Algorithm 1 terminated with A,, Al, Ar; this is depicted in 
Fig. Al; the objective function was 0.367 39. 

Table Al. Coordinates 

XI YI x1 Y2 Xl Yl 

D -l/2 0 ‘I2 0 0 fi/2 

0 -(fi - 1)/4 (JJ - 1)/4 (J5 - 1)/4 ‘I2 
R -l/7 fill4 3114 a;7 O -l/14 2 J5/7 

s -3114 J5/7 117 fill4 l/14 2fi/7 


