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Stress Induces Supersensitivity of a Cholinergic 
System in Rats 

Steven C. Dilsaver, R. Michael Snider, and Norman E. Alessi 

Introduction 
Cholinergic system supersensitivity may be in- 
volved in the pathophysiology of depressive dis- 
orders (Janowsky et al. 1972; Dilsaver and Gre- 
den 1984; Dilsaver 1986). Associations between 
stressful events and onset of depressive (Lloyd 
1980) and manic (Kennedy et al. 1983) episodes 
are documented. Janowsky et al. (1983) pro- 
posed that stress increases the sensitivity of cen- 
tral cholinergic mechanisms and that the latter 
mediates some neurobiological effects of stress. 
Despite these points, animal models linking the 
physiologies of depression, mania, stress, and 
cholinergic systems are not available. 

Thermoregulation is subject to muscarinic 
cholinergic control at the hypothalamic level 
(Lomax et al. 1964). Lomax and Jenden (1966) 
reported that oxotremorine produces dose-de- 
pendent hypothermia in rats. We utilized this 
fact to evaluate the effect of stress on a central 
muscarinic receptor mechanism. 
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Methods 

Temperature Measurement 

Thermosensors (Mini-Mitter Co., Sun River, OR) 
were implanted into the intraperitoneal cavity. 
The thermosensors emit hertzian waves at a rate 
proportional to temperature. A transistor radio 
set to an AM frequency served as a receiver. 
Time to emit 25 sounds or “clicks” was mea- 
sured using a digital display stopwatch. This 
measure was converted to temperature using a 
linear regression equation, which was derived 
by measuring the emission rate of the thermo- 
sensors at three temperatures in a temperature- 
controlled water bath. This instrument allows 
the accurate detection of a change in temperature 
of O.l”C. Details pertaining to the calibration 
and use of the thermosensor are available else- 
where (Tocco-Bradly et al. 1985). 

Oxotremorine Challenge 

All oxotremorine challenges were conducted be- 
tween 11:OO AM and 2:00 PM and were preceded 
by the administration of methylscopolamine ni- 
trate, 1 mg/kg ip, to block the peripheral effects 
of oxotremorine. Baseline temperature (i.e., time 
to the 25th “click”) was measured 30 min later. 
Oxotremorine (base), 1 mg/kg ip, was then given 
and temperature recorded every 15 min for 120 
min. 
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Swim Stress 

Stress sessions started 5 days after thermosen- 
sor implantation. Swim stress, a widely accept- 
ed means of stressing rats (Weiss et al. 1981). 

was employed. Sessions were held morning and 
evening. 

The duration of the sessions and water tem- 

perature were adjusted so as to produce ex- 
haustion. Extreme fatigue caused the animals to 
sink. Observation that one or two did struggle 

to the surface terminated a session. 
The first four sessions were at 22-24°C for 

7, IO. and 15 min, respectively. Sessions 5 and 
6 were both 8 min at 16-l 7°C. 7 and 8 lasted 
7-9 min at 8-9”C, and sessions 9 and 10 for 

6-7 min at I I and 13°C. respectively. 

Experimental Design 

The study was divided into three phases, as de- 

picted in Figure 1. Phase one (implantation): 
Five male Sprague-Dawley rats [301 ‘-t 6.8 g 
(mean ~fr SEM)] participated in all phases of the 
experiment. The first (I) of five oxotremorine 

challenges marked the end of Phase I and pro- 
vided a baseline against which subsequent data 
from challenges could be evaluated. Phase two 
(stress): This phase started with the first of 10 
swim stress sessions and ended with the last 

session. During this phase, oxotremorine chal- 
lenges (II, III) were administered. Challenge II 
followed the fourth stress session by 2 hr on 
day 8, and challenge III followed the 10th and 

final stress session by 4 hr on day 10. Phase 111 
(recovery).. During this g-day period. the ani- 
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mals were not stressed. Challenge IV occurred 
on day 12, 48 hr after the last stress. The fifth 
challenge followed in 6 days on day 18. 

Magnitude of the change in body temperature 
between oxotremorine challenges was the depen- 
dent variable. Data were analyzed using Analysis 
of Variance (ANOVA) with repeated measures 

Results 

Swim stress produced increased sensitivity to 

the hypothermic effects of oxotremorine for at 
least 52 hr after the last swim session (Figure 

2). Oxotremorine challenge II. which followed 
four swim sessions. did not disclose supersen- 
sitivity. However. there was a significant effect 

(increase in responsiveness to oxotremorine 1 
following 6 more sessions, suggesting that chronic 
stress resulted in cholinergic supersensitivity (I 
versus III, p = 0.0049: II versus 111. 
p = 0.0014; and I and Ii versus 111. 
p = 0.0003). Supersensitivity persisted for at 
least 52 hr (I versus IV, p = 0.019). but a sul- 

ficient lapse of time resulted in a loss of super- 
sensitivity (I versus V, NS). This indicates that 
a poststress recovery occurs within 8 days ot 

the final stress session. 

Table I highlights the strength of the effect 
of swim stress on oxotremorine-induced hypo- 
thermia. Every animal demonstrated significant 
increases in its hypothermic responses 4 hr after 
the last stress session, and four of five did after 
52 hr. Thus, idiosyncratic responses by one OI 
two animals did not determine the outcome of 
the study. 
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Figure 1. Presentation of experimental de- 
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Figure 2. Presentation of hypothermic response to 
oxotremorine (1 mg/kg) as a function of time (I) 
before stress, (II) 2 hr after the fourth stress session, 
(III) 4 hr after the 10th stress session, (IV) 52 hr after 
the 10th stress session, and (V) 8 days (or - 196 hr) 
after the last stress session. Data were analyzed using 
ANOVA with repeated measures. I versus II (NS); I 
versus III (p = 0.0049); II versus III (p = 0.0014); 
I versus IV (p = 0.0019), and I versus V (NS). 
Stress produces significant increases in the sensitivity 
to oxotremorine, which decays over time. 

Table 1. Baseline Hypothermic Response to 
Challenge with Oxotremorine (1 mg/kg ip) minus 
Resnonse after the Last of 10 Stress Sessions 

A Mean temperature 

change (“C) at 

each time point 

relative to the 

prestress baseline 

Rat (mean 2 SEM) df t P 

4 hr after Lust Stress 

Session 

1 -1.02 2 0.25 7 - 3.995 0.005 
2 - 1.26 -+ 0.25 I - 2.88 0.014 
3 -0.46 I? 0.15 7 -3.10 0.017 
4 -0.64 k 0.20 7 -3.18 0.016 

Discussion 

To our knowledge, these results are the first 

experimental evidence that stress sensitizes a 
central muscarinic mechanism. This could be of 

importance in the spheres of stress and affective 
disorders research where cholinoceptor super- 
sensitivity might be a bridge or link between 
phenomena clinicians have long regarded as re- 

lated. Further, they suggest that swim stress may 
provide an animal model of cholinergic system 
supersensitivity that is useful in affective dis- 

orders research. These data may be relevant to 
neuroendocrine changes in chronically stressed 
animals. Cholinergic agonists induce the release 
of adrenocorticotrophic hormone (ACTH) from 
pituitary explants (Hillhouse et al. 1975). Im- 

plantation of au-opine crystals into the hypo- 
physis blocks stress-induced secretion of corti- 
sol (Kapanski and Smelik 1973). Nemeroff ( 1985) 

recently reported that stress produces the release 
of corticotropin-releasing factor (CRF) in vivo. 
It is conceivable that stress mobilizes a cholin- 
ergic mechanism that activates the hypotha- 
lamic-pituitary-adrenal axis. 

Cholinergic dysfunction may be involved in 
the pathophysiology of depression (Janowsky et 
al. 1972). Stresses increase the probability that 
an affective disorder patient will become de- 
pressed (Lloyd 1980) or manic (Kennedy et al. 

1983). A capacity of stress to activate cholin- 
ergic pathways might contribute to this. 

There are limitations to a study involving five 
animals; although the effects of stress were ro- 
bust and consistent, replication using not only 

swim stress, but also other forms of stress, will 
now be required. 

5 - 1.3 2 0.27 

52 hr after Last Stress 

Session 

I -0.99 4 0.16 

7 -4.78 0.02 

7 -6.10 0.0005 References 
2 -0.76 2 0.25 I - 3.09 0.0185 
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4 -0.24 + 0.08 7 -0.29 NS linergic system supersensitivity in affective dis- 
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Chronic stress produced a robust increase in the hypothermic 
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in Figure 1). fects of various putative neurotransmitters on the 
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