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ANNULAR REFLECTORS FOR AN FEL RESONATOR
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A resonator configuration suitable for a high-power, annular-mode FEL is discussed . The resonator is a four-element linear
resonator with grazing-incidence reflectors . Cylindrically symmetric, paraboloid grazing incidence reflectors are used in order to take
full advantage of the azimuthal polarization of the annular mode .

1. Introduction

To produce short-wavelength radiation from a low-
energy electron beam, KMS Fusion has proposed a
two-stage FEL in which both FEL interactions take
place in a cylindrical waveguide; nested sets of end
mirrors provide feedback (fig. 1). An annular mode
would be produced by an annular electron beam inside
a helical wiggler in the first stage of the FEL [1] . As a
result, the second-stage mode would also be annular
and would have a large Rayleigh range in the interac-
tion region . A second-stage resonator consisting of two
almost-plane mirrors would thus seem appropriate, but
such a resonator is inadequate in several respects . Since
the power output of FELs may ultimately be limited by
minor damage thresholds, an important resonator char-
acteristic is that the fraction of circulating power ab-
sorbed by unit area of the resonator mirrors should be
small. Additional desirable characteristics are low sensi-
tivity to mirror misalignment and short overall reso-
nator length . It has been shown [2] that linear, four-ele-
ment resonators with grazing incidence mirrors offer
substantial advantages over almost-plane resonators in
achieving these characteristics. We discuss here reso-
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Fig. 1 . Schematic diagram of a two-stage FEL proposed by KMS Fusion .
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nators of this type with azimuthally-symmetric para-
boloid grazing-incidence mirrors which are appropriate
for use with an annular mode and which also take
advantage of the azimuthal polarization of the mode to
achieve improved mirror reflectivity . Geometrical optics
will be used to specify an approximately equivalent thin
lens for the paraboloid reflector. The resonator analysis
of ref. [2], which properly includes diffraction, will then
be used to derive a specific resonator design .

2. Paraboloid reflectors

The field incident on the paraboloid can be ap-
proximated by the lowest-order annular free-space mode
designated TEMót. The transverse distribution of the
incident field, E, is given by

1 E1 2 =orr 2 exp(-2r2/w2 ).

	

(1)

The mode radius w can be related to r, the radius at
maximum intensity, and P, the half-power radius, de-
fined such that half the power flows across the area
bounded by P. The relations are

w= ~2_r=1.3XFXr .

	

(2)
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Since the Rayleigh range is large in the interaction
region, for this geometric-optics part of the discussion
we use the approximation that w is constant everywhere
between the paraboloid reflectors .

The paraboloid reflector, symmetric about the reso-
nator z-axis and with the vertex at z = 0, is specified by

r2 = 4az,

where a is the z coordinate of the focus.
Fig. 2 illustrates the geometric-optics approach to

transformation of the mode by reflection at the para-
boloid . The field for the reflected mode is obtained by
transferring the power each infinitesimal annular region
of the incident mode at plane 1 to its geometrical image
annulus in the reflected mode at plane 2. One can see
that the inner region of the mode at plane 1 transforms
to the outer region of the mode at plane 2 and vice-versa .
In particular, the outer half-power region of the inci-
dent mode bounded by ?t transforms into the inner
half-power region of the reflected mode bounded by Î2 .
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Fig. 3 . Mode transformation by the paraboloid shown in fig. 2.
A geometrical optics approximation has been used to transfer
the power in each infinitesimal annulus at plane 1 to its image
annulus at plane 2. The index i used with r indicates the
plane .

J.F. Ward et al. / Annular reflectors for an FEL resonator

am E
Y

3 *

	

102
t5U

ó CL
Û

J ó

	

10
3

305

Fig. 2 . Transformation of an annular mode by reflection from a paraboloid . The circle of radius P divides each plane into two regions
each transmitting half the power.

Thus the incident ray defining ît must reflect to
form the ray defining %2 . Using a value for %2 derived
from ît this way, we plot incident and reflected field
amplitudes as a function of radii normalized to P in fig.
3. The reflected mode is similar in shape to the incident
TEMót mode with mode maxima occurring at the same
value of r/F. This geometric approach has heuristic
appeal, and has been qualitatively confirmed by pre-
liminary investigations with a numerical diffraction
code .

The transformation demonstrated in fig. 3 gives one
confidence to replace the paraboloid by an effective lens
with effective focal length fa, given by

fe=
Ir 2/4a-a 1 .

	

(4)

The paraxial focal length a is regained by setting ? = 0.
For grazing incidence the focal point remains at z = a
but z e , the position of the equivalent thin lens, is given

Polarization parallel to plane of incidence

Polarization perpendicular to plane of incidence
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Fig. 4. Polarization-dependent fractional power absorption by
copper at grazing incidence.
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Fig. 5 . Load reduction factor for a paraboloid reflector as a
function of grazing incidence angle. The relation of normalized
focal length to grazing incidence angle is also shown.
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The grazing incidence angle Bg evaluated at the mode
intensity peak is

eg = 2a/r .

	

(6)

Polarization-dependent fractional power absorption at
grazing incidence for copper is shown in fig . 4 [3] .
Azimuthal mode polarization and grazing incidence en-
sure low absorption loss . Geometrical distribution of
the mode over a large mirror area further reduces ab-
sorption per unit area relative to circulating power in
the resonator . We will refer to the absorption per unit
area of mirror relative to that for a normal-incidence
mirror located at the end of the interaction region, as
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the mirror load reduction factor . The two contributions
to the load reduction are shown in fig. 5 as a function of
grazing angle. The relationship between Bg and fe im-
plied by eqs. (4) and (6) is also displayed in fig. 5 .

3. A specific resonator design

Detailed parameters for the resonator shown in fig. 6
can now be computed. We consider the following
specific set of values for illustration :
wavelength :

	

4 gm,
length of interaction region :

	

10 m,
mode radius in the interaction

region (w):

	

0.675 cm,
load reduction factor for paraboloid

reflectors :

	

1000,
load reduction factor for end mirrors: 1000 .
A load reduction factor of 1000 at the end mirror

requires that the mode radius there, wn� is

wm =

	

1000 X w = 21 .5 cm .

Fig. 5 shows that a load reduction factor of 1000 at the
paraboloid reflectors requires :
Bg = 1 .9°,

fe =25.5r=12.2cm.

Formulas from ref. [2] can now be used to find that the
radii of curvature of the end mirrors are 3.9 m and that
the separation of each end mirror from its correspond-
ing effective lens is 3.9 m +fe +A, where d =(56± 10)
ILm. The 10 ,um length tolerance must be met to keep
mode radii within about 10% of the values specified .
Mirror misalignment tolerance is calculated to be 1 .7
j rad. This is the end-mirror misalignment which dis-
places the mode at the other end-mirror by one mode
radius . End-mirror/end-mirror alignment is the most

Fig. 6. Specific example of a resonator design using grazing incidence paraboloid mirrors.
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critical case. Mirror misalignment is discussed in further
detail in ref. [2] .

To specify the dimensions of the paraboloid, we
assume that it is acceptable to truncate the paraboloid
so that 1`,ß of the power incident from the interaction
region goes outside the paraboloid and another 1%
passes through the vertex without reflection. These can
be considered losses or used for external beam extrac-
tion. The minimum and maximum paraboloid radii are
then 0.38 r and 2.5 r which in this example are 1 .8 mm
and 12 mm. The corresponding length of the paraboloid
is 48 cm.

4. Conclusion

In conclusion, we have demonstrated that grazing
incidence paraboloid reflectors could be used in a sym-
metric, linear, four-element resonator for a high-power
annular-mode FEL. Mirror misalignment tolerance and
length tolerance are restrictive but acceptable, mirror
load reduction factors of 1000 are achieved at all mir-
rors, and the overall length of the device is less than 20

J. F. Ward et al. / Annular reflectors for an FEL resonator

m. Further investigation with a numerical diffraction
code is needed to refine resonator dimensions and to
evaluate the effects of mode conversion at the paraboloid
mirrors.
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