Thermodynamics of uranium intermetallic compounds

I. Heat capacities of URu $_{\rm 3}$ and URh $_{\rm 3}$ from 5 to 850 K $^{\it a}$

E. H. P. CORDFUNKE, R. P. MUIS, G. WIJBENGA,^b

Netherlands Energy Research Foundation ECN, Petten (NH), The Netherlands

RAMON BURRIEL,^e MICHAEL (WING KEI) TO,^d HANAA ZAINEL,^e and EDGAR F. WESTRUM, JR.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

(Received 14 September 1981; in revised form 22 February 1985)

Heat capacities of carefully characterized samples of URu₃ and URh₃ were measured by adiabatic calorimetry from 5 to 350 K by adiabatic calorimetry and from 300 to 850 K by enthalpy-increment drop calorimetry. Values for the thermodynamic properties at 298.15 K; $C_{p,m}/R, S_m^{\circ}/R, \{H_m^{\circ}(T) - H_m^{\circ}(0)\}/R$, and $-\{G_m^{\circ}(T) - H_m^{\circ}(0)\}/R$ are: URu₃: 12.20, 17.38, 2550 K, and 8.82 K; URh₃: 12.39, 18.31, 2639 K, and 9.46 K. Phase transitions were not observed over the entire temperature range. In contrast with UPd₃ with localized spins and with related materials showing localized spin fluctuations, the electronic coefficients show typical metallic behavior.

1. Introduction

Thermodynamic properties of actinide-intermetallic compounds are technologically useful since it has been found that metallic inclusions in nuclear fuel, formed during fission in a fast-breeder reactor, consist of high-stability alloys.⁽¹⁾ This is particularly so with the light platinum metals, which form in the nuclear-fuel matrix alloys of the type UMe₃ (Me = Ru, Rh, and Pd), in solid solution with one another as (U, Pu)(Ru, Rh, Pd)₃. For a better understanding of the formation and stability of these solid solutions thermodynamic information on these materials is necessary.

© 1985 Academic Press Inc. (London) Limited

^a The portion of this research done at Michigan was supported in part by the Structural Chemistry and Chemical Thermodynamics Program of the Chemistry Section of the National Science Foundation under grants CHE-7710049 and CHE-8007977.

^b Present address: Shipley Company, Newton, MA 02162, U.S.A.

Present address: Department of Fundamental Physics, University of Zaragoza, Spain.

^d Present address: Hong Kong.

^{*} Present address: Chemistry Department of Science, Adamayia, Baghdad, Iraq.

The uranium intermetallics are also of interest because of their thermophysical properties. The 5f electrons of the actinides exhibit behavior intermediate between that of the 4d itinerant electrons of the transition metals and the localized 4f electrons of the lanthanides. Moreover, 5f electrons are of considerable interest in the study of magnetism, and of crystalline electric-field levels by optical and neutron spectroscopy. This initiatory paper presents thermochemical and thermophysical properties within the context of a larger program on the determination of their chemical thermodynamics.

2. Experimental

The starting materials for the preparation of URh₃ and URu₃ were rhodium and ruthenium powders (99.99 mass per cent purity, Johnson Matthey Chemicals, Ltd.) and uranium nitride (UN) prepared by the reaction of finely divided uranium powder with nitrogen. The uranium sesquinitride that is formed at about 1000 K is decomposed in an argon atmosphere to UN at 1700 K. Before use, the rhodium and ruthenium powders were dried in vacuum at about 800 K to remove any adsorbed moisture. URu₃ and URh₃ were prepared then by heating mixtures of UN with ruthenium and rhodium in stoichiometric ratios at about 1600 and 1400 K, respectively. A high-frequency induction furnace was used for the heating of samples. The equipment consisted of a Pyrex tube with a water-cooled copper concentrator containing a TaC crucible on an alundum bar. The tube was assembled in the glove box, placed in the induction coil of the furnace, and connected with the argon purification system. After the tube had been flushed sufficiently with purified dry argon, the sample in the TaC crucible was heated. Temperatures were measured with a calibrated pyrometer on a black-body hole in the TaC crucible (accuracy ± 10 K in the temperature range 100 to 1800 K). The reaction products were ground and reheated; this was done until the reaction was complete as indicated by the X-ray diffraction results. The lattice parameters of the URu₃ and URh₃ samples are given in table 1. Since the UN starting material contained a known amount of UO₂, the URu₃ and URh₃ preparations were purified by washing them in an acid solution $\{n(HNO_3)/n(H_2O) = 1\}$ to remove any UO₂ present. URu₃ and URh₃ are insoluble in this solution. The purified preparations were dried in vacuum at 800 K. The original UN-to-Rh mole ratio was corrected for this amount of UO₂ to give finally the stoichiometric compositions.

ADIABATIC TECHNIQUES, 6 TO 350 K, UNIVERSITY OF MICHIGAN

The Mark II cryostat and the adiabatic technique were employed.⁽²⁾ Gold-plated copper calorimeter W-34 with a volume of 8 cm³ was used. The calorimeter was loaded with sample in a dry box, evacuated, and helium gas to improve thermal equilibrium added at 3 kPa pressure at 300 K to provide thermal contact between

1036

.

Compound	pound Symmetry		_o /pm	
		Expt.	Literature	
URu _{2.9996} URh _{3.0000}	Pm3m (cubic Cu ₃ Au-type) Pm3m (cubic Cu ₃ Au-type)	397.9 399.15	398.0 ⁽⁴⁾ 399.1 ⁽⁵⁾	

TABLE 1. X-ray diffraction results including lattice parameters a₀ for URu₃ and URh₃

sample and calorimeter. It was then sealed, placed in the cryostat, and cooled. About 26 g of sample was used in each measurement.

The heat capacity of the empty calorimeter was determined in a separate set of experiments. The calorimeter was surrounded by a shield system provided with automatic temperature control. Temperatures were measured with a capsule-type platinum resistance thermometer (A-1) located in a central well within the calorimeter. The heat capacity of the sample represented from 35 to 45 per cent of the total.

The platinum resistance thermometer for the low-temperature calorimeter had been calibrated by the U.S. National Bureau of Standards; temperatures are judged to correspond to IPTS-68 within 0.02 to 350 K. Precision is considerably better, and the temperature increments are probably accurate to 0.2 mK. Measurements of mass, resistance, potential, and time are referred to standardizations and calibrations performed at the U.S. National Bureau of Standards.

ENTHALPY-INCREMENT VALUES, 400 TO 850 K (NETHERLANDS ENERGY RESEARCH FOUNDATION ECN)

Measurements were made in a diphenyl-ether drop calorimeter developed by Cordfunke *et al.*⁽³⁾ The energy equivalent of the calorimeter was determined by means of calibrations with spherical pieces of α -quartz. A calibration factor of $(79.977\pm0.063) \text{ J} \cdot \text{g}^{-1}$ for mercury was obtained. For the drop-calorimetric studies, spherical vitreous-silica ampoules with a 0.6 mm wall thickness and 20 mm diameter were used to contain the samples. The ampoules were about 4.2 cm³ in volume and were of mass 1 to 1.5 g empty. Heat from the sample and ampoule, when dropped into the calorimeter, melted solid diphenyl ether in equilibrium with its liquid in a closed system. The resulting volume increase of the ether was determined by weighing the displaced mercury. Temperature measurements in the furnace were made with calibrated (Pt-to-(Pt+10 mass per cent of Rh) thermocouples to within ± 0.1 K. The enthalpy contribution of the vitreous silica was determined in a series of separate drop measurements.

The ampoules contained about 13 g of URu₃ and about 12.5 g of URh₃, respectively. In the experiments more than 85 per cent of the measured energy was due to the sample. A correction was made for the difference between the final calorimeter temperature and the standard reference temperature, 298.15 K, using $C_{p,m}(298.15 \text{ K})$.

T/K	$C_{p,m}/R$	<i>T</i> /K	$C_{p,m}/R$	T/K	$C_{p,m}/R$	T/K C	$C_{p,m}/R$	T/K	$C_{p,m}/R$	T/K	$C_{p.m}/R$
					U	Ru ₃					
Seri 6.92 8.83 9.67 10.59 11.66 12.59 13.74 14.77 16.02 17.43	es I 0.022 0.045 0.048 0.061 0.079 0.092 0.120 0.147 0.184 0.229	19.02 20.58 22.29 24.19 26.39 28.68 30.68 32.62 34.74 36.76 38.93	0.300 0.502 0.502 0.646 0.825 1.019 1.218 1.385 1.680 ^a 1.919 ^a 2.195 ^a	41.57 44.67 47.80 51.68 56.21 66.87 70.91 78.27 86.25 93.58	2.514 2.896 3.303 3.833 4.387 ies II 5.634 6.056 6.755 7.449 7.960	101.90 111.21 120.03 129.50 139.65 149.46 159.0 168.35 177.30 186.19 195.38	8.446 8.929 9.360 9.745 10.07 10.36 10.60 10.82 10.98 11.15 11.27	204.86 214.22 223.48 Seri 182.46 191.74 200.22 208.61 216.91 225.03 233.45	5 11.37 2 11.50 3 11.61 es III 5 11.030 4 11.171 2 11.289 11.374 11.481 5 11.64 5 11.710	250.44 263.68 273.67 283.58 293.42 303.40 313.14 316.75 326.35 335.90 344.85	11.838 11.871 12.050 12.111 12.170 12.239 12.310 12.293 12.421 12.490 12.553
					U	Rh3					
Serie 6.79 9.57 11.05 12.79 14.56 16.29 18.10 20.07	es I 0.025 0.044 0.068 0.094 0.142 0.196 0.277 0.392	21.89 23.90 26.37 29.05 33.31 38.29 42.08 45.81 50.64	0.517 0.686 0.926 1.245 1.760 2.449 2.993 3.528 4.204	Seri 53.57 58.15 63.69 69.84 76.32 83.39 90.88 99.31	es II 4.603 5.194 5.871 6.515 7.116 7.740 8.282 8.776	108.73 118.66 129.14 1 140.25 1 151.48 1 162.40 1 173.06 1 Series 185.57 1	9.249 9.708 10.091 10.438 10.719 10.963 11.190 III 11.379	195.91 206.34 217.10 227.97 238.74 249.34 259.85 270.30 280.93	11.518 11.639 11.763 11.860 11.965 12.057 12.123 12.193 12.287	291.77 302.53 313.23 323.88 334.44 344.96	12.366 12.432 12.496 12.550 12.647 12.728

TABLE 2. Experimental heat capacity of URu₃ and URh₃ ($R = 8.3143 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$)

3. Results

The measured heat capacities of both compounds over the low-temperature range are listed in chronological order in table 2 and presented graphically in figure 1 together with those values obtained from the enthalpy increments from the highertemperature results of table 4. The approximate temperature increments used in the cryogenic (adiabatic) determinations can usually be inferred from the adjacent mean temperatures in table 2. Twice the standard deviation in the measured lowtemperature heat capacity is about 1 per cent from 8 to 30 K, 0.2 per cent from 30 to 300 K, and 0.3 per cent from 300 to 350 K. Below 10 K, the heat capacities were extrapolated with a $C_{p,m}/T$ against T^2 plot. The electronic (conduction) coefficients $\gamma/(R K)$ calculated on this basis are 0.0018 and 0.0016 for URu₃ and URh₃ at T = 0. Corresponding values for $\Theta_D(0)$ are 299 and 297 near T = 0. Our $\gamma/(R K)$ values for URh₃ at low temperature agree within a few per cent with the values reported by Trainor and Brodsky⁽⁶⁾ below 14 K; they give 0.00174 and a similar temperature variation.

Values of the smoothed thermodynamic properties as derived from the fitted polynomial expressions are presented in table 3 for selected temperatures. The accuracies of the thermodynamic function values is estimated to about 0.2 per cent above 100 K.

The heat-capacity curves show normal behavior in both compounds, with

FIGURE 1. The heat capacity of URh₃. \bigcirc , Heat capacities determined in the cryogenic adiabatic calorimeter; \square , heat capacities derived from enthalpy determinations.

FIGURE 2. The heat capacity of URu₃. \bigcirc , Heat capacities determined in the cryogenic adiabatic calorimeter; \square , heat capacities derived from enthalpy determinations.

<i>T</i>	<i>C</i> _{<i>n</i>} m	$S_{\mathbf{m}}^{\circ}(T) - S_{\mathbf{m}}^{\circ}(0)$	$H^{\circ}_{\mathfrak{m}}(T) - H^{\circ}_{\mathfrak{m}}(0)$	$-\left\{G_{m}^{\circ}(T)-H_{m}^{\circ}(0)\right\}$
K	<u></u> <u>R</u>	R	RK	RT
		URu ₃		
5	0.015	0.013	0.033	0.006
10	0.053	0.032	0.186	0.014
15	0.152	0.070	0.663	0.026
20	0.356	0.138	1.879	0.044
25	0.692	0.251	4.443	0.074
30	1.147	0.416	9.001	0.116
40	2.278	0.895	25.897	0.247
50	3.610	1.548	55.406	0.439
60	4.847	2.317	97.786	0.687
70	5.951	3.149	151.90	0.979
80	6.903	4.007	216.30	1.304
90	7.703	4.868	289.45	1.652
100	8.368	5.715	369.91	2.016
120	9.372	7.335	547.92	2.769
140	10.077	8.836	742.80	3.530
160	10.602	10.217	949.82	4.281
180	11.010	11.490	1100.1	5.012
200	11.530	12.00/	1389.0	5./19
220	11.578	15.700	1010.0	0.401
240	11.772	14.770	1852.4	7.037
200	12.073	15.72	2009.4	7.000
200	12.073	10.01	2527.5	0.274
320	12.210	17.43	23/2.5	0.077
340	12.337	18.24	3065 7	9.438
240	12.440	10.77	5005.7	7.510
273.15	12.025	16.32	2247.0	8.089
298.15	12.198	17.38	2549.8	8.824
400	12.69	21.04	3819.7	11.49
500	13.03	23.91	5106.0	13.70
600	13.34	26.31	6424.8	15.60
700	13.62	28.39	7773.0	17.28
800	13.90	30.22	9149.3	18.79
900	14.18	31.88	10553.4	20.15
		URh ₃		
5	0.022	0.008	0.030	0.002
10	0.054	0.032	0.212	0.011
15	0.150	0.068	0.675	0.023
20	0.387	0.140	1.947	0.043
25	0.793	0.267	4.827	0.074
30	1.345	0.458	10.120	0.121
40	2.693	1.025	30.141	0.271
50	4.118	1.780	64.235	0.495
60 70	5.421	2.648	112.07	0.780
/0	6.536	5.570	1/2.03	1.115
80	/.458	4.505	242.10	1.4/8
90 100	8.208 0.000	J.429 6 276	520.01 ADS 92	1.800
100	0.022 Q 75A	8 077	403.00	2.208
140	10 426	9 579	794 29	3 905
160	10.924	11.005	1008.0	4.705

TABLE 3. Thermodynamic properties of URu₃ and URh₃ ($R = 8.3143 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$)

Т	$C_{p,m}$	$S^{\circ}_{\mathfrak{m}}(T) - S^{\circ}_{\mathfrak{m}}(0)$	$H^{\circ}_{\mathfrak{m}}(T) - H^{\circ}_{\mathfrak{m}}(0)$	$-\{G^\circ_{\mathfrak{m}}(T)-H^\circ_{\mathfrak{m}}(0)\}$
 K	R	R	RK	RT
180	11.292	12.314	1230.4	5.478
200	11.568	13.519	1459.1	6.223
220	11.787	14.632	1692.7	6.938
240	11.972	15.666	1930.4	7.622
260	12.133	16.63	2171.5	8.279
280	12.275	17.53	2415.6	8.908
300	12.407	18.38	2662.4	9.512
320	12.544	19.19	2911.9	10.092
340	12.682	19.96	3164.2	10.650
273.15	12.23	17.23	2331.7	8.695
298.15	12.39	18.31	2639.5	9.457
400	12.978	22.04	3932.9	12.206
500	13.340	24.98	5251.9	14.477
600	13.648	27.44	6601.6	16.438
700	13.967	29.57	7982.0	18.165
800	14.324	31.46	9396.1	19.710

TABLE 3-continued

contributions only from the lattice vibrations and the free-electron gas. Since the apparent Debye parameters calculated from the observed heat capacities are approximately constant above 30 K, estimates of Θ_{∞} as 276 and 258 K for URu₃ the basis of and URh₃ have been made the equation: on $C_{p,m} = 3nR(1 - \Theta_{\infty}^2/20T^2) + aT^{(7)}$ by slopes of plots of $(C_{p,m} - 12R)/T$ against T^{-3} over the region $0.7\Theta_{\rm p} < T < 1.3\Theta_{\rm p}$. The zero intercept of these linear curves at $T = \infty$ gives values of 0.0024 and 0.0028 for the coefficients of the linear term in T involving the conduction electronic coefficient γ' , the thermal expansivity, and the anharmonicity coefficient. Hence $\gamma'/(R K)$ does not increase much in this region.

The results of the drop-calorimetric measurements for URu₃ and URh₃ are given in table 4. Over the range of the experimental measurements the enthalpy increments as a function of temperature can be represented by a polynomial expression of the usual form: $H_m^{\circ}(T) = aT + bT^2 + cT^{-1} + d$, the coefficients of which have been obtained by least squares. Boundary conditions were applied so that, when T = 298.15 K, $\{H_m^{\circ}(T) - H_m^{\circ}(298.15 \text{ K})\} = 0$ and $C_{p,m}(T) = C_{p,m}(298.15 \text{ K})$. The last quantity was obtained from the lowtemperature heat-capacity measurements (table 3). The high-temperature enthalpy increments correlate smoothly with the low-temperature values.

For URu_3 we obtain (298 to 890 K):

$$\{H_{\rm m}^{\circ}(T) - H_{\rm m}^{\circ}(298.15 \text{ K})/(\text{J} \cdot \text{mol}^{-1}) = 101.224(T/\text{K}) + 9.23014 \times 10^{-3}(T/\text{K})^2 + 4.71814 \times 10^5(T/\text{K})^{-1} - 32582.9,$$

with standard deviation 0.25 per cent. For URh₃ we obtain (298 to 842 K):

$$\{H_{\rm m}^{\circ}(T) - H_{\rm m}^{\circ}(298.15 \text{ K})\} / (J \cdot \text{mol}^{-1}) = 104.445(T/\text{K}) + 9.10274 \times 10^{-3}(T/\text{K})^2 + 6.10033 \times 10^5(T/\text{K})^{-1} - 33995.5,$$

Т	$H_{\rm m}^{\circ}(T) - H_{\rm m}^{\circ}(298.15 {\rm K})$	Т	$H_{\rm m}^{\circ}(T) - H_{\rm m}^{\circ}(298.15 {\rm K})$	Т	$H_{\rm m}^{\circ}(T) - H_{\rm m}^{\circ}(298.15 {\rm K})$
K	R K	ĸ	RK	K	RK
			URu ₃		
406.0	1349	607.1	3979	746.4	5875
427.8	1632	629.9	4269	764.3	6118
451.5	1938	662.9	4727	821.1	6883
481.4	2317	711.8	5375	889.7	7860
			URh ₃		
423.7	1611	576.6	3645	772.4	6354
465.2	2158	627.0	4344	842.0	7363
496.6	2571	674.9	4983		
528.6	3000	717.6	5586		

TABLE 4. Enthalpy increments of URu₃ and URh₃ above 400 K ($R = 8.3143 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$)

with standard deviation 0.27 per cent. The thermodynamic functions of URu_3 and URh_3 are listed in table 5, as calculated from the enthalpy polynomials, as derived above, the enthalpies of formation at 298.15 K,⁽⁸⁾ and auxiliary values for U,⁽⁹⁾ Rh,⁽¹⁰⁾ and Ru.⁽¹⁰⁾

4. Discussion

Previous measurements of the quotient χ/ρ of the magnetic susceptibility and density of URh₃ show a temperature-independent paramagnetism with a value of $\chi/\rho = 2.24 \times 10^{-8} \text{ m}^3 \cdot \text{kg}^{-1}$ at 300 K.⁽¹¹⁾ This value in URh₃ suggests the existence of strong hybridization of the 6d band of the uranium with the 4d band of the

TABLE 5. Thermochemical	functions for URu	and URh ₁ ($R =$	= 8.3143 J · K~	$^{1} \cdot mol^{-1}$
		3		

Reference uranium	$\frac{T}{K}$	$\frac{\Delta_{\rm f} H_{\rm m}^{\circ}}{10^3 R \rm K}$	$\frac{\Delta_{\rm f}G_{\rm m}^{\circ}}{10^3R~{\rm K}}$	$\frac{\Delta_{\rm f} H_{\rm m}^{\circ}}{10^3 R \rm K}$	$\frac{\Delta_{\rm f}G_{\rm m}^{\circ}}{10^3R~{\rm K}}$
phase		UF	lu ₃	UR	h ₃
α	298.15	-18.141	- 18.456	- 36.222	- 36.493
	300	-18.141	-18.458	-35.222	- 36.494
	400	-18.111	-18,568	-36.217	- 36.588
	500	-18.082	-18.686	- 36.228	- 36.678
	600	-18.069	-18.808	-36.275	- 36.764
	700	-18.088	-18.930	-36.364	-36.839
	800	-18.145	- 19.048	- 36.507	- 36.898
	900	-18.250	- 19.155	- 36.709	- 36.935
	942	-18.310	- 19.196	- 36.812	- 36.944
в	942		- 19.196	- 37.148	- 36.944
	1000	-18.700	-19.229	-37.265	- 36.928
	1049	- 18.747	-19.253	-37.365	- 36.906
γ	1049	- 19.319	-19.253	- 37.937	- 36.906
	1100	- 19.340	- 19.249	- 38.016	- 36.858
	1200	-19.382	- 19.238	-38.176	- 36.748

1042

rhodium.⁽¹²⁾ Measurements of the De Haas and van Alphen effect⁽¹³⁾ and of the T^3 dependence of the resistivity at low temperatures⁽¹¹⁾ have been interpreted by a model in which a broad hybridized band between 6d and 5f uranium states overlaps the Fermi level.

Additional 5f levels in the actinide series tend to a gradual development of localmoment behavior. In the series ThRh₃, URh₃, NpRh₃, PuRh₃, the stabilization of the 5f energy level is clearly apparent from the magnetic susceptibilities, electric conductivities,⁽¹⁴⁾ and heat-capacities. In ThRh₃, the 5f level is above the Fermi energy; in URh₃ a broad (6d+5f) hybridized band overlaps the Fermi level. Addition of more 5f electrons stabilizes a nearly magnetic state in NpRh₃ with a reported spin-fluctuation temperature $T_s \approx 100 \text{ K}$,⁽¹⁴⁾ and subsequently complete localization occurs in PuRh₃ which presents antiferromagnetic ordering at 6.6 K.⁽¹¹⁾

The γ values, at low temperatures, obtained from our heat-capacity measurements indicate a similar density of states in the Fermi surface for URh₃ and URu₃ intermediate between the values for ThRh₃ and NpRh₃ in accordance with the susceptibilities.⁽¹¹⁾ That and the absence of any Schottky anomaly, in contrast to UPd₃,⁽¹⁵⁾ is compatible with a broad band in the Fermi surface with unlocalized electrons.

Although evidence of similar measurements for the (actinide + ruthenium) intermetallics is lacking, we predict from our results a role for the 5f electrons similar to that in the rhodium series.

Our 4d uranium compounds as well as the other non-d compounds with cubic structure presented in table 6 show a clear correlation in each group between the atomic distances and the γ values. This reflects the stabilization of the 5f electrons by band narrowing, increasing the U-U distances, and eventual magnetic ordering in UIn₃ and UPb₃. Both magnetic ordering⁽¹⁶⁾ and low-energy crystal-field transitions,⁽¹⁷⁾ have been unambiguously established to be present in UPd₄ which is isostructural with URu₃ and URh₃. Its lattice parameter (a = 406.9 pm)⁽¹⁸⁾ is close to the U-U distance in UPd₃; hence similar behavior is explicable.

Compound	<u>M</u>	<u>a</u> 0	$\frac{10^{3}\gamma}{7}$	$\frac{\Theta_{\rm D}(0)}{2}$	$\Theta_{\rm D}(0)M^{1/2}$
	g·mol '	pm	R K.	K	$10^{5} \text{ K} \cdot \text{g}^{1/2} \cdot \text{mol}^{-1/2}$
UAI ₃	26.98	428.7	5.0	378	3.4
USi ₃	28.09	403.5	1.7	397	3.6
UGa,	69.72	424.8	6.3	288	4.1
UGe ₃	72.59	420.6	2.5	255	3.7
UIn ₃	114.82	460.1	6.0	>174	> 3.2
UPb ₃	207.19	479			
URu ₃	101.07	397.9	1.8	299	5.2
URh ₃	102.90	399.15	1.6	297	5.2
UPd ₃	106.40	410.3 ª	<1.2	>237	>4.4
ThPd ₃	106.40	417.9 ª	0.2	265	4.8

TABLE 6. Comparison of hexagonal actinide intermetallic compounds

⁴ U-U or Th-Th distances with the 6 nearest neighbors for hexagonal structures with the same coordination numbers.

Despite large variation in the molar masses M we find a remarkable uniformity in the $\Theta_{\rm D}(0)M^{1/2}$ values indicating the dominance of low-energy vibrational modes of the lattice in which the heavy atoms do not participate.⁽¹⁹⁾ This regularity permits calculation of the lattice heat-capacity contribution by the corresponding-states principle in the compounds that have thermal anomalies such as UPd₃.⁽¹⁵⁾ We obtain $\Theta_{\rm D}(0) = 273$ K and $\Theta_{\rm D}(\infty) = 236$ K.

We acknowledge with gratitude the assistance of William A. Plautz and Dr G. Prins in the calculations and evaluation of the thermodynamic functions.

REFERENCES

- Kleykamp, H. Proceedings of the Symposium on "Behaviour and Chemical State of Irradiated Ceramic Fuels". Vienna (1972). IAEA: Vienna. 1974, p. 157.
- 2. Westrum, E. F., Jr. Experimental Thermodynamics. McCullough, J. P.; Scott, D. W.: editors. Butterworths: London. 1968.
- 3. Cordfunke, E. H. P.; Muis, R. P.; Prins, G. J. Chem. Thermodynamics 1979, 11, 819.
- 4. Heal, T. J.; Williams, G. I. Acta Cryst. 1955, 8, 494.
- 5. Dwight, A. E.; Downey, J. W.; Conner, R. A., Jr. Acta Cryst. 1961, 14, 750.
- 6. Trainor, R. J.; Brodsky, M. B. Am. Inst. Physics, Conference Proceedings, No. 24 1974, 220.
- 7. S. Flügge: editor. Encyclopedia of Physics. Vol. VII, Part 1, p. 250. Springer-Verlag: Berlin. 1955.
- 8. Wijbenga, G.; Cordfunke, E. H. P. J. Chem. Thermodynamics 1982, 14, 409.
- 9. Oetting, F. L.; Rand, M. H.; Ackermann, R. J. The Chemical Thermodynamics of Actinide Elements and Compounds, Part 1. IAEA: Vienna. 1976.
- 10. Barin, I.; Knacke, O.; Kubaschewski, O. Thermochemical Properties of Inorganic Substances. Supplement. Springer-Verlag: Berlin. 1977.
- 11. Nellis, W. J.; Harvey, A. R.; Brodsky, M. B. Am. Inst. Physics, Conference Proceedings No. 10 1972, 1076.
- 12. Delapalme, A.; Lander, G. H.; Brown, P. J. J. Phys. C: Solid State Phys. 1978, 11, 1441.
- Arko, A. J.; Brodsky, M. B.; Crabtree, G. W.; Karim, D.; Koelling, D. D.; Windmiller, L. R.; Ketterson, J. B. Phys. Rev. B 1974, 12, 4102.
- 14. Brodsky, M. D. Phys. Rev. B 1974, 9, 1381.
- 15. Burriel, R.; To, M.; Zainel, H.; Westrum, E. F., Jr.; Cordfunke, E. H. P.; Muis, R. P.; Wijbenga, G. to be published.
- 16. Murasik, A.; Leciejewicz, J.; Zygmunt, A. Phys. Stat. Sol. (a) 1975, 28, K107.
- 17. Furrer, A.; Murasik, A.; Vogt, O. Helv. Phys. Acta 1977, 50, 447.
- 18. Erdmann, B.; Keller, C. J. Solid State Chem. 1973, 7, 40.
- 19. Maaren, M. H. van; Daal, H. J. van; Buschow, K. H. G.; Schinkel, C. J. Solid State Commun. 1974, 16, 145.