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ABSTRACT 

Marshall, H.G., 1986. A note on the direction of energy movement in wavenumber of a 
two-layer model. Dyn. Atmos. Oceans, 10: 253-257. 

An equation on the constrained direction of energy movement in wavenumber is derived 
for the two-layer, f-plane, quasi-geostrophic system. 

1. INTRODUCTION 

The majority of energy is constrained to move toward smaller wavenum- 
ber in an inviscid dispersionless two-dimensional fluid (Onsager, 1949; 
Fjortoft, 1953; Merilees and Warn, 1975). Charney (1971) proved that 
theorems for a multi-layer geostrophic fluid are of the same form as those of 
a two-dimensional fluid. Charney also showed upscale movement of energy 
in a three-dimensional wavenumber. 

Rhines (1977) described and interpreted energy movements in the wave- 
number domain from adiabatic inviscid numerical two-layer simulations. In 
his pioneering work, however, he did not use the perspective of the vertical 
modes and this unnecessarily complicates some simple points. Salmon 
(1980) used the vertical modes for both a qualitative discussion via triad 
arguments, intuition and closure modeling with the two-layer model. Hoyer 
and Sadourny (1982) extensively examined the two-layer model with closure 
methods. This latter study requires a detailed knowledge of constrained 
turbulence closures. 
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Merilees and Warn (1975) suggested a simple method (due to G. Batche- 
lor) to discern the direction of the cascades of energy in an inviscid 
two-dimensional fluid. The relevant conserved quantities of the barotropic 
vorticity equation are 

a .~c 
- - [  E k d k = 0  (1) 
at a0 

and 
a 

- -  f k2E~ d k = 0  (2) 
at a0 

where f is the streamfunction, J the Jacobian, E k the energy density at 
wavenumber k, and k2Ek the enstrophy at wavenumber k. An infinite 
domain is chosen. Assume that 

a foaC 2E ~t ( k - k  c) k d k > 0  (3) 

where k c is the centroid of the spectrum (k c = f(~kE k dk/f{~:E k dk). From 
eq. 3 the constraints (1) and (2) demand 
a 

~t  kc < 0 (4) 

Thus energy must move upscale, that is, to a smaller k for the conservation 
principles to hold. (4) is a necessary, but not sufficient, condition for 
satisfying (1) and (2). Spreading of an initially narrow wavenumber peak is 
intuitively reasonable and is repeatedly found in numerical simulations of 
both two-dimensional and quasigeostrophic non-narrow wavenumber peaks 
(e.g., Marshall et al., 1983). The spreading can be thought of as a result of 
two opposing visual attributes of two-dimensional and quasigeostrophic 
turbulence: (1) the thinning and teasing out of contours of vorticity or 
potential vorticity by smaller scales (e.g., Rhines, 1977); (2) the inhibition of 
this teasing out by large scale fields. Which effect is largest is not important 
in deciding the defocusing assumption. This is simply decided by the 
opposite tendencies of these two effects. 

For the two-layer model, in modal form, this method gives a simple way 
of obtaining a constraint on the direction of the energy cascade. The 
advantage of this method is that no knowledge of the triads (Marshall and 
Chen, 1982), or the complex details of a constrained turbulence closure is 
required. 

2. SCALE CHANGES OF ENERGY IN A SIMPLE BAROCLINIC MODEL 

The simplest nonlinear system to include baroclinicity is the quasigeo- 
strophic two-layer model on the f-plane. The potential vorticity equations 
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for this system are (e.g., Salmon, 1980) 

3V 2 
- - ~ b  + J(~b, V 2~b) + J ( T ,  V2T) = 0 (5a) 

3t 

- - V 2 T  - R 2 -  q-- J(~b, V2'r - R2T) --~ J ( ' r ,  V 2 @ ) = 0  (58) 
3t 3t 

where + and -r are the barotropic and baroclinic modal streamfunctions, 
respectively. R = v ~ / L  where L is the Rossby deformation radius and J is 
the Jacobian. 

Using Parseval's identity, one can separate the constraint of conservation 
for total energy into three logical but not distinct parts and the enstrophy in 
two parts (e.g., Salmon, 1980) for each wavenumber 

K k = 1~ ] 2rk*~" k 

A k = R2.r~rk 

(6a) 

(6b) 

(6c) 

which are the barotropic kinetic, baroclinic kinetic and available potential 
energy densities. The baroclinic energy is the sum of these two latter energies 
(6b) and (6c). ( )* is the complex conjugate. Likewise potential enstrophy, 

~+k = ]k l 2Kkk (7) 

erk = ( I k l  2 + R 2 ) ( K , k + A k )  (8) 

Note the baroclinic potential enstrophy (7) is not just the wavenumber 
squared multiplied by the total energy. 

Define the baroclinic, barotropic and total energy centroids as follows: 

kc, = ~ k ( K , k  + Ak) d k / E  R (9a) 

K kc~= fo k ~k d k / E r  (9b) 

and 

kc = kc, + kc; (9c) 

the defocusing assumption can be stated as 

3 
f°~( k - k¢)2( K+, + K,k + A,  ) d k > 0  (10) 

3t ao 
The defocusing assumption can be motivated (see introduction). Simulation 
under a variety of conditions and parameters suggests this assumption is 
generally true (e.g., Marshall et al., 1983). For simplicity define a as the 



256 

ratio of baroclinic to total energy and C(+  ~ r)  as the rate of conversion of 
barotropic to baroclinic energy. With the conservation relations as well as 
(10) 

~ k  2 a R  2 R 2 

c(,/, (11) 
at at E T 

First consider the situation where the Rossby deformation wavenumber  
(R  2) is independent  of time. The total centroid of energy must decrease in 
horizontal wavenumber  when the conversion of energy from barotropic to 
baroclinic form is positive. In Charney's (1971) theory the cascade seeks the 
lowest three-dimensional wavenumber  and is forbidden to go higher in the 
three-dimensional wavenumber  index. In order for k c to decrease, energy 
must at least go to the next lower vertical mode. The two-layer model then 
converts baroclinic energy to the lower vertical m o d e - - t h e  barotropic mode. 
Also note the effect of the Rossby  deformation wavenumber  in modulating 
how much the conversion of barotropic to baroclinic energy is a constraint 
on the horizontal wavenumber  movement  and vice versa. This modulat ion is 
independent of the conversion's internal dependence on the Rossby deforma- 
tion radius (e.g., Marshall et al., 1983). 

In the baroclinic unstable growth of a spectrum of waves the horizontal 
nonlinear interactions would be less constrained by positive conversion of 
baroclinic to barotropic energy in accord with eq. 12. After the baroclinic 
instability is released this conversion would become small and the interac- 
tions more constrained to upscale cascading. 

There is no need here to assume artificial boundary  conditions at the 
bo t tom or top of the models such as isothermal or isentropic surfaces. The 
temperature at any point in the two-layer model  is interpreted as the 
vertically averaged temperature and no a priori assumption is required as a 
boundary  condition for temperature. Thus Charney's results are much more 
general than indicated by his restrictive isothermal boundary  conditions. 

Consider the situation when conversion term C(~b ~ r) is zero. Note  the 
decrease in the total centroid must be greater than the increase of the 
Rossby deformation wavenumber  modulated by the fraction of energy in 
baroclinic form. The rate of change of R 2 would have to be small such that 
eqs. 5a and 5b are not violated. 

Also, since k c is made up of a linear combinat ion of the barotropic and 
baroclinic centroids and k c appears in (11) as a square, a t roublesome 
cross-term clouds the inequality when examining these centroids separately. 
A slightly different formulation of the spreading assumption 
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results in 

0kc: + 0k~, 0R 2 R 2 
(13) 

Ot Ot 0t E, 

which  gives no  cross term. 

3. CONCLUDING REMARKS 

The  d i rec t ion  of  cascading for energy  in the two- layer  quas igeos t rophic  
f -p lane  is examined.  A simple ' f ive- l ine p roof '  p roduces  some condi t ions  for  
this conservat ive  system. These  re la t ions  apply  to the cent ro ids  of the 
energies;  thus, they do  not  say that  no par t  of  the energy can violate  these 
inequal i t ies  bu t  tha t  the mean  energy cannot .  Th e  cons t ra in t  of  upscale  
cascading  is f ound  to be in accord  with that  of  the s tudy of  C h a r n e y  (1971) 
wi thou t  having to assume the same hor izonta l  b o u n d a r y  condi t ions .  Th e  
s implici ty  of  the relat ions (11) and  (13) is a direct  consequence  of  the 
re la t ion be tween  the two- layer  baroc l in ic  vert ical  m o d e  and  the the rmal  
wind. 
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