
Information Processing Letters 23 (1986) 317-319
North-Holland 3 December 1986

A LINEAR ALGORITHM FOR THE CUTTING CENTER OF A TREE

Frank HARARY

Department of Mathematics, The University of Michigan, Ann Arbor, MI 48109, U.S.A.

Peter J. SLATER

Depariment of Mathematics and Statistics, School of Science, The University of Alabama in Huntsville, Huntsville, AL 35899,
U.S.A.

Communicated by David Giles
Received 19 June 1985
Revised 2 December 1985

As a measure of the extent to which the removal of a node disconnects a graph, the cutting number c(v) of a node v in a
connected graph G has been defined to be the number of pairs of nodes in different components of G - {v}. We present a
linear algorithm for determining c(v) for all nodes of a tree, and hence for identifying the cutting center, which consists of the
nodes v at which c(v) is maximized.

Kevwords: Tree, cutting center

Dedicated to the memo~ of Phillip A. Ostrand

1. Introduction

The cutting number c(v) of a node v in a
connected graph G is the number of unordered
pairs {u, w) of nodes such that every path from u
to w contains v. In other words, c(v) is the number
of pairs of nodes that lie in different components
of the subgraph G - {v). For the tree T1 of Fig. 1,
deleting node 6 leaves five components of order
one and another of order eight, and c(6)= 50.
Also, c(8) = 48. The cutting center of a graph is the
set of nodes with maximum cutting number. For
example, the cutting center of T1 is {6,9}. This
concept arose from a structural model in psy-
chology [2,3], but it is applicable to any network
in which there are communicating processes in-
volving the pairs of nodes of the network.

We present a rather surprising linear algorithm
--i.e., linear in the number of nodes of the
t ree- - for computing the cutting number of all
nodes of a tree. From the list of cutting numbers,

it is easy to find the cutting center by determining
the maximum of the cutting numbers and forming
the set of all nodes with that cutting number.

2. The cutting center algorithm for trees

We assume that a tree T has a root (which can
be chosen arbitrarily) and that T is represented by
three items: p, the number of nodes in T, an

8

1 2 3 4 5 10 11 12 13 14

Fig. 1. Tree T1 with cutting center {6, 9}.

0020-0190/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 317

Volume 23, Number 6 INFORMATION PROCESSING LETTERS 3 December 1986

endnode list EL = (v 1 , vp), and an associated
parent list PA = (u 1 Up_l).

The e n d n o d e list is any enumera t i on of the
nodes of T such that each node precedes its parent .
In the associated paren t list, each u i is the paren t
of v i in T. No te that PA has length p - 1 and not
p, since the root vp has no parent . As an example,
tree T1 of Fig. 1 has an endnode list

EL = (1, 2, 3, 10, 11, 4, 5, 7, 6, 12, 13, 14, 9, 8)

with the associated parent list

PA = (6, 6, 6, 9, 9, 6, 6, 8, 8, 9, 9, 9, 8).

These lists can be cons t ruc ted for a tree of p
nodes in O(p) t ime (see, e.g., [4,5]), so requir ing
them does not increase the order of execut ion t ime
of the algori thm.

The correctness of the a lgor i thm rests on the
fol lowing analysis. Cons ider any node v, and let
the c o m p o n e n t s of T - v be C 1 ,Ck , Ck+ 1 with
C k+ 1 conta in ing the paren t of v (if v is no t the
root) (see Fig. 2). Deno te by v i the n o d e in C i that
is adjacent to v. Let d i deno te the n u m b e r of
descendants of v i so that [Ci[= d i + 1 for 1 ~< i
k. Then, the n u m b e r of descendants of v is
(d 1 + 1) + (d 2 + 1) + - . - + (d k + 1). Fu r the rmore ,

c(v)= E !ci!.lcjl (a)
l~i<j~<k+l

= 1 (E]Ci]" (P - 1 -] C i l)) - (2)
l~<i~<k+l

Line (1) is s imply the def ini t ion of c(v). Fo r (2),
s imply note that each w ~ C i is separa ted by v
f rom every vertex except v and those in C i, tha t is,

Fig. 2. Computing the cutting number of node v.

f rom p - 1 - [Ci[of them. Each pair w ~ C i and
x ~ C h with j ~ h is coun ted twice (when i = j and
when i = h), so one divides by 2.

The a lgor i thm computes two arrays d(1..p) and
c(1..p) which are def ined as

d(i) = the n u m b e r of descendants of node i,
c(i) = the cut t ing n u m b e r of n o d e i.

These arrays are c o m p u t e d in a single left-to-right
scan of lists EL and PA. An impor t an t thing to
note in the a lgor i thm is that each node in EL
occurs and is processed before its parent (that is,
if EL(j) = PA(i), then j > i).

The loop invariant , which indicates the values
of c and d just before each loop iteration, is as
follows:

PD:

PC:

For each j, d(j) is the n u m b e r of descendants
o f j in all subtrees with a root r in EL(1..i - 1)
for which j is the parent of r.

For each j, cO) is the sum of the terms
]Ch[, l (p _ 1 - [Ch I), where C h is a sub-

tree with a root r in EL(1..i - 1) for which j
is the parent of r, plus, if j is in EL(1..i - 1),
this term for the c o m p o n e n t of T - (j } con-
taining the paren t of node j (see formula (2)).

Algorithm. Store in each d(j) the n u m b e r of des-
cendants of node j and in each c(j) the cut t ing
n u m b e r of node j, for 1 ~< j ~< p:

c : = 0 ; d : = 0 ;
{invariant: PD A PC)
to t i : = 1 t o p - 1 do

begin
d(PA(i)) "= d(PA(i)) + d(EL(i)) + 1;
c(PA(i)) "= c(PA(i)) + (d(EL(i)) + 1)

• ½(p - 2 - d(EL(i)));
c(EL(i)) "= c(EL(i)) + (p - 1 - d(EL(i)))

• ½(d(EL(i)))

end.

The first s ta tement of the loop body augments
the n u m b e r of descendants of the paren t PA(i) of
vertex EL(i) by the n u m b e r of vertices in compo-
nen t T - PA(i) tha t conta ins EL(i). The second
s ta tement adds a t e rm in (2) for one of the first k
componen t s C k for node PA(i), while the third
adds the term for c o m p o n e n t k + 1 of node EL(i).

318

Volume 23, Number 6 INFORMATION PROCESSING LETTERS 3 December 1986

Acknowledgment

T h e a u tho r s gra te fu l ly a c k n o w l e d g e the cons id-

e rab le e f for t s of P ro f e s so r D a v i d Gr ies to i m p r o v e

the f o r m o f this paper .

References

[2] F. Harary and P.A. Ostrand, How cutting is a cutpoint?,
in: Combinatorial Structures and Their Applications
(Gordon & Breach, New York, 1970) 147-149.

[3] F. Harary and P.A. Ostrand, The cutting center theorem
for trees, Discrete Math. 1 (1971) 7-18.

[4] D.E. Knuth, The Art of Computer Programming, Vol. 1:
Fundamental Algorithms (Addison-Wesley, Reading, MA,
1968) 334-338.

[5] R.E. Tarjan, Depth-first search and linear graph al-
gorithms, SIAM J. Comput. 1 (1972) 146-160.

[1] F. Harary, Graph Theory (Addison-Wesley, Reading, MA,
1969).

319

