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At the energies of the PEP and PETRA e+e - stor- 
age rings, virtual production of the Z 0 is an observably 
important process. Several experiments [1 ] have mea- 
sured the forward-backward asymmetries produced 
by the 7 - Z  0 interference term in the reactions e+e- 

c5 and e+e - ~ bS. Similar asymmetries are ex- 
pected from the lighter quarks u, d, and s, but such 
effects have not yet been seen in e+e - annihilations; 
however, the corresponding t-channel effect has been 
seen in the scattering of polarized electrons from hy- 
drogen and deuterium [2]. These asymmetries will 
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produce observable effects in the lab angular distribu- 
tion of  the light quark baryons. With baryons there is 
no confusion as to whether a leading particle comes 
from the quark or antiquark, as there would be with 
mesons. Non-leading baryons, of  course, would not 
necessarily exhibit the asymmetry of  the initial quark, 
so baryons with a large fractional energy z = 2E/x/7- 
must be selected. The A baryon is a good choice for 
such a study because it is readily identifiable via its 
long4ived decay to prr- over a wide range o f z  values. 
Furthermore, at PEP energies, the A can be easily dis- 
tinguished from its antiparticle (A) because the pro- 
ton must carry more momentum than the pion in 
the lab frame whenever the parent A has z > 0.08. 
The Lund fragmentation model [3] * 1 can be used 
to estimate the effects of  leading versus non4eading 
particles and predicts a forward-backward asymme- 
try o f ~ . - 1 0 %  for A baryons with z>~ 0.3. 

The A events were selected from a large sample of  
data collected with the High Resolution Spectrometer 
(HRS) at the PEP e+e - storage ring. Events corre- 
sponding to an integrated luminosity of  300 pb-1 at 

= 29 GeV were used in the present analysis. The 
HRS detector [4] features a fifteen-layer central drift 
chamber with tracking layers spanning the radial dis- 
tances from 21 to 103 cm and covering 90% of  4rr in 
solid angle, plus a two-layer outer drift chamber sys- 
tem at a radius of  190 cm, which covers 65% of  41r. 
Both chamber systems are contained within the 16.2 
kG solenoidal magnetic field. The momentum resolu- 
tion for tracks that pass through the outer drift cham- 
ber layers is Op = 2 X 1 0 - 3 p  2 (GeV/c). Electromag- 
netic shower counters are also positioned within the 
magnet volume in both the barrel and endcap regions. 
These systems cover 58% and 27% of  4rr, respective- 
ly. The energy resolution for the barrel system is 
OE/E = 16%/x/E (E in GeV). 

The selection of  the hadronic data sample has been 
described elsewhere [5]. The cuts included the re- 
quirements of  at least five charged tracks and a scalar 
sum of  the momenta greater than 5.8 GeV/c. Events 
containing less than 7.0 GeV of  charged particle ener- 
gy were required to have a total energy (including the 
energy in the electromagnetic shower counters) of  at 
least 8.0 GeV. 

,1 Version 5.3 of the Lurid Monte Carlo was used in this 
analysis. 

The decays A ~ prr- were identified by selecting 
pairs o f  oppositely charged tracks coming from well- 
separated secondary decay vertices [6]. A three-di- 
mensional secondary vertex was required to lie at a 
radial distance of  between 1.5 and 75.0 cm from the 
primary interaction point, and the reconstructed: 
neutral momentum was required to point back to 
within 0.2 cm of  the origin. In making the mass as- 
signments, the higher momentum of  the two tracks 
was always interpreted as the proton. If  the invariant 
mass was consistent with the K 0 mass when both 
tracks were interpreted as pions, the particle was re- 
jected. Events containing a A at very high z (z A >/0.6) 
were removed if there was a track in the opposite 
hemisphere with a measured momentum of  greater 
than 10 GeV/c. This cut removed background from 
radiative Bhabha events in which either the final state 
e + or e -  combined with a track from a converted 
photon to form a "lambda". It is important to remove 
such events completely because of  their strong asym- 
metry in the lab production angle. 

In order to measure the asymmetry, the data were 
divided into a forward region (F) and a backward re- 
gion (B). The A baryons at cos 0 ~< C~) 0 and the ~, 
antibaryons at cos 0 1> (~<) 0 were binned in the F(B) 
region, where 0 is measured relative to the incoming 
positron beam direction. A cut of  Icos 0l <~ 0.8 was 
imposed to minimize the necessary acceptance cor- 
rection to the signal. The resulting prr- mass peaks, 
for z A ~> 0.3, are shown in fig. la for the forward 
reglon and fig. lb for the backward region. The solid 
lines on the plots represent fits to the data with a 
Breit-Wigner form * 2 and a polynomial background 
shape. The central value and width of  the Brei t -  
Wigner were fixed t o m  = 1.1156 GeV, the known 
A mass [7], and F = 6.3 MeV, a resolution width 
determined from Monte Carlo reconstructions. The 
areas under the peaks give F =  127.6 -+ 16.5 andB 
= 195.5 + 15.6 events, corresponding to an uncor- 
rected asymmetry A obs = (--20.9 +- 7.2)%, Where 
the error is statistical. An estimated systematic error 
of  +1.7% is associated with the uncertainties in these 
fits. 

A correction factor ~, where Aob s = AK, is needed 

,2 The Breit-Wigner form is a good approximation to the 
detector resolution function for the broad momentum 
range of the data sample. 
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Fig. 1. lnvariant mass spectra for neutral track pairs with a 
separated secondary vertex. The higher momentum track of 
the pair is interpreted as a p(P), the lower as ~r- (lr+). Cuts 
lets 01 ~ 0.8 and z ~ 0.3 are imposed. (a) shows pn- pairs 
at cos 0 ¢ 0 and ~r ÷ pairs at cos 0 ~ 0. (b) shows p~r- pairs 
at cos 0 ~ 0 and pTr + pairs at cos 0 ~ O. 

because of the I cos 01 cut and because the detector 
acceptance is not  completely uniform within the mea- 
sured angular range. The acceptance function in the 

Icos 01:~ 0.8 region, as determined from the Monte 
Carlo simulation of the experiment, is weU param- 
etrized by e(0) =N(1 + e 0 cos20), where e 0 = 0.6 
+ 0.3. Together with the Icos 01 cut, this yields K = 
0.91 -+ 0.02. The uncertainty in tc creates an addition- 
al systematic error of-+0.4% in the asymmetry. The 
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Fig. 2. Forward-backward asymmetry A plotted against 
the cut imposed on the fractional energy z of the A data. 
The solid curve shows the prediction of the Lund model as 
a function of this z cut. 

asymmetry forz~> 0.3 is thusA = ( - 2 3  -+ 8 + 2)%. 
A similar procedure was followed for different z 

cuts. For z~> 0.1 the asymmetry isA = ( - 2 .8  -+ 3.6 
-+ 2.0)%; for z i> 0.2,A = (--4.6 + 4.8 -+ 2.1)%; and 
forz~> 0.4,A = ( - 1 6  +- 13 -+ 3)%. The asymmetries 
for the four z cut values are shown together in fig. 2. 
The solid curve in the figure shows the equivalent 
predictions of the Lund fragmentation model. 

We see from fig. 2 that our data are in good agree- 
ment with the Lund model ,3 which gives flavors of 
the initial quarks in events containing a A with z ~> 
0.3 of 30% u, 30% s, 30% c, 8% d, and 2% b. In the 
standard model of the electroweak interactions [8], 
the asymmetry of the charge +~ quarks at x/s "= 29 
GeV is -9.5%, and that of the charge - ~  quarks 
exactly twice this amount.  The measured values for 
c and b quarks are in good agreement with this predic- 
tion [1 ]. If the light quarks did not contribute to the 
A asymmetry, at z>~ 0.3, the value would beA ~- - 3 %  
from the decays of charm and bottom baryons. This is 
clearly less consistent with our measured value ofA = 

( - 2 3  -+ 8 -+ 2)%, and we may therefore conclude that 

the electroweak effects in light quark production have 
been observed in e+e - annihilations. 

We would like to express our gratitude to the tech- 
nical staffs of  PEP, and of the collaborating institu- 

,a The parameters of the Lund model have been set to the 
values described in ref. [6]. 
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