A CONVENIENT SYNTHESIS OF $\mathbf{s}^{-(5 '-D E O X Y-5 '-A D E N O S Y L)-~}$

(\pm)-2-METHYLHOMOCYSTEINE

Kondareddiar Ramalingam and Ronald W. Woodard* Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065

Abstract. The synthesis of $\underline{\text { s-(5'-deoxy-5'-adenosyl)-(} \pm)-2 \text {-methylhomocysteine in two steps }}$ from (\pm)-2-methylmethionine is described.

Modification of the purine ring, sugar, and amino acid portions of s-adenosylhomocysteine (SAH) and s-adenosylmethionine (SAM) have furnished a number of new inhibitors of transmethylase enzymes ${ }^{1-5}$ as well as inhibitors for enzymes involved in polyamine biosynthesis. ${ }^{6-8}$ The replacement the of methine proton of the α-amino acid carbon with a methyl group is of considerable interest for the inhibition of SAM decarboxylase, ${ }^{9}$ an essential enzyme in the biosynthesis of the polyamines spermidine and spermine. previous synthesis ${ }^{6}$ of the title compound has involved five steps and the use of rather noxious chemicals, and was obtained in only 30% overall yield.
We now wish to describe a two-step one-pot synthesis of s-(5'-deoxy-5'-adenosyl)-(土)-2-methylhomocysteine. For our synthesis we elected to start with (\pm)-2-methylmethionine. 10

Although not presently comercially available, (+)- and (-)-2-methylmethionine are available by facile synthetic routes. ${ }^{11}$ We found that sodium in liquid ammonia would effect the cleavage of the methyl group of methionine to form the sodium salt of homocysteine. 12 For this reaction to occur, a slight excess of sodium was added to liquid ammonia containing $(\pm)-2$-methylmethionine at $-40^{\circ} \mathrm{C}$. The reaction mixture was held at $-40^{\circ} \mathrm{C}$ for 0.5 h and $5^{\prime-}$-chloro-5'-deoxyadenosine ${ }^{13}$ was added in one portion. Stirring at $-40^{\circ} \mathrm{C}$ was continued for 6 h. The ammonia was allowed to evaporate over a 20 to 30 tain period and the residue was
dissolved in water and heated to reflux (4 h). After the reaction mixture was cooled and the pH adjusted to 6.5 (1 N HCl) the solution was applied to a column of Dowex $50 \times 4-200$, NH_{4}^{+}form. After elution with water (150 ml), the column was washed with $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ to obtain the desired product which was lyophilized. The crude product was purified via silica gel chromatography by elution with butanol-acetic acid-water (13:2:5) to remove unreacted 5^{\prime}-chloro-5'-deoxyadenosine. Any traces of acetic acid were removed on a small Dowex $50 \times 4-200\left(\mathrm{NH}_{4}^{+}\right)$ion exhange column. The ninhydrin positive fractions were combined and freeze-dried to give a white solid in 55\% yield, mp $249-250^{\circ} \mathrm{C}$ dec. ($1 \mathrm{it} .{ }^{6} 243^{\circ} \mathrm{C}$ dec.). ${ }^{14}$
The application of this facile synthesis of amino acid modified SAH and SAM derivatives is under further investigation in our laboratory.

References

1. V. N. Rekunova; I. P. Rudakova; A. M. Yurkevick, Tetrahedron Lett., 2811, (1973).
2. J. K. Coward; D. L. Bussolotti; C. D. Chang, J. Med. Chem., 17, 1286, (1974).
3. R. T. Borchardt; J. A. Huber; Y.S. Wu, J. Med. Chem., 19, 1004, (1976).
4. R. T. Borchardt, J. Med. Chem., 23, 347, (1980).
5. T. Itoh; T. Sugaware; Y. Mizuno, Nucleosides and Nucleotides, 1, 179, (1982).
6. M. C. Pankaske; M. M. Abdel-Monem; A. Raina; T. Wang; J. E. Foker, J. Med. Chem_, 23, 121. (1980).
7. J. K. Coward; N. C. Motola; J. D. Moyer, J. Med. Chem., 20, 500, (1977).
8. H. Hibasami; R. T. Borchardt; S. Y. Chen; J. K. Coward; A. E. Pegg, Biochem. J.. 187. 419. (1980).
9. M. Pankaskie: M. M. Abdel-Monem, J. Med. Chem., 23, 121, (1980).
10. Available from Aldrich Chemical Co. or Sigma Chemical Co.
11. U. Schollkopf; R. Lonsky, Synthesis, 675, (1983).
12. D. Dolphin, K. Endo, Analyt. Biochemistry, 36, 338, (1970).
13. K. Kikugawa; M. Ichino, Tetrahedron Lett., 87, (1971).
14. $\mathrm{l}_{\mathrm{H}-\mathrm{NMR}}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 8.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 8.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), 6.10\left(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{1},-\mathrm{H}\right), 4.88(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}$. $\left.C_{2},-H\right), 4.48\left(t, J=5.0,1 H, C_{3},-H\right), 4.44\left(m, 1 H, C_{4}-H\right), 3.11\left(m, 2 H, C_{5},-H\right), 2.76\left(m, 2 H, C_{\gamma}-H\right), 2.22(m$, $2 \mathrm{H}, \mathrm{C} \beta-\mathrm{H}), 1.52$ and $1.46\left(2 \mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

Acknowledgment: This work was supported by U. S. Public Health Service Grant GM 30097.
(Received in USA 26 November 1984)

