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Summary: Intramolecular 1,3-dipolar cycloaddition of azide 4 proceeds through triazoline 5 and 
vinyl aziridine 6, resulting in the formation of the 1,5-homodienyl shift product 7 and the 
tetrahydropyrrolizines 8 and 9. Compound 8 represents a formal total synthesis of suprnidine. 

Many diverse classes of alkaloids may be grouped according to a common structural feature, 

namely a pyrrolidine or pyrroline ring fused to one or more additional rings with the nitrogen 

atom at the bridgehead position.2 A general synthetic approach to these compounds is outlined 

in eg. 1, suggesting the intramolecular 1,2- or 1,4-addition of a nitrene to a diene.3 To 

avoid the problems associated with the utilization of an aliphatic nitrene, the synthetic 

equivalent of a nitrene/diene cycloaddition is required. 
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c-9 N/ - p9 N eq. 1 

Among the several possible equivalents of a nitrene, we have chosen the azido group due to 

its propensity to undergo 1,3-dipolar cycloadditons with olefins.4 The intramolecular 

cyclization of aliphatic asides onto dienes has not been well studied.3bd'5 We wish to report 

some preliminary work using this pathway aimed at the pyrrolizidine alkaloids.6 

The target azidodiene 4 was prepared as shown in Scheme I.. The known7 aldehyde 1 was 

converted to a mixture (l.l:l) of hydroxyesters 2 upon exposure to the lithium enolate of ethyl 

crotonate.8 Mesylation in the presence of excess triethylamine (MsCl, 5 eg NEt3, RT, 2h) led 

smoothly to the diene 3a (4:l E:Z, 82% from 1). Removal of the silyl group (AcOH, THF, H20, 

450, 4h), mesylation of the resultant alcohol 3b (MsCl, NEt3, 78% from 3a) and azide 

displacement (NaN3, DMSO, RT, 88%) provided azide 4 in excellent overall yield. 

1 

Scheme 1 

2~ R=SiMe:Bu 4 
k =H 

C = SO$le 
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Upon standing at 0' for 1 week, a mixture of starting aside 4, triazoline 5,' imine 7' and 

vinyl aziridine 6' was formed in a 17:50:17:17 ratio (lH NMR) Scheme 2. These could be 

separated by chromatography (SiO,) with the exception of the triazolines, which were too 

sensitive to isolate in pure form. Imine 7 presumably arises from endo aziridine 6 by a facile 

1,5-homodienyl shift." All attempts to cause clean conversion of aside 4 to triazoline 5 

without competing decomposition to imine 7 have failed. Alternatively, imine 7 could be formed 

in good yield by decomposition of the azide at higher temperature. For example, heating 4 at 

reflux in benzene or THF (4-6h) caused smooth conversion (ca. 90%) to imines 7a,b, which were 

now contaminated by two new products (7a:7b:8:9, 75:9:6:14). These were isolated and 

identified as the tetrahydropyrrolizines 8'la and 911b. Apparently, evolution of nitrogen from 

the triazoline leads to a diradical12 which may close to aziridine 6. At higher temperatures, 

direct closure to 8 becomes competetive (or, cleavage of bond a in 6 occurs). Rndo vinyl 

aziridine 6 may undergo a 1,5-homodienyl shift to 7, or open to a different diradical13 

(cleavage of bond b), leading to 9. 

Scheme 2 -- 0 N 

!! 
C02Et 

The preparation of 8 constitutes a formal total synthesis of supinidine 10.14 Attempts to 

influence the ratios of imine to tetrahydropyrrolizin- e by changing the solvent led to little 

variance (MeOH, water, MeCN, DMF). However, supplying the system with more thermal energy met 

with more success. For example, azide 4, upon distillation through a 500' hot t&al5 (80' pot, 

0.15 torr) led to a mixture of imine 7 and pyrroline 9 (38:62 ratio, traces of 8, 69%). At 

these temperatures, one may reasonably expect nitrene formation from azide 4. However, the 

clean nature of the reaction led us to believe that nitrenes were not involved to any large 

extent. To ascertain the nature of the compound actually passing through the hot tube, the 

azide was simply Kugelrohr distilled under the same conditions (ca. 80°, 0.15 torr). The major 

component of the distillate was vinyl aziridine 6,' acccmpanied by imines 7 and a small amount 
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of starting azide, attesting to the rapid cycloaddition onto this activated diene.16 Hence, by 

supplying the vinyl aziridine with more energy, the partitioning of reaction pathways has been 

influenced to produce a larger amount of tetrahydropyrrolizine. 

Since imine 7 was readily available, we speculated that thermolysis may lead back to the 

vinyl aziridine manifold by an ene reaction, in analogy to work done in the all-carbon 

series.lDa To that end, crude imine (containing 8 and 9) was subjected to a wide variety of 

pyrolysis conditions. Flash vacuum thermolysis and flow thermolysis at temperatures below 500' 

invariably returned approximately the same ratios of 7, 8 and 9. Sealed tube reactions 

(toluene, 200-300') selectively destroyed all compounds except the imine 7. Thermolysis at 

temperatures above 500° led to the formation of a new product which was identified as the 

pyrrole 11.17 It was shown that this compound arises from the tetrahydropyrrolizine 8, and not 

from imine 7. In fact, thermolysis of pure 7a resulted in recovery of starting material up to 

temperatures of about 550°, at which point recovery was low, and the starting material 

recovered was contaminated with several new compounds, none of which were 8 or 9. 

Although the formal synthesis of supinidine occurs in low yield, the obtention of 8 and 9 

is promising for the synthesis of fused pyrrolines. We are currently studying the mechanistic 

and stereochemical aspects of the reactions presented herein in order to extend this method to 

more complex alkaloids in a controlled fashion. 
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