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Let K be an unbounded convex polyhedral subset of  R" represented by a system of  linear con- 
straints, and let IK 'a be the convex hull of  the set of  extreme points of  K. We show that the 

combinatorial-facial structure of  K does not uniquely determine the combinatorial-facial struc- 
ture of  K 'a. We prove that the problem of  checking whether two given extreme points of  K are 

nonadjacent  on K J ,  is NP-complete in the strong sense. We show that the problem of  deriving 
a linear constraint representation of  K 'a, leads to the question of  checking whether the dimension 

of  K "~ is the same as that of  K, and we prove that resolving this question is hard because it needs 

the solution of some NP-complete problems. Finally we provide a formula for the dimension o f  
K A, under a nondegeneracy assumption.  

Keywords. Unbounded convex polyhedron, convex hull of  extreme points, facial structure, NP- 
complete and NP-hard problems, dimension, Hamil tonian chains, max imum capacity cuts. 

1. Introduction 

Let KCR" be the set o f  feasible solutions of  a finite system of  linear constraints 
in x e  R" with integer data. Assume that K:~0 and that K is unbounded.  Let K 'j be 
the convex hull o f  extreme points o f  K. The study o f  the structure o f  K J is a very 
important problem in mathematical programming. Some o f  the known important 
results associated with K ~ are listed below. 

(1) A fundamental theorem in the theory o f  convex polyhedra, the resolution 
theorem (see [4, 7]), with important algorithmic consequences,  states that if K is the 
set o f  feasible solutions of  

A x  = b, 

x _ > O ,  
(1) 
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then K can be expressed as K d + K < = { x + y :  xEK'J ,  y e K < } ,  where K < = { y :  

Ay=O, y_>0}. 
(2) Let z(x)= cx, where c is an integer row vector in R ", be a linear function 

which is unbounded below on K. The problem of minimizing z(x) on K '~, more 
specifically, that of  finding an extreme point of  K that minimizes z(x) over the set 
of  extreme points of  K, is an NP-hard problem, see [3]. Several NP-hard problems 
are special cases of  it, in a direct way. We mention some of  these problems below. 

(a) The shortest hamiltonian chain problem 

Let Gl = (.,t,,~/) be a complete directed network with = {1 . . . . .  n}, ~/= {(i, j ) :  
i, j =  1 to n, i# j } .  Let d=(do)>O denote the given positive integer vector of arc 
lengths in .~. 

The nodes 1, n are the specified origin and destination nodes in Gl.  A hamilto- 
nian chain from 1 to n in GI is a simple chain from 1 to n in GI that passes through 
each of the other nodes in Gl.  The problem is to determine the shortest hamilto- 
nian chain from 1 to n in G~ with d as the vector of arc lengths. Define the in- 
cidence vector of  a simple chain ~ from 1 to n in G 1 to  be the vector x = (xij), where 

xo= 1, if (i,j) is on ~/,J, 

= 0, otherwise. 

Then the vector x satisfies 

,~ n ~0 ,  if i¢:1, n, 

21Xij --j~ Xji= ~1 .  if i=  1, (2) 
• = . =  

j 1 

J*' J*' 1, i f i = n ,  

xo>_O, for all i, j .  

It can be shown that every basic feasible solution (BFS) of  (2) (an extreme point of  
the set of feasible solutions of  (2)) is the incidence vector of  a simple chain from 
1 to n in GI, and vice versa. 

Let a=2(1  +maximum {dij: ( i , j ) ~ / } ) .  For each ( i , j ) e  .~./, d e f i n e  d i j = c t - d i j .  
From the definition of a, we have di'j>O for all ( i , j )~. .~ 'and for any i, j ,  k e , ~ ,  
di'k + d~j>d~. So, the vector d ' =  (dij) satisfies the triangle inequality. The objective 
function I(x)= ~(-di jxo:  i, j =  1 to n, i¢ j ) ,  can be verified to be unbounded 
below on the set of  feasible solutions of (2). But the problem of  finding the BFS 
of  (2) that minimizes I(x) among all the BFSs of  (2) (a special case of  minimizing 
z(x) on K ~) is equivalent to the shortest hamiltonian chain problem, since 
d'= (dij)> 0, and these distances satisfy the triangle inequality. See [61. 

(b) The problem o f finding a maximum capacity cut separating the source and sink 
nodes 
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Let G = (.Jl, .~) be a directed single commodi ty  flow network in which .*' is the set 

o f  nodes, and .~/is the set of  arcs. Suppose nodes 1, n are the specified source and 
sink nodes in G. Let k=(kij: (i,j)e.~¢) be a positive integer arc capacity vector 
associated with the arcs in .:¢. A cut in G separating 1 and n is a set of  arcs 
{(i,j):  i eX ,  j e X  and ( i , j )  e,,~¢ } where ( X , X )  is a partition of  the node set ,.~ with 
1 e X, n e X, and this cut itself is denoted by the symbol (X, X ). The capacity of  this 
cut ( X , X )  is defined to be ~(kij: ( i , j ) e ( X , X ) ) .  

The well-known problem of  finding a minimum capacity cut separating 1 and n 

can be solved efficiently by using any efficient algorithm for finding a maximum 
value flow from 1 to n in G and then using the max-flow min-cut theorem. On the 
other hand, the problem of finding a maximum capacity cut is an NP-hard problem. 
Define the vectors of  variables H =  (Hi: i e , I  ), y = (Y•j: (i, j )e . .~) .  Define the con- 
straint system 

- H I + H n = I ,  

Hi-Hj+yo>-O, for all ( i , j ) e . ' g ,  (3) 

Ht = 0, 

yii>_0, for all ( i , j ) f f .~ .  

If ( X , X )  is any cut separating 1 and n in G, define the corresponding (H, y) by 

O, if i e X ,  
Hi=  1, i f i e X ,  

(4) 

I 1, if ( i , j ) e ( X , X ) ,  
YiJ= 0, otherwise. 

It can be verified that if ( X , X )  is any cut separating 1 and n in G, then the cor- 
responding (/7, y) defined by (4) is a BFS of  (3); and conversely, if (/7, y) is any BFS 
of  (3), define X =  { i : / 7 / = 0  }, X =  {i: Hi = 1}, then (X, X) is a cut separating 1 and 
n in G. Thus every cut separating 1 and n in G corresponds to a BFS of  (3) and vice 
versa. The objective function o(/7, y ) =  F~(kijYij: (i,j)~.z/) is clearly unbounded 
above on the set of  feasible solutions of  (3), but the problem of  finding a maximum 
capacity cut separating 1 and n in G is equivalent to the problem of finding a BFS 
that maximizes 0(/7, y) among all BFSs of  (3), this again is a special case of  the pro- 
blem of  minimizing z(x) on K 'j. 

(c) The separation problem 

Consider the original sets K, K A again. Suppose we are given a point x e  K and 
are required to determine whether 

either x e K ~ 

or else determine a hyperplane in R n separating x and K 'j. 
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No efficient algori thm for  this problem is known.  I f  an efficient a lgori thm for this 

problem can be developed, by combining it with the ellipsoid method,  we can 
generate an efficient algori thm for  minimizing z(x)  on K A, see [5]. 

2. Results on the combinatoria l - fac ia l  structure o f  K A 

The combinator ia l  structure o f  K is determined by the incidence relationships o f  

its faces. Here we investigate whether the combinator ia l  s tructure o f  K A can be 

deduced purely f rom the combinator ia l  structure o f  K. While the combinator ia l  
structure o f  K has an effect on the combinator ia l  structure o f  K A, it turns out that  

it does not determine it completely.  

Theorem 1. Let x l, X 2 be two extreme points  o f  K. x l, X 2 a r e  adjacent on K A i f  

either (i) x t, x 2 are adjacent on K, 

or (ii) x l, x 2 are the two extreme points  incident to the two u n b o u n d e d  edges 

in an u n b o u n d e d  two-dimensional  f a c e  o f  K. 

Proof .  By definit ion, two extreme points o f  a convex polyhedron  are not adjacent  

on it iff their midpoint  can be expressed as a convex combina t ion  o f  two distinct 
points in the polyhedron ,  neither o f  which is on  the line segment joining the two 
extreme points,  see [7]. Since K A C K, this definit ion directly implies that if x I, x 2 

are adjacent extreme points o f  K, then x I, x 2 are also adjacent  on K J.  
Now,  suppose that x ~, x 2 are extreme points which are not adjacent on K, but 

they are both extreme points on a two-dimensional  face, F, o f  K, incident to the two 

unbounded  edges on the face. See Fig. 1. 
The line segment joining x ~ and x 2 parti t ions this face F into two regions F A and 

P. Let 8 =  ½(x J+ x2). Since F is a two-dimensional  face o f  K, if .~ = t~x3+ (1 - t~)x  4, 
where 0 < a <  1; and x 3, x 4 are points in K not contained on the line segment join- 
ing x ~, x2; one o f  the points a m o n g  x 3, x 4, say x 3, is in F A, and the other  point 

x 4 must be in P. So x 4 ¢ K A, and these facts imply that .¢ cannot  be expressed as a 

convex combina t ion  o f  two points in K 'j both  o f  which are not contained on the 
line segment joining x l, x 2. So, in this case, x 1, x 2 are also adjacent on K A. L] 

The converse o f  Theorem 1 may not be true, as the following example illustrates. 

See Figs. 2 and 3. 
Note that K~, K 2 have the same combinator ia l  structure; and yet the com-  

binatorial  structure o f  Kl a and K~ is different.  This shows that the combinator ia l  
structure o f  K A not  only depends on the combinator ia l  structure o f  K, but on the 
actual da ta  in the linear constraints defining K. 

The points x 1, x 2 in Fig. 3 are not contained together on any two-dimensional  
face o f  K 2, and yet they are adjacent on K2 a,  providing a counterexample to the 
converse o f  Theorem 1. We now provide some addit ional  results on this problem. 
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Fig. 3. 

Let F denote the set o f  feasible solutions o f  (2), and let F a denote the convex 
hull o f  all extreme points o f  F. So, F A is the convex hull o f  the incidence vectors 

o f  simple chains f rom 1 to n in Gl =(.~,  .-"/), where . ~ =  {1, ... ,n},  . ~=  {(i, j ) :  i, j =  1 
to n, i--/:j}. Let the symbol  r denote  the incidence vector o f  a hamil tonian chain in 
G t f rom 1 to n, or  that  chain itself. For  any chain "~) in G~, let the symbol  I'cl 
denote  the linear function which is the number  o f  arcs in z'. Then r is any simple 

chain f rom 1 to n in Gl satisfying I*1 = n -  1, and vice versa. Let T denote the con-  
vex hull o f  all the incidence vectors o f  hamil tonian chains f rom 1 to n in Gt .  So 
T C F  A. 

Lemma 1. r 1, r 2, the incidence vectors  o f  two dist inct  hami l tonian  chains f r o m  1 

to n in Gi ,  are nonadjacent  on T i f f  they  are nonadjacent  on F A . 

Proof .  Since T C F  ~, if r l, r 2 are nonadjacent  on T, they are nonadjacent  on F ~, 

by the definit ion o f  adjacency (see [7, 8]). 
Suppose r I, r 2 are adjacent  on T but not on F ~. We will now show that this 

leads to a contradict ion.  By definit ion o f  nonadjacency  (see [7, 8]), since F ~ is a 
convex polytope,  this implies that there exist simple chains f rom 1 to n in Gl with 
incidence vectors x l . . . . .  x r and real numbers  al ,  a2, ~l . . . . .  ,St, such that 
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~1 l'1 + ~ 2  r 2 =  ~] fit xt, 
t=l  

al  + a2 = ~ ,6) = 1, (5) 
t=l 

cq, a2, fl~>O, f o r t = l  t o r .  

Since Irll=lrZl=n-1, we have a~lrJl+a21rZl=n-1, so from the above 
r 

F-t= 1 fit] xt] = ( n -  1), too. Since each x t is the incidence vector of  a simple chain in 
Gl ,  we have ]xt l_<n-1 for all t = l  to r. So, ~ = l p t l x t l = - n - 1  implies that 
Ix t] = n -  1 for all t =  1 to r, that is, each x t is the incidence vector of  a hamiltonian 
chain from 1 to n in G~. From (5), this is a contradiction to the hypothesis that r ~ 
and r 2 are adjacent on T. This proves the lemma. [] 

Theorem 2. The problem o f  checking whether two given extreme points o f  K, are 
nonadjacent on K A, is NP-complete in the strong sense. 

Proof .  The fact that the problem of  checking whether two given extreme points of  
K are nonadjacent on K ~, is in the class NP of  problems, follows from the defini- 
tion of  nonadjacency, see [7, 8]. 

Now consider the special case of  this problem on F. By Lemma 1, the problem 
of  checking whether the incidence vectors of  two hamiltonian chains from 1 to n 
in GI are nonadjacent on F ~ is equivalent to checking whether they are nonadja- 
cent on T. However,  f rom the results in [9], the problem of  checking whether the 
incidence vectors of  two hamiltonian chains are nonadjacent on T is strongly NP- 
complete. This clearly implies that the problem of  checking whether two extreme 
points of  F are nonadjacent on F ~ is strongly NP-complete.  This proves the 
theorem. 

Corollary 1. Let G 2 = (. ~, .~) be a directed network. Let 1, n be an origin, destina- 

tion pair o f  nodes in G2. Let S denote the convex hull o f  the arc-incidence vectors 

o f  all simple chains f r o m  l to n in G. Then the problem o f  checking whether the 
arc-incidence vectors x 1, x 2 o f  two distinct simple chains f rom 1 to n in G, are 
nonadjacent on S, is NP-complete in the strong sense. 

Proof .  This follows from the arguments used in the proofs of  Lemma 1 and 
Theorem 2. [] 

Recently, there has been a lot of  interest in studying linear programming through 
combinatorial  abstraction (see Ill). These examples show that it may be difficult to 
derive any results about  K '~, or carry out algorithms for optimization over K A, us- 
ing a combinatorial  abstraction of  K. 

Finally, the problem of  designing a reasonable scheme for generating a system of  
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linear constraints, which when combined with those in the constraint system defin- 
ing K leads to K 'j, using the data in the constraint system defining K, remains an 
open problem. We investigate one question related to this open problem, in the next 
section. 

3. On the dimension of  K ~ 

Here we study the problem of  determining the dimension of  K •, using the data 
in the constraint system specifying K. If  the constraint system specifying K consists 
of  equality constraints only, K is an affine space and has no extreme points, in this 
case K ~ = 0 ,  and the problem is trivial. So we assume that the constraint system 
specifying K consists of  at least one inequality constraint. If  there are any equality 
constraints in the system, using them some variables can be eliminated, thus reduc- 
ing the system. So, for the sake of  this study, we can, without any loss of  generality, 
assume that the system specifying K consists of  inequality constraints only. Suppose 
that K is the set of  feasible solutions of  

D x >  d (6) 

where D, d are given integer matrices of  orders m × n and m × 1 respectively. As 
before, we assume that K~:0, and that K is unbounded.  

We use the symbols D i ,  D . j ,  t o  denote the ith row vector, t h e j t h  column vector 
of  the matrix D respectively. 

A constraint in (6) which holds as an equation at every feasible solution for (6) 
is called a binding inequality constraint in the system (6). It is well known that the 
dimension of K is < n iff there exists at least one binding inequality constraint in 
(6), that is, iff there exists an i such that D i . x = d  i for all x ~ K .  For any i, 1 <_i<m, 
whether the ith constraint in (6) is a binding inequality constraint or not, can be 
determined by solving the linear program 

maximize Di.x 
(7) 

subject to Dt.x>_d l, t=  1 to m, t ~ i .  

Since we assumed that K * 0 ,  the opt imum objective value in this linear program is 
>_d i. If  the opt imum objective value in (7) is >di ,  the ith constraint is not a bin- 
ding inequality constraint in (6); if it is = d,, then the ith constraint is a binding ine- 
quality constraint in (6). Thus to check whether the dimension of  K is n or < n ,  
requires the solution of  at most m linear programming problems. In fact, the dimen- 
sion of K is n - rank of  {D i. : i such that the ith constraint in (6) is a binding ine- 
quality constraint}. Thus computing the dimension of  K defined by (6), requires the 
solution of at most m linear programming problems. 

I f  there is a binding inequality constraint in (6), that constraint can be treated as 
an equality constraint, and a variable eliminated using it, and the process can be 



On K A 207 

repeated. We assume that such reduction steps have been carried out as far as 
possible. 

So, we assume that for each i=  1 to m, there exists an x i e  K satisfying D i . x > d  i . 
Hence, the dimension of  K is n. 

It is well known (see, for example, [7]) that K has an extreme point iff the set of  
column vectors of  D is linearly independent. If  K has no extreme points, KA= 0, 

and our problem becomes trivial. So, we assume that this condition holds, that is 
that K has at least one extreme point. 

Also, it is well known that K is bounded iff the system 

D~->0 (8) 

has ~j= 0 as its unique solution. See [7]. If  K is bounded, K a =  K, in this case the 
dimension of  K a =  dimension of  K. Our problem becomes interesting if K is un- 
bounded, that is, when (8) has at least one nonzero solution. In this case K A is a 
proper subset of  K, it is the set of  feasible solutions of  a system of  constraints con- 
sisting of  (6) and some additional constraints. The number  of  these additional con- 
straints needed to represent K a could be very large, but so far there is no 
systematic method known for generating them in a reasonable manner.  Suppose 
K n is the set of  feasible solutions of  (6) and the additional constraints (9). 

Qu.x>_qu, u = l  to V (9) 

In the system (6), (9), defining K A, there is a binding inequality constraint (this is 
an inequality constraint among (6), (9), which holds as an equation at every x e  K J)  
iff the dimension of  K A is < n = d i m e n s i o n  of  K. Thus the system of  additional 
constraints needed to define K A consists of  inequalities none of  which are binding 
iff  the dimension of  K 'j is n = dimension of  K. In fact, if dimension of  K 'a is r, then 
the system of  additional constraints over those in (6), needed to define K 'a, consists 
of  a set of  n - r linearly independent equality constraints and a system of  inequality 
constraints none of which are binding. Thus the determination of  the dimension of 
K 'j is an essential first step in determining the structure of  the additional con- 
straints needed to define K A. Under a nondegeneracy assumption, we derive a for- 
mula for the dimension of  K 'j, which only needs the data in (6), and the solution 
to some problems on the convex polyhedron K, however, these problems are NP- 
complete. 

The results 

Lemma 2. Let K, the set o f feasible solutions o f  (6), be unbounded, and suppose 
i is such that Di .x  is unbounded above over K. The problem o f  checking whether 
there exists o f  extreme point o f  K satisfying Di .x> di, is NP-complete. 

Proof .  Clearly, this problem is in NP. Let F be the set of  feasible solutions of  

Dt.x>_d ~, t~:i 
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Then by hypothesis, F is an unbounded convex polyhedron and Di.x  is unbounded 
above on it. Since the problem of  finding the extreme point of  F that maximizes 
Di.x is NP-hard, the problem of  checking whether there exists an extreme point of  
F satisfying D i . x > d  i is NP-complete. By the results of  [7, 8], each extreme point of  
K has to belong to one of  the following types. 

(a) Extreme points of  F satisfying D r x > d  i. 
(b) Extreme points of  F satisfying Di .x=di .  
(c) Points of  intersection of edges of  F (bounded or unbounded) which do not 

totally lie in the hyperplane {x: D i . x = d  i }, with that hyperplane. 
So the only extreme points of  K which satisfy D~.x>di, are those of  type (a) 

above, that is, those extreme points of  F satisfying D~.x>d,.  But from the argu- 
ment made above, the problem of  checking whether there exists an extreme point 
of  F satisfying D r x>  di is NP-complete. So the problem of  checking whether there 
exists an extreme point of  K satisfying Di.x>d~, is NP-complete. [~ 

Since we assumed that the dimension of  K, defined by (6), is n, there exists an 
~ ' eK satisfying DR>d,  or equivalently, for each i=  1 to m there exists an x i E K  

satisfying D i . x > d  i. We have the following result. 

Theorem 3. Let K, the set o f  feasible solutions o f  (6), be o f  dimension n. Also, 
assume that system (6) is nondegenerate (under this assumption, K is a regular con- 
vex polyhedron, that is, each extreme point o f  K is incident to exactly n edges o f  
K, these may be bounded or unbounded).  Then the dimension o f  K ~ is also n i f f  
f o r  each i= 1 to m there exists an extreme point ~i o f  K satisfying Di . x>di .  

Proof .  Since KAC K, every point in K '~ satisfies (6), this implies that if the dimen- 
sion of  K 'j is n, there must exist a point .~e K a satisfying DX>d.  Since .~e K 4, it 
is a convex combination of extreme points of  K, so D R > d  holds iff for each i= l 
to m, there exists an extreme point .fi of  K satisfying D i . x > d  i. 

Conversely, suppose for each i=  l to m there exists an extreme point .fi of  K 
satisfying Di.x>di .  It is well known that between every pair of extreme points of 
K, there exists an edge path of  K joining them, consisting of only bounded edges 
of  K. See [7]. Using this and the hypothesis, we prove below that the dimension of  
K 'j is n. 

Introducing the vector of slack variables s=(s l  . . . . .  sin) T, the system (6) can be 
expressed as 

D X - l m S = d  , s>_O 

where I,, is the unit matrix of order m. In this, the equality constraints can be used 
to eliminate the unrestricted variables x~, . . . ,x,, .  Suppose this leads to a system 

Es=p ,  s>_O (10) 

where E, p are matrices of  orders r × m and r x 1 respectively, where r = m - n ,  and 
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E has rank r. Every extreme point of  K corresponds to a basic feasible solution 
(BFS) of  (10). Let s o-- (s o . . . . .  s°)  r be a BFS of  (10) corresponding to a basic vector 

(sl . . . . .  st) for (10). By our assumption, the system (10) is nondegenerate. In s °, the 
nonbasic variables sr+l . . . . .  Srn are all zero. By the hypothesis, for each t = r +  1 to 
m, there exists a BFS of  (10) in which the variable &>0 .  And each BFS of  (10) is 
connected to s o by an edge path as mentioned above. So, among the nonbasic 
variables Sr+~ . . . . .  sin, at least some of  them must enter the basic vector (s~ . . . . .  Sr) 

of  (10) leading to adjacent BFSs of  s °, and not to unbounded edges. Suppose these 
are the nonbasic variables st+j, j =  1 to q. Let s J=  (s( . . . . .  s~) T be the BFS obtained 
when the nonbasic variable s~+j is entered into the basic vector (Sl . . . . .  sm), for j = 1 
to q. So 

s / = 0 ,  f o r i = r + l  t o m ,  i ~ r + j ,  
(11) 

> 0 ,  for i = r + j .  

In each of  the BFSs s °, s j, j =  1 to q, all the variables Sr+q+ ~ . . . . .  Sm are zero, and 
by the hypothesis there are BFSs of  (10) in which these variables are >0 .  Let H be 
the face of  the set of  feasible solutions of  (10) obtained by setting 
S~+q+~ . . . . .  s m = 0. By the edge path connectedness property, there must exist an 
extreme point in H which has an adjacent extreme point, s ~+q÷~ say, not in H, in 
which exactly one of the variables among Sr+q+ l . . . . .  Sm is >0 ,  and the others are 

r+q+~ >0.  Now consider the face of  the set of  feasible solutions zero. Suppose Sr+q+ 
of  (10) obtained by setting s~+q+ 2 . . . . .  sin=O, and repeat the same argument.  
Eventually we get BFSs sJ=(s [  . . . . .  s~) T of  (10), j =  l to m - r ,  satisfying the pro- 
perty that 

s /=O,  for i = r + j + l  to m, 
(12) 

> 0 ,  for i = r + j .  

By (12) we conclude that the rank of the set { s J - s ° : j =  1 to m - r }  is m - r  which 
implies that the dimension of  the convex hull of  BFSs of  (10) is m - r = n, and hence 
the dimension of  the convex hull of  extreme points of  K is n. [] 

Theorem 4. Let  K be the set o f feasible  solutions o f  (6), and assume that K has at 

least one ex t reme point ,  and  that the sys tem (6) is nondegenerate.  Let  J = {i: there 

exists no ex t reme po in t  o f  K satisfying D i. x > di }. Then the dimension o f  K ~ = n - 
rank o f  {Di. : i e J } .  

Proof .  By the definition of  the set J ,  all the extreme points of  K satisfy 

Di.x>_di, i ~ J ,  

D i . x = d  i, i ~ J .  
(13) 
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The result follows by applying Theorem 3 to the reduced system obtained by 
eliminating variables using the equality constraints in (13). 

By Theorem 3, to check whether the dimension of K ~ is n, we must check 
whether there exists an extreme point of  K satisfying Di.x>d i, for each i=  1 to m. 
However,  by Lemma 2, for any i, the problem of  checking whether there exists an 
extreme point of  K satisfying Di.x>di, is NP-complete.  This suggests that the pro- 
blem of  checking whether the dimension of K a is n, or computing the dimension 
of  K z, may be hard problems• 

Corollary 2. I f  K is the set of  feasible solutions of  (6), and if  the system (6) is 
nondegenerate; any equality constraints in the constraint system defining K a, are 
a subset of  the constraints in (6) treated as equations• 

Proof. Follows from Theorems 3 and 4. -1 

Eventhough it is hard to find the equality constraints satisfied by all the points 
in K a, Corollary 2 provides a nice characterization of  them, by showing that they 
must be a subset of  the constraints in (6) treated as equations, when the system (6) 
is nondegenerate. We were quite hopeful that the results in Theorems 3, 4, and Cor- 
ollary 2, would also hold even when the constraint system (6) is degenerate. But a 
simple three dimensional counterexample turned up. This polyhedron K of  dimen- 
sion 3 is given in Fig. 4. It has three extreme points x °, x ~, x2; only two bounded 

x ° 2 
X 

° ° °  .°  

Fig. 4. Polyhedron in R s showing a violation of Theorem 3 when the system of constraints defining it 
is degenerate. Each unbounded edge has dots at the end. 
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edges [x °, x l] a n d  Ix °, x2],  6 u n b o u n d e d  edges a n d  6 t w o - d i m e n s i o n a l  facets .  S ince  

x ° has  4 edges inc iden t  at it, K is n o t  regular ,  a n d  the c o n s t r a i n t  sys tem d e f i n i n g  

this  p o l y h e d r o n  is degenera te .  [x j, x 2] is no t  a n  edge o f  K. Al l  the  c o n d i t i o n s  o f  

T h e o r e m  3 are  sat isf ied,  b u t  the  d i m e n s i o n  o f  K '~ is o n l y  2, s ince it is the  convex  
hul l  o f x  °, x I, x 2. 

In  case when  K is the  set o f  feas ib le  so lu t ions  o f  (6), where  (6) is a degene ra t e  

sys tem,  even  the  p r o b l e m  o f  cha rac t e r i z ing  the  equa l i t y  c o n s t r a i n t s  sa t is f ied by  all 

the  po in t s  o f  K ~ is un re so lved .  
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