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As a measure of the extent to which the removal of a node disconnects a graph, the cutting number c(v) of a node v in a 
connected graph G has been defined to be the number of pairs of nodes in different components of G -  {v}. We present a 
linear algorithm for determining c(v) for all nodes of a tree, and hence for identifying the cutting center, which consists of the 
nodes v at which c(v) is maximized. 
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1. Introduction 

The cutting number c(v) of a node v in a 
connected graph G is the number  of unordered 
pairs {u, w) of nodes such that every path from u 
to w contains v. In other words, c(v) is the number 
of pairs of nodes that lie in different components 
of the subgraph G - {v). For the tree T1 of Fig. 1, 
deleting node 6 leaves five components of order 
one and another of order eight, and c(6)= 50. 
Also, c(8) = 48. The cutting center of a graph is the 
set of nodes with maximum cutting number. For 
example, the cutting center of T1 is {6,9}. This 
concept arose from a structural model in psy- 
chology [2,3], but it is applicable to any network 
in which there are communicating processes in- 
volving the pairs of nodes of the network. 

We present a rather surprising linear algorithm 
--i.e.,  linear in the number of nodes of the 
t ree- - for  computing the cutting number of all 
nodes of a tree. From the list of cutting numbers, 

it is easy to find the cutting center by determining 
the maximum of the cutting numbers and forming 
the set of all nodes with that cutting number. 

2. The cutting center algorithm for trees 

We assume that a tree T has a root (which can 
be chosen arbitrarily) and that T is represented by 
three items: p, the number  of nodes in T, an 
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Fig. 1. Tree T1 with cutting center {6, 9}. 
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endnode  list EL = (v 1 . . . .  , vp), and  an associated 
parent  list PA = (u 1 . . . . .  Up_l).  

The  e n d n o d e  list is any enumera t i on  of  the 
nodes  of T such that  each node  precedes its parent .  
In the associated paren t  list, each u i is the paren t  
of v i in T. No te  that  PA has length p - 1 and not  
p, since the root  vp has no  parent .  As an example,  
tree T1 of Fig. 1 has an endnode  list 

EL = (1, 2, 3, 10, 11, 4, 5, 7, 6, 12, 13, 14, 9, 8) 

with the associated parent  list 

PA = (6, 6, 6, 9, 9, 6, 6, 8, 8, 9, 9, 9, 8). 

These lists can  be cons t ruc ted  for a tree of p 
nodes  in O(p) t ime (see, e.g., [4,5]), so requir ing 
them does not  increase the order  of execut ion  t ime 
of the algori thm. 

The  correctness of  the a lgor i thm rests on  the 
fol lowing analysis. Cons ider  any node  v, and  let 
the c o m p o n e n t s  of  T - v be C 1 . . . .  ,Ck ,  Ck+ 1 with 
C k+ 1 conta in ing  the  paren t  of  v (if v is no t  the 
root)  (see Fig. 2). Deno te  by v i the n o d e  in C i that  
is adjacent  to v. Let  d i deno te  the n u m b e r  of 
descendants  of v i so that  [Ci[ = d i + 1 for  1 ~< i 
k. Then,  the n u m b e r  of descendants  of  v is 
(d 1 + 1) + (d 2 + 1) + - . -  + ( d  k + 1). Fu r the rmore ,  

c(v)= E !ci!.lcjl (a) 
l~i<j~<k+l 

= 1 (  E ]Ci]" ( P -  1 - ] C i l ) )  - (2) 
l~<i~<k+l 

Line (1) is s imply the def ini t ion of c(v). Fo r  (2), 
s imply note  that  each w ~ C i is separa ted  by v 
f rom every vertex except v and those in C i, tha t  is, 

Fig. 2. Computing the cutting number of node v. 

f rom p - 1 - [Ci[ of them. Each pair  w ~ C i and 
x ~ C h with j ~ h is coun ted  twice (when i = j and 
when  i = h), so one  divides by 2. 

The  a lgor i thm computes  two arrays d(1..p) and 
c(1..p) which are def ined as 

d(i) = the n u m b e r  of  descendants  of node  i, 
c(i) = the cut t ing n u m b e r  of n o d e  i. 

These arrays are c o m p u t e d  in a single left-to-right 
scan of lists EL and  PA. An  impor t an t  thing to 
note  in the a lgor i thm is that  each node  in EL 
occurs and is processed before  its parent  ( that  is, 
if EL(j) = PA(i), then j > i). 

The  loop invariant ,  which indicates the values 
of c and d just  before  each loop iteration, is as 
follows: 

PD:  

PC: 

For  each j, d(j) is the n u m b e r  of descendants  
o f j  in all subtrees with a root  r in EL(1..i - 1) 
for which j is the parent  of  r. 

For  each j, cO) is the sum of the terms 
]Ch[ , l ( p _  1 -  [Ch I), where  C h is a sub- 

tree with a root  r in EL(1..i - 1) for which j 
is the parent  of r, plus, if j is in EL(1..i - 1), 
this term for the c o m p o n e n t  of T -  (j } con- 
taining the paren t  of node  j (see formula  (2)). 

Algorithm. Store in each d(j) the n u m b e r  of des- 
cendants  of node  j and  in each c(j) the cut t ing 
n u m b e r  of node  j, for 1 ~< j ~< p: 

c : = 0 ;  d : = 0 ;  
{invariant:  PD A PC)  
to t  i : =  1 t o  p -  1 do 

begin 
d(PA(i)) "= d(PA(i)) + d(EL(i))  + 1; 
c(PA(i)) "= c(PA(i)) + (d(EL(i)) + 1) 

• ½(p - 2 - d(EL(i))); 
c(EL(i)) "= c(EL(i)) + (p - 1 - d(EL(i))) 

• ½(d(EL(i))) 

end. 

The  first s ta tement  of the loop  body  augments  
the n u m b e r  of  descendants  of the  paren t  PA(i) of 
vertex EL(i) by the  n u m b e r  of  vertices in compo-  
nen t  T -  PA(i) tha t  conta ins  EL(i). The  second 
s ta tement  adds a t e rm in (2) for one  of the first k 
componen t s  C k for node  PA(i), while the third 
adds  the term for c o m p o n e n t  k + 1 of node  EL(i). 

318 



Volume 23, Number 6 INFORMATION PROCESSING LETTERS 3 December 1986 

Acknowledgment 

T h e  a u tho r s  gra te fu l ly  a c k n o w l e d g e  the  cons id-  

e rab le  e f for t s  of  P ro f e s so r  D a v i d  Gr ies  to i m p r o v e  

the f o r m  o f  this paper .  

References 

[2] F. Harary and P.A. Ostrand, How cutting is a cutpoint?, 
in: Combinatorial Structures and Their Applications 
(Gordon & Breach, New York, 1970) 147-149. 

[3] F. Harary and P.A. Ostrand, The cutting center theorem 
for trees, Discrete Math. 1 (1971) 7-18. 

[4] D.E. Knuth, The Art of Computer Programming, Vol. 1: 
Fundamental Algorithms (Addison-Wesley, Reading, MA, 
1968) 334-338. 

[5] R.E. Tarjan, Depth-first search and linear graph al- 
gorithms, SIAM J. Comput. 1 (1972) 146-160. 

[1] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 
1969). 

319 


