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ABSTRACT 

Approximately 53% of the protein sequences in the National Biomedical Research 

Foundation (NBRF) database can be allocated to one of 26 functional classes, each of 

which can be characterized by the joint occurrence of four or fewer attributes. The 

attributes reflect collective physicochemical properties of the sequences in a class, ranging 

from simple characteristics of composition, such as average hydrophobicity and net charge, 

to amphipathicity and the propensities of various residues to be in certain preferred 

configurations. In some, though not all instances, these variables can be related in a general 

way to topological or other structural features of the particular class they characterize. We 

show that the attributes permit 17 of the 26 groups to be filtered from all other proteins in 

the database with a misclassification error of less than 2%, and that the remaining 9 groups 

can be filtered with errors not exceeding 13%. Thus for a given functional class, the results 

point to the existence of relatively few characteristic variables which capture most of the 

intraclass similarity and interclass variability that is common and peculiar to members of 

that class. 

1. INTRODUCTION 

Because most nucleic acids can be translated-either by direct applica- 
tion of the genetic code, or when necessary with the aid of auxiliary 
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information on exon-intron boundaries-the recent rapid increase in the 
number of gene sequences is spawning a similar increase in the products of 
those sequences. The collection of these deduced protein sequences poten- 
tially contains an enormous and rapidly growing body of information on 
function. It also contains, perhaps more directly, a large amount of informa- 
tion on higher order structure and cellular location, both of which are more 
tightly coupled to function than sequence alone. Extracting this information 
is, however, not fully realizable at present, since the principles governing the 
translation of sequence to higher order structure, function or location, are 
not adequately developed. 

In earlier papers we reported the development and application of statisti- 
cal methods for positional classification of membrane proteins [8], for 
structure prediction of beta rich molecules [4] and folding type [9], and for 
functional classification of a sequence within a limited number (six) of 
functional categories [7]. In this paper we report a major improvement in the 
accuracy and number of categories in the functional classification problem. 
In particular, with the NBRF database divided into 26 functional classes, we 
have been able to find, for each class, three or four characteristic parameters 
that capture the properties of that class. These parameters enable allocation 
of a sequence to one of the classes with a minimum reliability of nearly 90%, 
and in many cases with a reliability close to 100%. 

2. METHODS 

2.1. TfiE DATABASE 

The February 1983 version of the NBRF protein sequence database [3, 
131 consists of 2145 sequences divided into 663 superfamilies. After exclu- 
sion of miscellaneous and hypothetical proteins, and of sequences of less 
than 12 residues, the remaining 1603 sequences were segmented into 27 
groups: the 26 listed in Table 1, plus a 27th containing all the remaining 
proteins. 

2.2. DISCRtMINANTANALYSIS 

We use the generic term “attribute” to denote any compositional or 
physicochemical property of an amino acid sequence. A large number of 
attributes, some of which are listed in the Appendix, can be used to 
characterize protein sequences. The observation that certain attributes will 
be more pronounced in some protein families than in others serves as the 
basis for interfamily discrimination. Before presenting the method in full 
generality, a specific example will help fix the main idea. Consider the 
magnitude of 3.6 residue per turn amphipathicity, i.e. the extent to which the 
hydrophobicity of residues along the sequence increases and then decreases 
with an average period of 100 degrees. A precise numerical value can be 
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attached to this property for every sequence in every group of proteins in the 
database. For each group, this property will have some characteristic &tri- 
bution of v&es. Thus, by analyzing the database we can construct P( x]G,), 
the probability that a sequence picked at random from the i th group has 
amphipathicity value x. We refer to P(x]G,) as the probability distribution 
of property x in group G,. Specifically, in the globins the interval in 
amphipathicity from 3.59 to 4.09 covers one standard deviation on either 
side of the mean, whereas for the other proteins the corresponding interval is 
from 2.12 to 3.32. As these numbers suggest, relatively few proteins from 
other groups have amphipathicities as high as the mean value for globins; 
hence the odds are good that a sequence having a high value of this property 
will be a globin. This generally high value of amphipathicity reflects the 
overall structural architecture of the globin family, which consists of eight 
alpha helical segments in a globular arrangement. The 3.6 residue per turn 
amphipathicity tells us that the alpha segments have one face relatively polar 
and the opposite face relatively apolar, the former presumably facing out- 
ward in a direction for favorable interactions with water, and the latter 
facing inward, protected against unfavorable interactions with water. 

The relatively few errors that are made in allocating highly amphipathic 
structures to the globin category are often the result of classifying hormones 
as globins, since they too sometimes have high values of amphipathicity. 
Evidently, if one wanted to do better, a second variable could be introduced 
which is high in globins and lower in hormones. The frequency of histidine is 
such a variable. Thus we would have a two variable distribution function, 
with amphipathicity as one variable and frequency of histidine as another (x 
would now be a two component vector). 

More generally, suppose the objective is to distinguish some group of 
proteins (globins, cytochromes, toxins, and so forth) from all the rest. We 
then have two groups: G,, the group to be identified; and G,, all the 
remaining proteins. These are to be distinguished from one another on the 
basis of N attributes, x = (x1,. , x,), the values allowable to each such 
vector being distributed according to some multivariate function. Given a 
sequence with attribute vector x0, we would like to determine the group to 
which it is most likely to belong. This is done by evaluating the posterior 
probability distributions P(G,]x) for x = x0 (i.e. the probability that a 
protein with attribute vector x,, belongs to group i) for each group, and 
choosing the larger of the two. Such a procedure is known to minimize the 
probability of incorrect allocation [lo]. Thus if P(G,]x,) > P(G,lx,), the 
protein is allocated to G,. To calculate the posterior probabilities, the Bayes 
formula is used [l]: 

p(G,lx) = P(xlG,)f'(G,) 
p(x) ’ 

i =1,2, 
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where P(x) = P(x]G,)P(G,)+ P(x]G,)P(G,). Here P(x]G,), i =1,2, are 
determined from empirical distributions of attributes in the two groups, as 
indicated above, and P( G,), i = 1,2, are prior probabilities that an unknown 
protein belongs to G, (i.e. the probabilities before the values of attributes are 
determined). These latter probabilities can be estimated from group sizes. As 
the denominator in (1) is the same for both groups, the rule-called the 
Bayes discriminant rule [lo]-is to allocate a protein to the group for which 
P( x(G) P( G) has the larger value. 

The distributions obtained from an analysis of the database are of course 
discrete, and the vector of values x0 of a protein to be classified will very 
likely not match the vectors for which the probability distributions have 
known values unless the data are very dense. Two alternatives for cir- 
cumventing this problem exist: one is to estimate the values of the probabil- 
ity distribution corresponding to x0 by interpolation; the other is to assume 
the distribution is of some analytic form, usually Gaussian, and to use 
standard techniques to find parameters characterizing it (the mean vector 
and covariance matrix in the case of a multivariate Gaussian). In this paper 
we use the latter parametric procedure and refer to the derived density 
functions as f(x]G,). 

Generally we are not told that a protein belongs either to one group or to 
all the rest: we are given a sequence and a number of possible categories and 

we want to know the most likely category. The greater the number of 
categories, the better the resolution of the classification. There are at least 
two ways to proceed. The most direct way is to evaluate the density function 
f(xo]Gi) for each category. A second method begins by numbering the 
categories (l-26 in this case) and then performing seriatim two-category 
discrimination: category 1 against all the rest; category 2 against all the rest, 
and so on. The former procedure was used previously [7] for distinguishing 
six categories. Here we use the latter, primarily because additional dis- 
crimination procedures can be included and changes can be made in the 
procedure for identifying a particular group without affecting the procedure 

for identifying the remaining groups. 
The disadvantage of the second approach is that it can, if not properly 

implemented, lead to substantial error accumulation. Each time two groups 
are compared with an allocation to one group or the other, an error is made; 
our objective is to minimize the overall cumulative error after all groups have 
been compared. To this end we accepted certain constraints on individual 
discriminations, and only those discriminations satisfying these constraints 
have been included in the series. 

Let m,, be the number of proteins in G; classified as belonging to G,, 
where i and j can be either 1 or 2 independently of one another; let n, be 
the size of group G,; and let pij be m,,/n,. We require that (i) n, > 5, (ii) 

ml2 + m2i < ni, and (iii) pl1 > 0.5. Requirement (ii) means that our proce- 
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dure is better than a simple rule “allocate everything to the bigger group 

G 2,” which makes exactly n, mistakes; (iii) means that we detect at least 
50% of the proteins in the smaller group G,. 

Candidates for groups were selected by examining one dimensional 
histograms of attribute distributions in groups of superfamilies from the 
NBRF database. Superfamilies (or their groups) with attribute distributions 

well separated from those of other proteins were then screened by discrimi- 
nant analysis using one or more attributes for each candidate group. If the 
above constraints were satisfied, the group was confirmed as separable from 
other proteins and included in the series of discriminations. 

The program we have developed uses nonlinear discriminant analysis (i.e. 
no assumptions about equality of variances). It reads values of attributes for 
all proteins in different groups from a file, estimates parameters (means and 
covariances) of multivariate normal probability density functions, and esti- 
mates error probabilities by allocating each protein and counting the num- 
bers of those correctly and incorrectly allocated. The program used is 
DISCRDV. It was written in FORTRAN and run on a VAX 11/780. This 
program, as well as the program ALOF for allocation of additional proteins to 
one of the functional groups (see below), can be obtained by writing to 
P. Klein. 

3. RESULTS 

We found that three or four attributes were generally sufficient to 
distinguish each of 26 functional categories from the remainder of the 
database. The attributes ranged from simple characteristics of composition, 

such as average hydrophobicity and net charge, to attributes describing 
structural features of the sequence (see Appendix). If several such attributes 
were found for one group, we used discriminant analysis to identify the set 
of attributes giving the best discrimination for that group of proteins. Table 
1 contains a collection of 22 clusters of proteins which can be distinguished 
by discriminant analyses satisfying (i)-(m), and another 4 groups which can 
be distinguished on the basis of signature peptides (i.e., peptides of three to 
five amino acids appearing, ideally, only in the given group). In each of these 
analyses, the posterior probability of correct allocation 

P = P(G,)P,, + P(G,)p,, 

was at least 0.98. If we estimate the prior probabilities from group sizes, 
P(G,) = ni/n, i =1,2, then 

ml1 + m22 
P= n ’ (3) 

where n is the total number of proteins in the database we are using. 
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We ordered these 26 groups so that the error increased with the number 
of procedures used, and allocated all proteins in the database. We found that 
only 29 proteins from the whole database were not allocated uniquely: 28 
were allocated to two groups, and 1 (a cytochrome c3) was allocated to three 
groups (cytochromes c3, cytochromes c, and histones). The simplest rule, and 
the one minimizing error in these 29 cases, is to place the protein in the first 
group to which it is allocated (Table 1). The last column of Table 1 shows 
how the overall probability of correct allocation, pO, gradually decreases as 
more procedures are included. The first 15 groups, for which the overall 
correct classification probability p. is 0.99, include 11% of the database; 
28% of the database is covered at p. = 0.95, 40% at p. = 0.91, and all 26 
groups include 53% of the database with p. = 0.87. If we exclude from the 
remaining 47% those superfamilies with less than five proteins (which would 
be too small for any reliable discrimination), this series of 27 discriminations 
covers 68% of the database. 

A test of significance of the success rate in predictions is provided by 
comparing p = 0.87 with random assignment. Suppose we have a set of 
proteins in m groups distributed as follows: fraction fi in group 1, fraction 
fi in group 2, and so on. Suppose these proteins are assigned to groups only 
on the basis of prior probabilities pl,. . . , p,,, (i.e. without attributes). -The 
expected fraction of correctly assigned proteins will be p,fi + . . . + p,, f,,. If 
the distribution of proteins in groups were the same as the prior probabil- 
ities, the fraction correctly assigned would be pt + . . . + pi. For the 26 
groups, for which p. = 0.87, this formula gives a value of 0.25 for the 
fraction that would be correctly assigned by random allocation. 

When the discrimination error is estimated from the data used to derive 
the discrimination rule (“training data”), the actual error is usually some- 
what underestimated (especially for small sized groups) [lo]. It is therefore 
customary to check the reliability of the estimates either by the jackknife 
method or by using another set of data. We allocated 108 sequences added 
to the database after February 1983. Of these, 93 (86%) were correctly 
allocated; this is very close to the expected p = 0.87. In all, 34 were allocated 
to one of 26 functional groups (24 correctly) and 74 were not (69 correctly). 

When classifying a test set or any other set of proteins different from the 
training set, we should bear in mind that for best discrimination the prior 
probabilities should reflect the distribution in groups of this set of proteins 
rather than of the training set. This is difficult to do in practice, although we 
can expect that prior probabilities will change as the database grows. Table 2 
gives the distribution in groups in the test set and corresponding priors from 
the training set. To see how this might influence reliability, we performed 

another classification of the test set, this time using priors corresponding to 
that set. There was only one change: one of the misclassified proteins would 
now be classified correctly (increase in reliability from 0.86 to 0.87). 
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TABLE 2 

Distribution of Proteins in the Test Set and 

Corresponding Prior Probabilities from the Training Set 

Group 

No. 

Probability 

in test set 

Prior 

probability 

10 0.009 0.007 

13 0.009 0.003 

14 0.019 0.015 

16 0.009 0.006 

19 0.074 0.030 

20 0.046 0.105 

21 0.056 0.028 

22 0.009 0.034 

24 0.019 0.104 

26 0.019 0.007 

21 0.731 0.459 

Certain proteins, those classified as miscellaneous by Dayhoff et al. [3], 
were not used in the training set. Some are obviously related to one of the 26 
functional categories, whereas others properly belong to group 27. An 
application of discriminant analysis to these miscellaneous proteins provides 
another estimate on the reliability of the method. Those belonging to the 
functional categories were all correctly classified as such (hemerythrin, 
complement anaphylatoxin). Of the remaining proteins, 18% were misclassi- 
fied as belonging to one of the 26 functional groups, so the error here too is 
approximately the same as estimated above. 

Table 3 is the overall performance matrix Q for the series of procedures. 
Group 27 contains all proteins which do not belong to groups l-26. The 
element q,, is the number of proteins from group i allocated to group j. The 
rows of this matrix can be used to estimate all probabilities of correct and 
incorrect allocation in individual discriminations. The overall probability of 
correct allocation, pO, is the sum of the diagonal elements divided by the 
sum of all elements. Columns of this matrix can be used to estimate 
empirically the probabilities that a protein allocated to a certain group really 
belongs to that group or other groups. For instance (column 24), of the 155 
proteins that were allocated to immunoglobulin (Ig) variable regions, 146 
really were Ig variable regions, 2 were IgG constant regions, and 7 were from 
group 27. So if an unknown protein is allocated to Ig variable regions, we 
estimate the probability that it is classified correctly as #$, and the probabil- 
ity it is classified incorrectly as A: a & chance that it belongs to an Ig 
constant region, and a & chance that it belongs to group 27. The probabil- 
ity that it belongs to any one of the other 24 groups is estimated at 0. 
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TABLE 3 

Overall Performance Matrix Q” 

1 2 3 4 5 6 7 X 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 12 

2 7 

3 5 

4 5 

5 6 

6 15 

7 7 

X 20 

9 22 

10 11 

11 6 

12 I 1 1 

13 4 1 

14 22 2 

15 18 2 

16 8 1 

17 7 5 

1x 1 13 2 

19 39 9 

20 156 13 

21 28 17 

22 47 7 

23 100 1 

24 146 20 

25 1 1 24 1 19 

26 1 2 9 

27 1 1 2 1 5 1 5 3 8 8 8 5 3 32 7 6 1650 

*y,, is the number of elements in group I allocated to group j by the method 

4. DISCUSSION 

This paper describes a method which uses a series of discriminant 
analyses to allocate a protein sequence of unknown function to one of 26 
functional categories. Allocation is based on attributes (characteristics) of 
the sequence, which are compared with probability distributions of the same 
attributes in the functional groups. For some groups the attributes clearly 
reflect the known structure (periodicity in glycine for collagen, hydrophobic 
periodicity in globins) or function (positive charge in some DNA binding 
proteins), and the probabilities of correct allocation are good measures of 
the extent to which these attributes characterize the proteins. For other 
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groups, the correct choice of discriminant variable is not intuitively obvious 
(low propensity to form beta turns in ATPases, high variance in hydro- 
phobicity in Ig variable regions), and those that were found are generally 
difficult to interpret in terms of what is known about the function of the 
group. 

Related work has been reported by Nishikawa et al. [ll, 121, who used 
amino acid composition to distinguish extra- and intracellular enzymes and 
nonenzymes. Classification rules in 18 dimensional space were derived 
empirically and allowed 66% correct allocation into one of the four groups. 

Although our method can predict, with a high degree of success, broad 
functional categories to which a protein of unknown function might belong, 

such prediction is not, at present, the primary significance of these results. 
What is of greater potential importance, we believe, is that the surprising 
success in classification using just a few attributes points to the existence of 
consensus properties that, collectively, are common and peculiar to a func- 

tional class and hence characterize the class with high reliability. The 
performance mat+ (Table 3) indicates that in spite of the enormous 
sequence complexity characterizing a functional family, three or four vari- 
ables can capture most of the information about the class that discriminates 
it from the other classes. As a practical matter, one might imagine that, with 
more insight into correlations between structure and function, such variables 
could be potentially significant as design parameters. Evidently what we 
report here is still in an early phase of development, and can profit by 
greater resolution (an increased number of functional groups) and greater 
precision (fewer misclassification errors). It nevertheless indicates that char- 
acteristic variables, probably capturing topological (rather than geometrical) 
properties [4] of functional families, exist that enable us to allocate se- 
quences reliably to those families. 

APPENDIX. DEFINITION OF ATTRIBUTES 

(1) Average hydrophobicity H. Let H, be the hydrophobicity value (see 
[6] for a review) of the i th residue in the sequence of length L. Then 

H=; i H,. 
r=l 

(2) Maximum hydrophobicity, variance in hydrophobicity. We define 

m=H(l) = ~=l,,rqa;w_,+lH(iJ)~ 

where H( i, I) is the average hydrophobicity of a segment of length I starting 
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at position i, and 
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where 

(3) Frequencies of occurrence of the 20 amino acid residues are denoted by 
their three letter codes. 

(4) Let C denote the net charge, 

C=(arg+lys-asp-glu)L, 

max C(I) the maximum charge in all segments of length I (defined analo- 
gously to maximum hydrophobicity), and C, the frequency of occurrence of 

charged residues, 

C, = arg + 1 ys + asp + glu . 

(5) Define the hydrophobic periodic@ with period A in a segment of 
length I begining with the k th residue as 

k+t-1 

A(l,X,k) = 
i=k 

Then A,(/, A), an average taken over all L - I+ 1 such segments, is a 
measure of hydrophobic periodicity. 

(6) If we put H, = 1 for all charged residues and 0 for other residues in 
the formula for hydrophobic periodicity, we can define A,(f, X)-a peri- 
odicity in charge. 

(7) Similarly, if H, = 1 for a specific amino acid residue R and 0 
otherwise, then A,(l, A) is a measure of the periodicity of appearance of this 
residue. 

(8) We can look for consecutive occurrences (runs) of the same (type of) 
residues. Denote by max R, the length of the longest run of hydrophobic 

residues in the sequence; by R,(l) the number of hydrophobic runs at least 
I residues long (if I = 2 the argument will be omitted); by R,,(I) the ratio 
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R ,, (1)/L; and by ER I,( I) the mean length of a hydrophobic run. The 
number of runs of a specific residue R will be denoted analogously. 

(9) In an analogy to the definition of average hydrophobicity (l), we can 
define the average propensity to form an a-helix, /?-sheet, or p-turn if instead 
of H, we use the values derived by Chou and Fasman [2] for each amino acid 
and take their geometric means (see [5]). We shall denote these quantities as 

01, P, and P,. 
(10) We also examined the database for the appearance of short char- 

acteristic patterns (signature peptides) that would, ideally, fully distinguish 
some groups of proteins. In this case, we do not need discriminant analysis 
for discrimination; an unknown protein is allocated to a particular group 
only if it has the signature peptide. Signature peptides are denoted by a one 
letter code for amino acids. 
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