
Volume 181, number 1,2 PHYSICS LETTERS B 27 November 1986 

RADIATIVE C O R R E C T I O N S  T O  V E C T O R  B O S O N  M A S S E S  
FOR HEAVY H I G G S  B O S O N S  

Mar t in  B. E I N H O R N  

NORDITA, DK-2100 Copenhagen 0, Denmark 
and Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109, USA 

and 

Haj ime K A T S U M A T A  

Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109, USA 

Received 16 August 1986 

Radiative corrections to the masses M of the vector bosons W and Z increase in perturbation theory with increasing 
Higgs mass m. Since these masses will be experimentally determined to an accuracy on the order of 0.1%, these measure- 
ments may offer one of the best tests of the detailed dynamics of the standard model. In particular, they would seem to 
place an upper limit on the Higgs mass rn (or, since rn 2 ~ h, the maximum strength of the scalar self-coupling k). Perform- 
ing a 1IN expansion in SU(N) X U(1) through order 1IN but all orders in the scalar coupling kN, it is demonstrated that 
the radiative corrections 8M 2 to the vector boson masses are of the form ~M 2/M 2 = ( , g 2 N / 1 6 7 r  2 ) [F t (0 w) + N -I F 2 (kN, 0 w) 
+ O(N-2)], where g2N is the SU(N) gauge coupling constant and 0 w the weak mixing angle. The function F 2 remains 
finite even in the limit of infinite self-coupling constant. Thus, no matter how large the perturbative Higgs mass m is, the 
vector boson mass shifts may remain small, on the order of the anticipated experimental accuracy. 

The most mysterious aspect of the standard model by 
far concerns the role of the scalar Higgs field and its 
quantum, the Higgs boson. As yet, its only manifesta- 
tion is in the masses of the W and Z vector bosons, and 
the experimental bounds on its mass are meager. Cer- 
tain aesthetic and theoretical considerations such as 
naturalness [1 ] and the triviality of scalar field theory 
[2] lead us to regard the Higgs sector as a phenomenol- 
ogical or effective field theory below some energy 
scale A c. Naturalness arguments suggest that this scale 
A c cannot be very far above the weak scale v ~ 250 
GeV. It may well be that as the scale of the cutoff  is 
approached, the scalar self-coupling X(#) becomes 
large. This strong interaction may also be motivated 
by a desire to make the Higgs mass so heavy as to drive 
it out of the theory [3]. However, although the per- 
turbative Higgs mass m -- X / ~ o  increases with k (for 
fixed v), it is an open question what happens if X be- 
comes so large that the perturbation expansion is no 
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longer a reliable way to estimate its effects. 
Two methods have been introduced to study this 

strong coupling limit: (a) numerical simulation on a 
lattice .1 ,  and (b) an expansion in the inverse number 
of degrees of freedom, called a 1IN expansion [5,6]. 
Both approaches suggest the same conclusion: within 
the standard model, there is a finite limit to how 
large the physical Higgs mass can be. This upper limit 
is fixed by the scale of the cutoff A c required by 
triviality, beyond which predictions of the local scalar 
field theory cannot be trusted [5]. 

One is led to wonder whether other radiative cor- 
rections will remain small when X becomes large. In 
particular, the masses of the vector bosons [7] agree 
well with their perturbatively estimated values. These 
masses will be measured in future experiments to high 

.1 A review of recent lattice calculations can be found in ref. 
[4]. 
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accuracy, on the order of  a few tenths of  a percent. 
Consequently, they may serve as careful checks on the 
underlying field theory *2 and, one might think, 
provide some restriction on the magnitude of  X inas- 
much as the perturbative radiative corrections are ex- 
pected to grow as increasingly high powers of  ~. Per- 
turbatively, up to logarithmic factors, the Higgs mass 
is known to be independent of  X at one loop [3] and 
proportional to X at two loops [9]. We conjecture 
that, in n loops, the perturbative contribution grows 
as X n-1  . 

These considerations motivated us to attempt to 
calculate these corrections via a 1/N expansion in an 
effort to get some insight beyond perturbation theory. 
As before [5], we consider the SU(N) × U(1) model in 
the limit N ~ ~ for fixed values of  XN, g2N, and 
g'2N, where g and g '  are the SU(N) and U(1) gauge 
couplings, respectively. We find that the form of  
the radiative corrections to the vector boson mass M 
may be written as 

6M2 /M 2 = (g2N/167r2) 

X [FI(Ow)+N-1F2(XN, Ow)+O(N-2)], (1) 

where we have expanded to lowest non-trivial order 
in the gauge couplings, but summed to all orders in 
the self-coupling ~V. Here, the weak mixing angle 0 w 
is conveniently defined by 

N g'2N ~ g'2N (N-+ oo). (2) 
tanZ0w = 2 ( N -  1) g2 N 2g2N 

The O(1) correction F 1 (0w) is completely indepen- 
dent of  the self-coupfing ),N, while the term of  O(1]N) 
depends on it. However, one can show that, in the 
limit ~ N ~  o o ,  FzC&N, 0w ) tends to a finite limit, a 
result we will refer to as saturation. 

Since the actual calculation is rather complicated, 
we can only indicate, in this note, how the calcula- 
tion was carried out an how certain technical hurdles 
were overcome. The details will be given elsewhere 
[10]. The general structure of  the SU(N) × U(1)y  model 
has been given previously [5] to which we refer the 
reader for notation. Unlike before, the gauge couplings 
cannot be neglected. The Higgs multiplet is taken to be 
in the fundamental representation of  SU(N) with 

.2 Perturbative calculations have been reviewed in ref. [8 ]. 
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where u = Vrff/X is its vacuum expectation value in 
tree approximation. After spontaneous symmetry 
breaking, the particles are classified according to the 
unbroken S U ( N -  1) × U(1)Q symmetry. The calculation 
is most conveniently performed in the Landau gauge, 
where the propagators have the simple forms dis- 
played in fig. 1. There are N - 1 charged W bosons, 
one neutral Z, and one photon A. In addition, there 
are (N - 1) 2 - 1 =N(N - 2) massless vector bosons 
B which do not exist for the standard model where 
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Fig. 1. Propagators in the  Landau gauge. Here t~, v denote  
space-time indices; l, m, SU(N - 1) indices. 
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N = 2 * 3. There is the Higgs scalar of  mass m, and 
the neutral unphysical Higgs X, and the N - 1 charged 
I-Iiggses S - .  Finally, not depicted in fig. 1, there are 
Faddeev-Popov  ghosts associated with each vector, 
in Landau gauge; the vector propagators are trans- 
verse and all unphysical quanta (unphysical Higgses 
and Faddeev -Popov  ghosts) are massless, a property 
which engenders considerable simplification and 
transparency to the calculation. To maintain gauge 
invariance of  the regulator, we employ dimensional 
regularization; however, we do not  renormalize 
graph-by-graph as one does perturbatively but  rather 
we determine counterterms after summing to all or- 
ders in XN. 

To calculate the vector boson mass shifts, one must 
calculate the polarization tensors for W and Z. Owing 
to certain Ward-Takahishi  identities [ 11 ], the 
polarization tensor is transverse, 

Iluv(k2 ) = II(k2)(gu~ - kukv/k2 ). (4) 

Because we are expanding to lowest (non-trivial) or- 
der in the gauge couplings, it suffices to evaluate the 
polarization tensor Iluv(k2 ) at the tree values/¢2 = M 2, 
or k 2 = M 2. 

However, because the vector boson masses are 
themselves proport ional  to the gauge coupling, a 
graph may have a nontrivial and non-analytic depen- 
dence on M2/m 2 ~ g2/X. As a result, the classifica- 
tion by  powers o f g  2 and )~ may differ, for example, 
depending on whether g2 >> X or vice versa. Depen- 
dence to the external momentum k 2 may also intro- 
duce factors o f g  2 when k 2 is put on the mass shell 
since M 2 = ~ g202. As a result, a certain amount of  
care must go into the classification of  diagrams in the 
spontaneously broken phase. We found it, further- 
more, convenient to evaluate H(k 2) by calculating 
only terms contributing to Iluv proport ional  to kuk v. 
Consider first the contributions of  O(1). Among the 
quantities one needs to include are the O(1) correc- 
tions to the unphysical Higgs self-energy ZS" However, 
in Landau gauge, these are just the same as the 
Goldstone bosons for the O(2N) non-gauge theory,  

with self-energies given by  diagrams resembling beaver- 
tail cacti [5]. But, in dimensional regularization, a 
massless tadpole is zero, so the O(1) corrections to 
ZS vanish, one of  the advantages of  the Landau gauge. 
No other contributions of  this order in 1/N involve 
the self-coupling XN or the Higgs mass, so we have 
established the form of  the first term in eq. (1) *4 
Moreover, since the graphs have the structure o f  
one- or two-loop diagrams, it is plausible that the 
function F 1 is of  order 1 in magnitude (and not of  
order, say, 167r2). 

Now we turn to the heart of  the calculation, the 
O(1/N) corrections which depend non-trivially on 
XN. Unfortunately,  there are a great many diagrams 
whose discussion quickly becomes a bit  lengthy. Here, 
we will simply outline the ingredients. Diagrams in- 
volving the Higgs itself are already of  O(I /N) ,  so we 
need only the O(1) Higgs self-energy previously de- 
termined [5,6]. Recall that this has a finite non-zero 
limit if we formally take kN ~ oo. However, we also 
need the O(1/N) contributions to ZS (for zero gauge 
couplings) which can also be calculated and shown to 
saturate as XN ~ ~ .  The W polarization tensor in- 
volves a large number of  diagrams which could po- 
tentially contribute to a kUk v term, a subset of  which 
are depicted in fig. 2. Other diagrams involve either 
the exchanges of vertices or O(1) propagator or ver- 
tex insertions along with appropriate counter terms 
for divergences associated with the diagrams or sub- 
diagrams. The diagrams of order (g2N)2 would ap- 
pear to be necessary in case the Feynman integrals 
should yield contributions proport ional  to v 2. In fact, 
they are proport ional  to k 2 = M 2 and can be discard- 
ed since this then is of  higher order in (g2N). 

Putting everything altogether, we obtain a contri- 
but ion of  the form of  the second term in eq. (1). Re- 
markably enough, the function F2(kn  ) can be shown 
to saturate, i.e., approach a finite number. Although 
the second term is zero for N ~  0% it is inviting to try 
to estimate its magnitude for N = 2 to get some indi- 
cation of  the generic size of  the correction. The 

.3 One may legitimately worry that there are of order N 2 
vector bosons which do not exist in the standard model. 
However, as will be seen below, our results depend upon 
the saturation of radiative corrections to the unphysical 
Higgs bosons S and not upon intricate cancellations in- 
volving these vectors. 

*4 Of course, since each term in the 1IN expansion is separate. 
ly gauge invariant, this result could be established in any 
gauge. However, it is extremely convenient in going be- 
yond leading order in 1IN to have the leading order self- 
energy ~S vanish and, thereby, having the independence 
of hN manifested graph-by-graph. 
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Fig. 2. Some primitive diagrams of O(1/N). 

generic form of the sum of all contributions looks 
like one-loop integrals with modified propagators and 
vertices which, however, saturate in the limit kN-* o o  

Thus, we would guess that F 2 tends to a number of 
order 1 for the same reason as our estimate o f F  1 . 
This leads us to suspect that the maximal magnitude 
of the radiative corrections is still quite small and in- 
sensitive to the Higgs self-coupling no matter how 
large it may become. 

There may be a simple intuitive way to understand 
the origin of these results. Given the renormalized 
coupling XN(#) on some scale/a, there is afinite mo- 
mentum A c (the cutoff) at which the coupling goes 
to infinity (triviality). The coupling constant may be 
written as 

kN/41r 2 = 1/ln(Ac//a), (5) 

so that any scale/a < Ac, there is a finite upper limit 
to the strength of the self-coupling. One may think 
of scanning different theories by varying A c. The re- 
sults of ref. [5] may be viewed as follows. The Higgs 
mass m is of order m 2 ~ 2kN(m2)o 2 . As the cutoff 
A c is lowered toward o, the Higgs mass increases un- 

til there comes a point where it begins to exceed the 
cutoff. Clearly a local field theory approximation to 
the underlying dynamics makes no sense beyond this 
point, so one can conclude that either the Higgs exci- 
tation is not present below this lowest value of the 
cutoff on the effective, low-energy, local field theory 
or else it has a mass less than this minimum possible 
value of the cutoff (of order 4 ~ .  It is in this 
sense that there is an upper limit to the Higgs mass. 

Now at any energy scale/a below this cutoff Ac, the 
self-coupling has a finite value (given by eq. (5) in the 
1/N approximation) which decreases with decreasing 
scale. In particular, on the scale of the vector boson 
masses, the self-coupling may be within the range for 
which perturbation theory provides a reliable estimate 
of the magnitude of radiative corrections. As a result, 
the one-loop shifts in the vector bosons' masses are 
reliable, provided the self-coupling is given its value 
on the scale of vector boson masses. 

A preliminary version of this paper was submitted 
to the XXIII International Conference on High energy 
physics (Berkeley, CA, July 1986). 
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