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Analytic queueing network models are being used to analyze 
various optimization problems such as server allocation, design 
and capacity issues, optimal routing, and workload allocation. 
The mathematical properties of the relevant performance 
measures, such as throughput,  are important for optimization 
purposes and for insight into system performance. 

We show that for closed queueing networks of m arbi- 
trarily connected single server queues with n customers, 
throughput,  as a function of a scaled, constrained workload, is 
not concave. In fact, the function appears to be strictly quasi- 
concave. There is a constraint on the total workload that must  
be allocated among the servers in the network. However, for 
closed networks of two single server queues, we prove that our 
scaled throughput  is concave when there are two customers in 
the network and strictly quasi-concave when there are more 
than two customers. The mathematical properties of both the 
scaled throughput and reciprocal throughput are demonstrated 
graphically for closed networks of two and three single server 
queues. 

Keywords: Closed Queueing Networks, Flexible Manufac- 
turing Systems, Performance Evaluation, Non-  
concavity of Throughput.  
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1. Introduction 

Closed queueing network models have recently 
been used to analyze design issues and planning 
problems of both computer systems and flexible 
manufacturing systems. Throughput, a main per- 
formance measure of interest, can be defined as a 
complex, nonlinear function of several system 
parameters. The mathematical and qualitative 
properties of this function are of interest for opti- 
mization and performance evaluation purposes. 
For example, in the problem of maximizing 
throughput subject to a set of contraints, it is 
necessary to know if a local maximum is a global 
maximum. In addition, studying the qualitative 
properties of throughput is also useful for the 
analytic insight that is provided. 

Various versions of this problem have been 
reported in the computer science literature. For 
example, Trivedi and Kinicki [25], Trivedi and 
Wagner [27], Trivedi, Wagner, and Sigmon [28], 
Trivedi and Sigmon [26], and Kobayashi and Gerla 
[8] maximize throughput in central server, single 
class, closed queueing networks (CQN) with a 
single server at each node subject to various 
budgetary limitations (cost constraints). The vari- 
ous studies optimize different parameters (deci- 
sion variables) such as service rate (of a CPU, 
say), capacity of servers ( I /O devices), device 
speeds, routing, and main memory size, often sub- 
ject to a budget constraint. These parameters re- 
late cost considerations to performance. All of 
these studies prove the convexity of reciprocal 
throughput in order to insure that the maximum 
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throughput (minimum average delay or response 
time) is global, and not just a local optimum. To 
prove convexity, these studies use the results of 
Price [12], who proved convexity for a particular 
scaled version of reciprocal throughput. 

However, the reciprocal of a convex function is 
not necessarily concave [10]. In fact, the reciprocal 
of a convex function can be either quasi-concave 
or quasi-convex. There could be some benefits and 
additional insights from investigating the mathe- 
matical properties of throughput directly. For ex- 
ample, Suri [24] analyzes the sensitivity (and 
bounds on sensitivity) of  throughput to variations 
in workoad, as well as other properties of 
throughput. 

There have not been many studies that analyze 
throughput directly. Kenevan and Von Mayr- 
hauser [7] show that throughput is a log convex 
function of the number of items in a closed, single 
class, network of an arbitrary number of single 
and instant servers. They also prove that recipro- 
cal throughput is a convex function of the relative 
utilization of the servers. This is a generalization 
of Price's [12] proof. 

The following studies provide results concern- 
ing optimal solutions (workload allocations and 
server configurations) to problems of maximizing 
throughput in both single server and multiserver 
CQNs. 

Kobayashi and Gerla [8] determine the optimal 
routing to maximize throughput in central-server, 
single server, single class CQNs. Stecke and Morin 
[21] and Yao [29] show that balancing workloads, 
for various scalings, maximizes throughput in 
single server, arbitrarily-connected CQNs. Shan- 
thikumar and Stecke [15] prove that balancing the 
workloads in single server CQNs minimizes in- 
process inventory under various strategies to re- 
lease items to the network. 

For multiserver CQNs, Stecke and Solberg [23] 
and Yao [29] prove that balancing workloads per 
queue maximizes throughput when each queue has 
the same number of servers. However, Stecke and 
Solberg [23] also show that when the number of 
servers in each queue is not the same in multi- 
server CQNs, the throughput is maximized by a 
unique unbalanced workload per server. In fact in 
this situation, the throughput function appears not 
only to be not concave, but not symmetric as well. 
Unbalanced optimal workload allocation ratios 
can be found at which the workload per server 

should be maintained to maximize throughput for 
these networks of unbalanced multiserver queues. 
These allocation ratios can serve as input to more 
detailed workload allocation problems that are 
solved using more detailed (mathematical pro- 
gramming) models (see, for example, Berrada and 
Stecke [3] and Stecke [18,19,20]). 

We consider here a particular product form, 
noncentral server CQN of arbitrarily-connected 
single server queues, of which the central server 
model is a special case. Rather than the budgetary 
constraints of the previous studies, we impose a 
constraint on the total workload in the system. 
The motivation for our particular CQN model is 
provided in the studies of optimal workload alloc- 
ation and server (machine) allocation in flexible 
manufacturing systems (FMSs). In particular, we 
show, contrary to previous conjectures [14,17], that 
throughput (or production rate) is not concave as 
a function of workload. 

In this paper, we show that throughput, as a 
function of the ratio of the 'workload' (service 
demand) at a server to the sum of workloads is 
quasi-concave and not concave. Since Price [12] 
and Kenevan and Von Mayrhauser [7] do n o t  

consider throughput to be a function of the same 
quantity (a ratio of server to total workload) and 
do n o t  constrain the total workload to be alloc- 
ated, their results do not necessarily apply. How-' 
ever, there is evidence that the reciprocal 
throughput function studied here is convex, de- 
spite the particular scaling of workload and 
throughput. 

The plan of the paper is the following. In 
Section 2, the CQN model is defined. We prove 
the nonconcavity results by induction in Section 3. 
First, the concavity of throughput is proven for a 
closed network of two single server queues with 
two customers. Then, the nonconcavity is estab- 
lished numerically for a network of two single 
server stations with n (greater than two) customers. 
Next, strict quasi-concavity of throughput is 
established for a CQN with two single servers. A 
concave function is also quasi-concave; however, 
we also show in Section 3 that this scaled 
throughput function is not concave for rn queues 
and n customers. For definitions of generalized 
concavity, see Bazaraa and Shetty [2] or Martos 
[10]. In Section 4, some evidence that our scaled 
version of reciprocal throughput is convex is pro- 
vided. If this is true, we can prove that throughput 
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is strictly quasi-concave. Section 5 concludes w i t h  
a brief summary. 

2. The closed queueing network model 

The product form CQN that is considered here 
consists of m arbitrarily connected single servers, 
of which the central-server model is a special case. 
There are always n items being processed in the 
system. The average processing time of an item at 
station i is t,, i = 1, 2 . . . . .  m. The routing of items 
among the stations is arbitrary. The routing can 
be described by visit frequencies, or relative arrival 
rates, q~, where q, can be the probabili ty that the 
next server visited is i. In addition, the q~ can be 
provided by the traffic equations, q~ = E7=lPj,qj. 
Details of other routing possibilities can be found 
in [22]. 

The queueing discipline can be either FCFS, 
infinite server, LCFS preempt-resume, processor 
sharing (see [1]), random selection, or one de- 
veloped by Kelly [6] that allows an arbitrary dis- 
tribution to be defined at each server. The service 
time distribution is arbitrary, except for FCFS 
servers, which require exponential service times. 

The usual measure of relative workload as- 
signed to server i is w, [4,13,16], which is defined 
as the product of visit frequency and average 
processing time, or w i = q~ti. These workloads are 
relative since the q~'s need not sum to one. 

For our purposes, w i was scaled, where 
F.m lq t . /m  is the average workload per server, to 

J ~  J J  
provide: 

[(m )] 
Xi= qiti/ j~=lqjt j / m  . (1) 

This particular constraint on workload was chosen 
for many reasons associated with determining 
qualitative properties of optimal allocations of 
servers and workloads in flexible manufacturing 
systems (see [20,22,21,23] for details on these stud- 
ies). 

The state of the system is given by ~ =  
(n 1 . . . . .  nm), where n i is the number  of items at 
server i, both those waiting and in process. For all 
i, we have r/iE {0, 1 . . . . .  n} and ~,im_lni=n. The 
steady-state probabili ty of being in state ~ is 

p(f i )  = p ( n p  n 2 . . . . .  nm), which has the product 
form solution 

1 
p(Yt) G(m, n; X)X?tX~2"'" X~', 

where 

G(m, n; X ) =  • X~'X; 2 ' ' '  X,~ m, 
n l + n 2 +  . - -  q-~lm= n 

ni~>0 

i =  1, 2 . . . . .  m. (2) 

Throughput can be defined as a function of 
G(m, n; X), which in turn is a function of as- 
signed workload, X i. In fact, for a particular 
scaling of qi, the throughput, or production rate, 
Pr(m, n ; X), is given by [13] 

Pr (m,  n; X)  

G(m, n - 1 ; X )  
G(m, n ; X )  

Y'. xp x;= ... x,f,- } 
n l + n 2 +  . . .  q-rlm=n--1 

ni~>0 

n l + n 2 q -  . . .  + n i n o n  
nl~>0 

- 1  

( 3 )  

The throughput for two single servers and any 
number  of items is 

Pr(2, n; X)  

=( z z 
n l + n 2 = n - - 1  / n l + n 2  ~ n  (1 ) 

= E x ,(2 - 
n l ~ O  )' x x ; ' , (2 -  x , ) " - " '  , 

n 1 = 0  

since X 1 + X 2 = m = 2 (with our scaling) 

= ( X :  - ( 2 -  X x ) " ) / (  X :  + 1 -  (2 - )(1) "+ '), 
(4) 

by dividing both numerator  and denominator by 

(2 - X1) - X 1 = 2(1 - X1). 

Throughput,  as given in equation (3), is dif- 
ficult to characterize analytically. However, it can 
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be evaluated numerically using Buzen's efficient 
algorithm [4]. 

For a network of two single servers with two 
items, from equation (4): 

3. (Non)concavity of throughput 

In this section, first the concavity of through- 
put is proven for a dosed network of two single 
server stations with two items. Then, strict quasi- 
concavity, but nonconcavity, of throughput is 
established for a network of m (>1 3) items). 

Vr(2,2. x ) _  X?-X  = Xx + 
' X(-X  X?+XlX +X " 

Substituting X 2 = 2 - X 1, simplifying, and then 
dropping the subscript, we obtain 

Pr(2, 2; X) 
4 - 2 X +  X 2 " 

Theorem 3.1. Pr(2, 2 ; X )  is a concave function. 

Proof. Taking the first derivative of Pr(2, 2 ; X) yields 

d Pr(2, 2; X) - 2 ( 2 X -  2) - 4 ( X -  1) 

dX [4 - X(2 - X)]  2 [4 - X(2 - X)] 2 

Setting Pr'(2, 2 ; X) = 0 yields X = 1. Now, 

dZPr(2, 2 ; X )  - 4 ( X 2 - Z X + 4 ) -  4 ( 4 -  4 X ) ( X -  1) 

dx  2 (X  z - 2 X +  4) 3 

- 4 X 2 +  8 X -  16 + 16(X 2 -  2 X +  1) 

( S  2 - 2 X +  4) 3 

4(3X z - 6X) l Z X ( X -  2) 

( X  a - 2 X +  4) 3 (X 2 - 2 X +  4) 3. 

- 4 ( X -  1) 
(X  2 - 2 X +  4) 2 

Setting Pr"(2, 2 ; X) = 0, the points of inflection are at X = 0 and X = 2. Note that, for every X ~ [0, 1), 
P r ' ( 2 , 2 ; X ) > 0 ,  which implies that Pr (2 ,2 ;X)  is increasing on [0,1);for every X~(1,2] ,  
Pr'(2, 2 ; X) < 0, which implies that Pr(2, 2 ; X) is decreasing on (1, 2]. [] 

Theorem 3.2. Pr(2, n ; X )  is not concave for n >i 3. 

Proof 

Pr(2, n ; X) )(1" - X~ xl+x2=2 = Xx" - (2 - )(1)" 
X1 n+l  X~ +1 X1 n+ l  - ( 2 -  X1)  n+ l  " 

Again, the subscript is suppressed for convenience. Taking the derivative with respect to X yields 

dPr(2,  n ; X )  [ X " + I - ( z - x ) " + X ] n [ X " - I + ( Z - X )  "-~] 

d X  

which upon rearranging yields 

[x .+ ,_ (2_x)"+ ' ]  ' 

[ X " -  ( 2 -  X ) " ] ( n  + 1)[X # + ( 2 -  X)"]  

[x°+,_ <2_x)°+'] 

- X 2 " +  ( 2 - X ) 2 " + 4 n X " - a ( 2 - X ) " - t ( X  - 1) 

[x°+l_<2_x)"+l]  2 
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Evaluating at X = 1, Pr'(2, n ; X) = 0 /0 .  Upon two applications of l 'Hospital 's  rule we obtain 

Pr '(2,  n ; 1 ) =  4 n ( n - 1 ) ( - 2 ) + 4 n ( n - 1 ) + 4 n ( n - 1 )  _ 0 - 0 .  
2(n + 1)24 8(n + 1) 2 

Therefore, X = 1 is a critical point. 
Taking the second derivative with respect to X and rearranging we obtain 

dEpr(2, n; X)  

d X  2 

2 [ X  3"-  ( 2 -  X)  3" + X " - 2 ( 2 -  X)  2"-1(X 3_ (8n + 2 )X  2 + ( - 4 n  2 + 8 n ) X +  4n 2 -  4n) 

+ 

[x°+,_ (2_x)°+'] 3 
X 2 " - ' ( 2 -  X ) " - Z ( X  3 + ( 8 n -  4 ) X  2 + ( - 4 n  2 -  24n + 4 ) X +  4n 2 + 20n)] 

[x°+,_ x)-+l] 3 
(5) 

The throughput function is now demonstrated 
graphically to be 

(i) convex for X 1 ~ [0, X'],  X '  < 1, 
(ii) concave for X 1 ~ [X' ,  X"] ,  X" > 1, and 

(iii) convex for X 1 ~ [X", 2]. 
Then there are three points of inflection: at X ' ,  1, 
and X" .  Moreover, X '  and X "  are symmetric 
about  the point X = 1. 

The points of inflection of Pr(2, n ; X )  can be 
found by setting the numerator  of the second 
derivative of the nonlinear equation (5) equal to 
zero and solving for the roots. Two different IMSL 
[5] routines, called ZREAL1 (see [11,9]) and 
ZREAL2,  were used to find the roots. Both were 
used as a check on accuracy and to help note any 
numerical or roundoff  problems. Each routine 
finds N real zeros of a function F(Y). The routines 
were set up to search for 5; each always found 
only three roots, including and symmetric about 
X = I .  

There are two convergence criteria necessary. 
X, is a root if 

(i) I F(Yi) I ~ EPS, 

(ii) ~ , , + 1  y , ,  < 10 -NsIG. 
r," 

In the program, EPS (epsilon) was set equal to 1.0 
E - 8  and N S I G  = 5. The roots remained the same 
for both ESP = 1.0E-5 and 1.0E-8, which implies 
that sufficient accuracy was attained. Both routines 
found the same roots, as seen both in Table I and 
graphically in Fig. 1. The graph and points of 
inflection show that Pr(2, n ; X) is not concave on 
[0, 2]. [] 

However, both Table 1 and Fig. 1 indicate that 
throughput is strictly quasi-concave with a global 
maximum at X = 1. 

T a b l e  1 

Po in t s  o f  inf lec t ion  a n d  

a n d  99 

a p p r o x i m a t i o n  for  n = 2, 3, 4, 5, 10, 

Z R E A L 1  Z R E A L 2  (2 n - 3 ) / ( 2  n + 1) 

n = 2  X = 0 , 1 ,  a n d 2  X = 0 , 1 ,  a n d 2  

n = 3 0 .42265 0 .42265 ~ = 0 .4286 

1.0 1.0 

1.57735 1.57735 

n = 4 0 .55452 0 .55452  ~ = 0 .5555 

1.0 1.0 

1.44548 1.44548 

n = 5 0 .62943 0 .62943 ~ = 0 .6366 

1.0 1.0 

1.37057 1 .37057 

n = 7 0 .71563 0 .71563 ~1~ = 0 .7333 

1.0 1.0 

1.28437 1.28437 

17 n = 1 0  0 .78377 0 .78377 ~ =  0.8095 

1.0 1.0 

1.21623 1.21623 

47 n = 25 0 .89339  0 .89339  ~ =  0.9215 

1.0 1.0 

1.10661 1.10661 

n = 99 0 .9649 0 .964903 195 ~ =  0 .9799 

1.0 1.0 

1.0351 1 .035097 
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Fig. 1. Graph  of Pr(2, n ; X), n = 2, 3, 4, 5, 10, and 99: maxima ( × ) and points of inflection (©) .  

Theorem 3.3. For n > 2, Pr(2, n ; X) is a strict ly 
quasi-concave funct ion on the interval  X i ~ [0,2], 
i = 1 , 2 .  

Proof .  For each n > 2, there are three critical 
points ,  one  at X i = 1 that gives the m a x i m u m  
Pr(2, n ; X ) ,  and the remaining two  symmetric  

3 ,  

3 

d 

3 

3 

d '  

Fig. 2. Graph  of Pr(3,5 ; X), X1.2 ~ [0,3]. 
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about the line X, = 1. The function is increasing 
for X 1 ~ [ 0 , 1 )  and decreasing for X 1 ~(1 ,2] .  
Therefore, throughput is quasi-concave for X 1 ~ [0, 
2] with the unique global maximum at X 1 = X 2 = 1. 
[] 

The last column of Table 1, labeled ( 2 n -  3) 
/ ( 2 n  + 1), shows the results of the at tempt to 
provide a simple function that would closely ap- 
proximate the values of the roots of Pr(2, n ; X), or 
the points of inflection. 

We now show that throughput is not  concave.  

Theorem 3.4. Pr(m, n ; X )  is no t  concave  f o r  any  

m >~ 2 a n d  n >~ 3. 

Fig. 3. Graph of Pr(3,5 ; X), X1.2 ~ [0,3]. 

Proof. Consider the throughput function for any 
m or n: 

.~ .0  

2 . 0  

I 

J /  I 
I 
I 
| 
I 

I 
I 

1 . 0  

0 . 0  

-1 .0  

- 2 . 0  
- 2 . 0  - 1 . 0  0 . 0  1 . 0  2 . 0  ~ . 0  

Fig. 4. Contour map of Pr(3, 5 ; X). 



300 K.E. Stecke / Nonconcavity of throughput in closed queueing networks 

Pr(m, n ; X) 

=( E xpx~2...x:m) 
t i l + t i 2  + . . .  +t im=n- -  1 

( )' 
n l - t - n 2 +  . . .  + t i m ~ t i  

Evaluating Pr(m, n ; X) along any hyperplane such 
that X ~ = 0  for m - 2  of  the i, say, for i = 1 ,  
2 . . . . .  m - 2, we  have 

P r ( m ,  n ; X) 

t im -- 1 -]- t im ~ n - 1 

x _Y:m,+, -.x;"-'x'7') tim tim-I tim --1 

= X"m'_q ' (m - X t i , _ , ) t i - ' - t i ' - '  
\ t im 1=o 

( )' x ~ x~=y(m - xm_,)ti- . . . .  
t lm  1 = 0  

X~_ 1 - ( m  - X, ._ l ) t i  

"'mYn+l- 1 - -  ( m  - -  X m _  1 ) n + l  

n ti x.~_,-x,7, 
y n + l  n + l  ~ 
~ L m -  1 - -  X m  n 

l.OOO 

>.- 
t--- 

Z 

h .81]0 
Z 

r '~ 
zz- 

CE 

::j-- 

• . 7 6 0  

i 

:3-  
II 

7 "  

iv" 
ED 
LL- 

.840 
cO 
LU 

C~ h.- 

Z 
~D 

I-- 
.520 

23 
~D 
rv," 
n 

.400 

CO 

0 .833 1,66"7 2.500 

WORKLOAD PER MACHINE (X1 /S1 )  

THREE GRIDUPS 13F SIZES 1,1 AND 1 

F i g .  5. A o n e - d i m e n s i o n a l  s l ice  o f  Pr (3 ,  n ; X) as  a f u n c t i o n  o f  s e r v e r  1 f o r  n = 4, 5 . . . .  , 1 4  a n d  ~ .  
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since X I + X  2+  . . .  + X  m = X  m_l + X m = m .  
But this is the same form as Pr(2, n ; X), which 

has already been shown to be not concave in 
Theorem 3.2. [] 

Figs. 2 to 7 help to further demonstrate and 
clarify the behaviour of throughput. Figs. 2 and 3 
are different views of a three-dimensional graph of 
Pr(3, 5 ; X). (Numerous other plots of Pr(3, n ; X) 
for many values of n are very similar in form to 
these.) Both figures show the function over its 
entire range of relevant workload values: since 
there are three singles server queues in the closed 
network, our scaling ensures that X 1 + X 2 + X 3 = 
3, with each X i ~ [0, 3]. The quasi-concavity can 
be seen as the function dips near the extreme 
boundary points. 

Fig. 4 appears to demonstrate some bizarre 
behaviour of the throughput function, particularly 
outside the dashed box. The function appears to 
change direction. However, the function is well 
behaved within the dashed lines, which define the 
relevant range for our scaled workload. 

Fig. 5 interestingly demonstrates the nonsym- 
metry of a one-dimensional slice of Pr(3, n ; X )  
over a range of n, despite the symmetry of the 
entire function. Fig. 5 also shows the strict quasi- 
concavity of throughput as a function of workload. 

Figs. 6 and 7 also show the strict quasi-concav- 
ity of the production function. When contrasted 
with Figs. 2 and 3, the behaviour is seen to exag- 
gerate as n increases. In this example, n doubled, 
from five to ten customers. The closed network is 
more congested. 

Ik 

Fig. 6. Graph of Pr(3,10; X), X1.2 ~ [0,3]. 
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,J 

Fig. 7. Graph of Pr(3,10; X), X1, 2 e [0,3]. 

4. Reciprocal throughput 

For certain single server queueing networks, 
reciprocal throughput has been shown to be con- 
vex (see, for example, [12]). However, Price [12] 
does not consider throughput to be a function of 
the same quantities that are considered in this 
paper  and does not consider the same total 
workload constraint. Hence, his results do not 
necessarily apply to our scaled versions of 
workload and reciprocal throughput. 

However, although we have not formally proven 
convexity, we can offer some computational evi- 
dence that our scaled reciprocal throughput func- 
tion is also convex. In particular, Fig. 8 demon- 
strates convexity for a closed network of two 

O 

GI 
°, 

o, 

~ O  
o, 

\\3 

=:P 
o.  

o ' )  
° ,  

t ' ~  
° .  

Om 

T I 
SO 

V n=99 

100 
X : X -  0 . 0  T O 2 . 0  

I 
lso Fig. 8. Graph of Pr(2, n;X) -1, for a 

variety of n. 
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/ 

Fig. 9. A three-dimensional graph of Pr(3,5;X) 1, for X i ~ [0,3], i =1, 2. 

single server queues, for a variety of  n, ranging 
f rom n = 2 up to 99. 

Also, Fig. 9 demonst ra tes  the convexity for  a 
closed ne twork  of three single server queues with 
the n u m b e r  of  customers,  n, equal to 5. G r a p h s  

~ . 0 ~  ~S'O : . 0 1  

2.0 2. 0 

1.0 

O 0  
o o  l O  2 0  3 0  

Fig. 10. Contour map of Pr(3,5;X) 1, for XI~ [0,3], i=1, 2. 

for  other  values of  n are similar. Finally, Fig. 10 
provides  some values, via a contour  graph, for  the 
reciprocal  th roughput  function, Pr(3, 5 ; X ) -  1, over  
the relevant  range of scaled workload,  X, ~ [0, 3], 
for  i =  1, 2, 3. 

These  figures and m a n y  other  similar graphs 
provide  evidence that  reciprocal th roughput  is 
convex. If  this observat ion  is true, we can use 
some previous results in mathemat ica l  p rogram-  
ming  to prove  directly that  th roughput  is strictly 
quasi-concave.  

In  part icular,  the following result that  is stated 
as Theo rem 4.1 can be proven  in several ways. 
One  p roof  can use [2, 3.39, p. 116]. Another  can 
use [10, Var iant  H of Table  3.4, p. 63]. Our  p roof  
will use the latter. 

T h e o r e m  4.1. Throughput is strictly quasi-concave, 
if reciprocal throughput is convex. 

Proof .  Var iant  H of Mar tos  [10] can be stated as 
follows: A funct ion f ( x ) / g ( x )  is strictly quasi- 
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concave if f ( x )  is concave and nonnegative and 
g ( x )  is convex and positive. 

Let f ( x ) =  1 and g ( x )  be reciprocal through- 
put. Then f ( x )  is clearly concave and nonnegative 
for all x, and g ( x )  is convex by assumption and 
positive. 

Hence throughput is strictly quasi-concave. [] 

We note that without our particular scaling of 
workload (expressed via the constraint: X x + X 2 
+ • • • + X m = m ) ,  our reciprocal throughput func- 
tion given by equation (3) (Pr(m, n ; X) -1) can be 
shown to be convex. One proof would mimic that 
found in [8]. 

5. Summary 

We have attempted to provide some mathe- 
matical and qualitative insights into a particularly 
useful scaled version of both throughput itself and 
reciprocal throughput as functions of a particular 
scaled workload measure. As a result, throughput 
is also scaled. In fact, it represents a probability: 
all values lie between zero and one (see [22]). To 
our knowledge, such properties concerning the 
generalized concavity, of throughput in particular, 
have not previously been investigated. This is, in 
part, because reciprocal throughput has been easier 
to get a handle on and is also better behaved. 

If this particular, scaled, reciprocal throughput 
function is formally proven to be convex, Theo- 
rem 4.1 is required to characterize throughput 
itself directly, since the reciprocal of a convex 
function can be either quasi-concave or quasi-con- 
vex (recall [10, Table 3.4, p. 63]). Then,. through- 
put is strictly quasi-concave. 

Of course, if additional, general information 
can be discovered about either function, some of 
that information can be useful, for example, for 
performance evaluation or optimization purposes 
or general insights into the behaviour of the func- 
tions. 
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