Dicyanoimidazole Complexes of Cu(I): a Carbonyl Assisted Alcoholysis of Nitrile

P. G. RASMUSSEN*, LIN RONGGUANG, W. M. BUTLER

Department of Chemistry, University of Michigan, Ann Arbor, Mich. 48109, U.S.A.

and J. C. BAYÓN*

Departament de Química Inorgànica, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Received December 16, 1985)

Abstract

We describe a series of compounds which result from the reaction of Cu(1) with 4,5-dicyanoimidazole. This ligand is far more acidic than imidazole and in all cases forms complexes as the anion. The presence of carbon monoxide with Cu(I) assists in the rapid alcoholysis of one of the nitrile groups. The resulting imino-ester remains coordinated to the copper in the phosphine derivative as confirmed by X-ray crystallography. The composition CuC₄₂H₃₅-N₄P₂ crystallizes in the space group *Pbca* with a =14.140(4), b = 21.466(7), c = 24.577(8) Å and Z = 8 molecules per cell. The copper is four coordinate and the bidentate imino-ester imidazole is nearly planar.

Introduction

As part of a program to investigate the coordination properties of cyanoimidazoles, we have previously reported on a group of complexes of Cu(I) with tetracyanobimidazole [1]. In this paper we extend that study to complexes of Cu(I) with dicyanoimidazole (HDicy). We also report an interesting reaction in which a copper(I) carbonyl complex assists in the facile alcoholysis of a nitrile group, resulting in a coordinated imino-ester. The presence of this group was confirmed by an X-ray crystal structure on a triphenylphosphine derivative.

Dicyanoimidazole was first prepared by Woodward [2] and its organic chemistry explored by Sheppard and Webster [3]. It is somewhat surprising, in view of the widespread interest in imidazole complexes, that it seems never to have been investigated in any reactions with metal ions. The cyano groups confer unusual acidity on the imidazole ring system $pK_a = 5.5$, and a variety of salts and complexes are readily formed. The pi accepting tendencies of the

0020-1693/86/\$3.50

dicyanoimidazole anion (Dicy), favor coordination to larger metal ions with low charge and some pi donor ability, and in this article we describe reactions and structures with various Cu(I) moieties.

Experimental

Cu(CH₃CN)₄BF₄ was prepared by standard techniques. Dicyanoimidazole was prepared by the method of Woodward [2]. The sodium salt NaDicy was prepared by careful addition of NaOCH₃ (avoid excess) to HDicy in methanol. It was precipitated by addition of ether, recrystallized from methanol, and dried in vacuo. Solvents were freshly distilled from appropriate drying agents before use and stored under nitrogen. All copper complexes were prepared using standard Schlenk techniques. Triphenylphosphine was used as obtained from Aldrich Chemical Co. Elemental analysis were performed by Spang or Galbraith microanalytical laboratories. Infrared spectra were recorded on Perkin-Elmer 1330 or Nicolet 60 SX-FT spectrometers. NMR spectra were obtained on a JEOL FX-90Q spectrometer, peak positions relative to TMS.

Preparation of CuDicy

0.5 mM of Cu(CH₃CN)₄BF₄ was dissolved in 15 ml of a 1:1 mixture of methanol and chloroform and slowly added to a solution of 4 mM of HDicy in 5 ml of methanol. This produced a white precipitate which was filtered off, washed with chloroform and diethyl ether, dried *in vacuo*. Yield: 90%. Anal. Calc. for CuC₅N₄H: C, 35.18; H, 0.56; N, 31.02. Found: C, 34.66; H, 0.80; N, 31.24%.

The IR spectrum shows two sharp C=N peaks at 2238 cm⁻¹, 2248 cm⁻¹. The peak characteristic for BF_4^- did not appear in the spectrum.

Preparation of $Cu(Dicy)(PPh_3)_2$

To 1.12 g (3.6 mM) of Cu(CH₃CN)₄BF₄, dissolved in 25 ml of CH₃OH was added 1.88 g (7.2 mM) of

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Fig. 1. Infrared spectrum of Cu(CO)(Dicyie) run in nujol.

PPh₃. After stirring 5 min, 15 ml of methanolic NaDicy (0.5 g, 3.6 mM) was added. 5 min later, a white solid forms. After 1 h of stirring, an air stable product was collected by filtration. Yield: 85%. *Anal.* Calc. for $C_{41}H_{31}N_4P_2Cu$: C, 69.83; H, 4.43; N, 7.94; P, 8.78; Cu, 9.01. Found: C, 70.01; H, 4.51; N, 7.86; P, 9.04; Cu, 9.24%.

The IR spectrum showed a single peak in the $C\equiv N$ region at 2224 cm⁻¹. The peak characteristic for BF₄⁻ did not appear in the spectrum.

Preparation of [Cu(CO)(Dicyie)]

To 15 ml of a solution of Cu(CH₃CN)BF₄ (0.67 g, 2.13 mM) in CH₃OH was slowly added a quantity of methanolic NaDicy (0.3 g). This was then bubbled with carbon monoxide for 0.5 h and the reaction mixture was stirred at room temperature for an additional 30 min under carbon monoxide atmosphere. The white solid that formed was filtered, then washed with methanol and dried *in vacuo*. The compound was stable in N₂ atmosphere and did not lose CO even *in vacuo* but was sensitive to air and moisture. *Anal.* Calc. for CuC₇H₅N₄O₂: C, 34.91; H, 2.08; N, 23.28. Found: C, 35.31; H, 2.14; N, 23.76%. The IR spectrum is shown in Fig. 1.

Preparation of Cu(Dicyie)(PPh₃)₂

0.1 g of Cu(CO)(Dicyie) was suspended in 15 ml of dichloromethane under N₂ atmosphere. Triphenylphosphine (0.2 g, 0.8 mM) in 5 ml of CH₂Cl₂ was slowly added to the suspension. The addition of PPh₃ gave a colorless solution. Fast evolution of carbon monoxide was observed at the same time. After layering with hexane for 2 days, white needles of crystalline product were obtained. *Anal.* Calc. for CuC₄₂H₃₅N₄P₂: C, 69.94; H, 4.89; N, 7.77; P, 8.59; Cu, 8.81. Found: C, 68.77; H, 4.67; N, 7.61; P, 8.69; Cu, 8.83%.

The IR spectrum showed a single strong peak for C=N at 2224 cm⁻¹ and one medium broad peak for NH at 3200 cm⁻¹. There is a sharp singlet in the NMR spectrum at 3.77 ppm assigned to the iminoester methyl group.

Preparation of Cu(Dicy)PPh₃

 $Cu(PPh_3)_2NO_3$ was prepared by reduction of $Cu(NO_3)_2 \cdot 3H_2O$ with excess PPh₃ in alcohol. The

product precipitates on cooling to ice temperature and can be filtered off in good yield. The treatment of 1.08 g of Cu(PPh₃)₂NO₃ (1.66 mmol) with 195 mg of HDicy (1.66 mmol) in 50 ml THF with stirring for 12 h yields 260 mg Cu(Dicy)PPh₃ which precipitates in a few minutes. *Anal.* Calc. for CuC₂₃N₄-H₁₆P: C, 62.37; N, 12.65; H, 3.64. Found: C, 61.8; N, 12.65; H, 3.67%.

This compound could also be converted to the $Cu(Dicy)(PPh_3)_2$ compound described above by treatment with stoichiometric PPh₃ and excess NaDicy in methanol.

TABLE I. Summary of Crystal Data Conditions and Results. Compound $Cu(Dicyie)(PPh_3)_2$: $CuC_{42}H_{35}N_4P_2$

Space group	Pbca
a (Å)	14.140(4)
b (A)	21.466(7)
c (Å)	24.577(8)
$V(A^3)$	7460(4)
Molecular weight	737.3
Z	8
D_{c} (g/ml)	1.313
Crystal dimensions (mm)	$0.230 \times 0.071 \times 0.356$
Absorption coefficient (1/cm)	7.01
Scan range (deg)	Mo K α – 0.8 to Mo K α + 0.9
Background time ratio	0.8
2 theta (deg)	40
Data collected	4217
$Data > 2\sigma(I)$	1888
Final R ₁	0.067
Final R ₂	0.049
Residual (e/Å ³)	0.52

X-ray Structure Determination

A single crystal was mounted on a Syntex $P2_1$ diffractometer. Table I contains a summary of data collection conditions and results. Lattice parameters were determined from a least-squares refinement of 15 reflection settings obtained from an automatic centering routine.

Intensity data were obtained using Mo K α radiation monochromatized from a graphite crystal whose diffraction vector was parallel to the diffraction vector of the sample. Three standard reflections were measured every 50 reflections. The data were reduced and corrected for absorption by procedures previously described*. The structure was solved using

^{*}Computations were carried out on an Amdahl 5860 computer, using programs for structural analysis from the SHEL-EX package by G. Sheldrick, Institut für Anorganische Chemie der Universitat Göttingen, F. R.G. Other programs used include ORTEP, a thermal ellipsoidal drawing program by C. K. Johnson, and the direct methods program MULTAN 78 by P. Main.

Fig. 2. Molecular structure and numbering scheme for Cu-(Dicyie)(PPh₃)₂.

MULTAN. In the subsequent refinement the function $\Sigma w(|F_o| - |F_c|)^2$ was minimized where F_o and F_c are the observed and calculated structure factor amplitudes. The agreement indices $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ and the weighted $R_2 = [\Sigma w(|F_o| - |F_c|)^2/\Sigma w|F_o|^2]^{1/2}$ were used to evaluate the results. The atomic scattering factors are from the International Tables for X-ray Crystallography [4].

Least-squares refinement results using anisotropic thermal parameters for all non-hydrogen atoms are shown in Table I. Positions of all phenyl hydrogen atoms were calculated and not refined. A difference fourier then gave the methyl hydrogen positions and indicated a possible hydrogen position of intensity 0.52 e/Å³ located 1.34 Å from Cl. There was a possible hydrogen peak of intensity 0.34 e/Å³, 1.31 Å from N3. All hydrogens were given fixed U values (isotropic temperature factors) of 0.05.

Figure 2 shows the atom arrangement. Final positional parameters with estimated standard deviations are shown in Table II. Anisotropic thermal parameters with their estimated standard deviations are listed in Table III. Tables IV and V list the crystallographically determined bond distances and angles.

Refinement of the final model to least squares convergence with all atoms isotropic gave $R_1 =$ 0.0785, $R_2 = 0.0675$, U(O1) = 0.020, and U(N3) =0.051. The same model assuming O1 is a nitrogen atom and N3 is an oxygen atom gave $R_1 = 0.0798$, $R_2 = 0.0686$, U(O1) = 0.066, and U(N3) = 0.019. The final values of U(O1) = 0.053 and U(N3) =0.034 indicate correct assignment.

TABLE II. Fractional Atomic Coordinates

Atom	x	у	Z	U
Cu1	0.3716(01)	0.1790(01)	0.1720(01)	0.0397
P1	0.4201(03)	0.2749(02)	0.2007(01)	0.0380
P2	0.3481(02)	0.1615(02)	0.0830(01)	0.0407
N1	0.2777(08)	0.1435(05)	0.2288(04)	0.0334
CI	0.1919(11)	0.1536(06)	0.2503(06)	0.0469
N2	0.1773(07)	0.1219(05)	0.2972(05)	0.0402
C2	0.2611(11)	0.0900(06)	0.3040(06)	0.0352
C3	0.3238(11)	0.1023(06)	0 2623(06)	0.0271
C4	0.4230(10)	0.0858(07)	0.2473(06)	0.0326
N3	0.4649(07)	0 1142(05)	0 2099(04)	0.0328
01	0.4514(06)	0.0391(05)	0.2820(04)	0.0529
C5	0.5442(10)	0.0140(06)	0.2709(06)	0.0653
C6	0.2811(11)	0.0532(07)	0.3517(07)	0.0493
N4	0.2938(10)	0.0236(06)	0.3906(05)	0.0813
CII	0.4597(10)	0.2729(06)	0.2719(05)	0.0394
C12	0.5474(10)	0.2963(06)	0.2880(06)	0.0543
C13	0.5778(10)	0.2920(08)	0.3414(06)	0.0697
C14	0.5186(11)	0.2643(07)	0.3787(06)	0.0575
C15	0.4341(12)	0.2380(06)	0.3637(06)	0.0527
C16	0.4034(09)	0.2429(06)	0.3099(06)	0.0468
C21	0.3429(09)	0.3422(06)	0.1978(07)	0.0465
C22	0.3170(11)	0.3682(07)	0 1472(06)	0.0605
C23	0.2611(12)	0.4201(08)	0.1431(07)	0.0726
C24	0.227(11)	0 4474(08)	0.1890(08)	0.0720
C25	0.2227(11) 0.2442(13)	0.4226(08)	0.2393(07)	0.0720
C26	0.3035(10)	0.3724(07)	0.2438(06)	0.0434
C31	0.5261(09)	0.3004(07)	0.1640(05)	0.0336
C32	0.5858(10)	0.2522(06)	0.1480(05)	0.0422
C33	0.6694(11)	0.2661(09)	0.1221(07)	0.0718
C34	0.6914(10)	0.3259(11)	0 1073(06)	0.0722
C35	0.6299(14)	0.3737(07)	0 1216(07)	0.0791
C36	0.5490(11)	0.3607(07)	0 1505(06)	0.0604
C41	0.3338(13)	0.2336(06)	0.0426(05)	0.0392
C42	0.2233(12) 0.4123(12)	0.2706(08)	0.0339(06)	0.0628
C43	0.4123(12) 0.4058(13)	0.3274(08)	0.0079(06)	0.0672
C44	0.3140(20)	0.3481(08)	-0.0093(07)	0.0951
C45	0.2426(14)	0.3098(10)	0.0(07)	0.0860
C46	0.2471(12)	0.2538(08)	0.0252(06)	0.0596
C51	0.2413(09)	0.1169(06)	0.0685(06)	0.0133
C52	0.2323(10)	0.0736(07)	0.0271(05)	0.0481
C53	0.1501(13)	0.0404(07)	0.0218(06)	0.0603
C54	0.0754(11)	0.0483(08)	0.0569(07)	0.0654
C55	0.0831(11)	0.0907(08)	0.0971(06)	0.0666
C56	0.1638(11)	0.1243(07)	0.1044(05)	0.0562
C61	0.4421(09)	0.1216(06)	0.0445(06)	0.0368
C62	0.4487(10)	0.1273(06)	-0.0118(06)	0.0507
C63	0.5205(12)	0.0959(07)	-0.0391(06)	0.0599
C64	0.5829(11)	0.0596(07)	-0.0114(08)	0.0638
C65	0.5762(11)	0.0546(07)	0.0441(08)	0.0580
C66	0.5066(11)	0.0853(07)	0.0727(05)	0.0419

Results and Discussion

The tetrakisacetonitrile complex of copper(I) reacts immediately with dicyanoimidazole in methanol, to produce a white insoluble solid of 1:1

TABLE III. Thermal Parameters

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
$ \begin{array}{c} \mathbf{p}_1 & 0.0397(26) & 0.0394(28) & -0.0025(22) & -0.0085(21) & -0.0011(22) \\ \mathbf{p}_2 & 0.0453(28) & 0.0418(29) & 0.0351(25) & -0.0027(62) & -0.0016(21) & 0.0012(22) \\ \mathbf{n}_1 & 0.0456(64) & 0.0296(78) & 0.0290(97) & -0.0074(73) & 0.029(98) & -0.0243(96) \\ \mathbf{n}_2 & 0.0448(13) & 0.0688(22) & 0.0290(97) & -0.0074(73) & 0.0042(66) & -0.0066(66) \\ \mathbf{n}_2 & 0.0468(19) & 0.0275(07) & 0.0312(98) & -0.0124(94) & -0.00399) & -0.0107(22) \\ \mathbf{n}_3 & 0.0466(19) & 0.0275(07) & 0.0312(98) & -0.0121(92) & -0.0224(99) & -0.0117(92) \\ \mathbf{n}_3 & 0.0466(19) & 0.025(60) & 0.0155(64) & -0.0022(64) & -0.0028(66) \\ \mathbf{n}_3 & 0.0466(16) & 0.0482(76) & 0.0644(78) & 0.0127(64) & -0.0022(64) & -0.0118(860) \\ \mathbf{n}_3 & 0.0466(16) & 0.0448(24) & 0.0526(33) & -0.0021(10) & 0.021(93) & 0.0118(860) \\ \mathbf{n}_3 & 0.0466(16) & 0.0448(24) & 0.0526(33) & -0.0069(01) & 0.021(05) & 0.0131(95) \\ \mathbf{n}_4 & 0.0999(18) & 0.0771(18) & 0.0664(71) & 0.0258(90) & 0.0291(94) & 0.0318(92) \\ \mathbf{n}_4 & 0.0999(18) & 0.0771(18) & 0.0643(72) & -0.0127(86) & -0.0018(82) & -0.0007(86) \\ \mathbf{n}_4 & 0.099(18) & 0.0771(18) & 0.068(10) & 0.023(900) & 0.0291(94) & 0.0338(92) \\ \mathbf{n}_4 & 0.0430(18) & 0.090(35) & 0.0394(15) & -0.032(97) & -0.0330(97) & -0.0330(92) \\ \mathbf{n}_4 & 0.0430(18) & 0.090(35) & 0.0394(15) & -0.032(87) & -0.018(82) & -0.0007(86) \\ \mathbf{n}_4 & 0.0430(18) & 0.090(35) & 0.0394(15) & -0.032(87) & -0.018(92) & -0.0330(92) \\ \mathbf{n}_4 & 0.0430(18) & 0.090(35) & 0.0394(15) & -0.032(37) & -0.0330(19) & -0.0037(92) \\ \mathbf{n}_4 & 0.0430(18) & 0.090(35) & 0.0394(15) & -0.032(37) & -0.0330(19) & -0.0037(12) \\ \mathbf{n}_4 & 0.0430(18) & 0.090(35) & 0.0394(15) & -0.032(37) & -0.033(18) & 0.0087(19) \\ \mathbf{n}_4 & 0.0430(18) & 0.0662(18) & 0.0552(30) & -0.0034(87) & 0.0118(18) & -0.0037(12) \\ \mathbf{n}_4 & 0.0430(10) & 0.0422(10) & 0.0552(30) & -0.033(35) & 0.0162(14) & -0.0330(12) \\ \mathbf{n}_4 & 0.0430(10) & 0.0334(17) & 0.013(33) & -0.007(18) & -0.0037(19) & 0.0047(19) \\ \mathbf{n}_4 & 0.033(29) & 0.0144(107) & -0.032(97) & -0.033(11) & 0.0048(16) \\ \mathbf{n}_5 & 0.0534(10) & 0.0553(17) & 0.0133(12) & -0.00$	Cu1	0.0417(09)	0.0426(10)	0.0348(10)	-0.0003(10)	- 0.0033(11)	-0.0055(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1	0.0397(26)	0.0399(26)	0.0344(28)	-0.0025(22)	0.0028(22)	-0.0011(22)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2	0.0453(28)	0.0418(29)	0.0351(25)	-0.0028(20)	-0.0065(21)	0.0012(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	0.0456(84)	0.0296(78)	0.0249(75)	-0.0027(62)	0.0010(69)	-0.0017(67)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.0428(13)	0.0688(22)	0.0290(97)	-0.0070(91)	0.0209(85)	-0.0243(96)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	0.0145(67)	0.0485(88)	0.0577(93)	-0.0074(73)	0.0042(66)	-0.0066(66)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.0468(19)	0.0275(07)	0.0312(98)	0.0120(84)	-0.0003(99)	-0.0107(92)
$ \begin{array}{ccccc} \mathbf{A} & 0.0162(28) & 0.0301(09) & 0.0514(23) & -0.0121(92) & -0.0224(94) & 0.0130(90) \\ \mathbf{N3} & 0.0466(84) & 0.0313(86) & 0.025(80) & 0.0175(64) & -0.0002(64) & -0.0178(65) \\ \mathbf{C5} & 0.0486(23) & 0.0736(25) & 0.0738(24) & 0.0313(97) & 0.0111(95) & 0.0141(01) \\ \mathbf{C6} & 0.0594(16) & 0.0448(24) & 0.0526(33) & -0.0059(01) & 0.0213(05) & 0.0131(96) \\ \mathbf{N4} & 0.0999(18) & 0.0771(18) & 0.0668(21) & 0.0263(90) & 0.0291(94) & 0.0338(92) \\ \mathbf{C11} & 0.0274(99) & 0.0486(08) & 0.0423(14) & -0.0147(11) & 0.0020(97) & -0.033(99) \\ \mathbf{C12} & 0.0435(14) & 0.0756(30) & 0.0418(13) & -0.0079(88) & -0.0018(92) & -0.0007(86) \\ \mathbf{C12} & 0.0433(18) & 0.090(35) & 0.0394(15) & -0.0329(7) & -0.0339(01) & 0.012(04) \\ \mathbf{C15} & 0.0834(35) & 0.0602(19) & 0.0146(12) & -0.0084(84) & -0.001(99) & -0.0047(06) \\ \mathbf{C16} & 0.0372(02) & 0.048(12) & 0.0552(30) & -0.0034(87) & 0.0114(87) & -0.0320(82) \\ \mathbf{C21} & 0.0438(00) & 0.0422(08) & 0.0536(07) & -0.013(93) & -0.007(91) & -0.0017(82) \\ \mathbf{C22} & 0.0754(23) & 0.0652(37) & 0.0410(17) & -0.0059(98) & -0.0176(2) & 0.0216(04) \\ \mathbf{C23} & 0.0722(29) & 0.075(50) & 0.0692(41) & 0.017(16) & -0.0230(15) & 0.0348(12) \\ \mathbf{C24} & 0.0464(11) & 0.0666(38) & 0.1091(86) & -0.0032(35) & 0.0162(22) & 0.0211(04) \\ \mathbf{C25} & 0.0723(10) & 0.0383(47) & 0.0137(10) & -0.0139(93) & 0.0042(88) & 0.0005(87) \\ \mathbf{C34} & 0.0445(30) & 0.0835(47) & 0.0854(43) & 0.0078(16) & -0.0132(11) & 0.0086(08) \\ \mathbf{C34} & 0.0445(30) & 0.0835(47) & 0.0854(43) & 0.0078(16) & 0.0134(12) & 0.0374(20) \\ \mathbf{C34} & 0.0454(31) & 0.0658(13) & 0.0057(40) & 0.012(03) & 0.0140(8) & -0.013(19) \\ \mathbf{C35} & 0.0737(34) & 0.0761(45) & 0.0857(43) & 0.0028(93) & 0.0121(06) & -0.013(94) \\ \mathbf{C34} & 0.0454(54) & 0.0224(10) & 0.058(413) & 0.0028(93) & 0.0121(06) & -0.013(17) \\ \mathbf{C34} & 0.0454(54) & 0.0224(10) & 0.058(13) & 0.0024(93) & -0.0153(13) & 0.0047(51) \\ \mathbf{C44} & 0.0454(41) & 0.0658(41) & -0.0028(03) & -0.015(64) & -0.0037(71) \\ \mathbf{C55} & 0.0453(11) & 0.0483(23) & 0.0537(71) & -0.013(74) & -0.0015(94) & -0.005(96) \\ \mathbf{C54} & 0.0328(17) & 0.0357(21) & -0$	C3	0.0464(20)	0.0092(91)	0.0258(02)	-0.0026(79)	-0.0121(96)	-0.0127(84)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C4	0.0162(98)	0.0301(09)	0.0514(23)	-0.0121(92)	-0.0224(94)	0.0130(90)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3	0.0466(84)	0.0313(80)	0.0205(80)	0.0175(64)	-0.0002(64)	-0.0178(65)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.0317(68)	0.0626(76)	0.0644(78)	0.0197(63)	0.0049(59)	0.0148(60)
$\begin{array}{cccccc} 6 & 0.0504(16) & 0.0448(24) & 0.0526(33) & -0.0069(01) & 0.0213(05) & 0.0131(96) \\ N4 & 0.0999(18) & 0.0771(18) & 0.0668(21) & 0.0263(90) & 0.0291(94) & 0.0338(92) \\ C11 & 0.0274(99) & 0.0486(08) & 0.0423(14) & -0.0140(66) & -0.0169(82) & -0.0001(86) \\ C12 & 0.0455(14) & 0.0756(30) & 0.04418(13) & -0.0079(88) & -0.0018(92) & -0.0201(91) \\ C13 & 0.0294(03) & 0.1345(69) & 0.0451(29) & -0.0147(11) & 0.0020(97) & -0.0330(99) \\ C14 & 0.0430(18) & 0.0900(35) & 0.0394(15) & -0.0325(97) & -0.0339(01) & 0.0102(04) \\ C15 & 0.0334(35) & 0.0602(19) & 0.0146(12) & -0.0084(84) & -0.0001(99) & -0.0047(06) \\ C16 & 0.0372(02) & 0.0480(12) & 0.0552(30) & -0.0034(87) & 0.0114(87) & -0.0320(82) \\ C21 & 0.0438(00) & 0.0422(08) & 0.0536(07) & -0.0103(93) & -0.0007(91) & -0.0017(82) \\ C22 & 0.0754(23) & 0.0652(37) & 0.0410(17) & -0.0059(98) & -0.0176(92) & 0.0216(04) \\ C23 & 0.0722(29) & 0.0753(50) & 0.0692(41) & 0.0170(16) & -0.0230(15) & 0.0343(12) \\ C24 & 0.0464(11) & 0.0666(38) & 0.1091(86) & -0.0032(35) & 0.0162(22) & 0.0211(94) \\ C25 & 0.0722(27) & 0.0448(20) & 0.03377(10) & -0.0139(93) & 0.0042(88) & 0.0005(87) \\ C31 & 0.0287(91) & 0.0478(02) & 0.0244(91) & -0.0180(86) & -0.0047(80) & -0.0132(94) \\ C33 & 0.0465(30) & 0.0835(47) & 0.0854(43) & 0.0078(16) & 0.0203(11) & 0.0086(08) \\ C34 & 0.0416(09) & 0.1241(85) & 0.058(18) & 0.0098(45) & 0.0182(89) & -0.0133(94) \\ C33 & 0.0455(30) & 0.0835(47) & 0.0854(43) & 0.0028(93) & 0.0124(06) & -0.0133(94) \\ C34 & 0.0346(79) & 0.0247(12) & 0.0754(45) & 0.0028(93) & 0.0124(06) & -0.0133(94) \\ C34 & 0.0416(09) & 0.1241(85) & 0.058(18) & 0.0098(45) & 0.0182(89) & -0.013(32) \\ C44 & 0.203(14) & 0.0385(34) & 0.0537(21) & -0.0077(03) & 0.0413(10) & 0.0094(42) \\ C44 & 0.2102(74) & 0.0312(32) & 0.0438(25) & 0.0124(97) & -0.015(94) \\ C45 & 0.0453(11) & 0.0656(43) & -0.0126(77) & -0.0027(33) & 0.0407(45) \\ C45 & 0.0453(11) & 0.0656(43) & 0.033(27) & -0.0273(33) & 0.0407(45) \\ C46 & 0.0451(11) & 0.059(31) & 0.0257(09) & -0.0223(16) & -0.0087(93) & -0.0028(93) \\ C53 & 0.0453(11) & 0.059(3$	C5	0.0486(23)	0.0736(25)	0.0738(24)	0.0313(97)	0.0111(95)	0.0141(01)
$ \begin{array}{cccccc} \mathbf{N4} & 0.0990(18) & 0.0771(18) & 0.0668(21) & 0.023(390) & 0.0291(94) & 0.0338(92) \\ \mathbf{C11} & 0.0274(99) & 0.0486(08) & 0.0423(14) & -0.0140(86) & -0.0169(82) & -0.0007(86) \\ \mathbf{C12} & 0.0455(14) & 0.0756(30) & 0.0418(13) & -0.007(86) & -0.0018(92) & -0.0330(97) \\ \mathbf{C14} & 0.0430(18) & 0.0900(35) & 0.0394(15) & -0.0325(97) & -0.0339(01) & 0.0102(04) \\ \mathbf{C15} & 0.0834(35) & 0.0602(19) & 0.0146(12) & -0.0084(44) & -0.0001(99) & -0.0047(06) \\ \mathbf{C16} & 0.0372(02) & 0.0480(12) & 0.0552(30) & -0.0033(87) & 0.0114(87) & -0.0320(82) \\ \mathbf{C21} & 0.0438(00) & 0.0422(08) & 0.0536(07) & -0.0033(39) & -0.0007(91) & -0.0017(82) \\ \mathbf{C22} & 0.0754(23) & 0.0652(37) & 0.0469(2(41) & 0.0170(16) & -0.0230(15) & 0.0344(12) \\ \mathbf{C23} & 0.0722(29) & 0.0753(50) & 0.0692(41) & 0.0170(16) & -0.0230(15) & 0.0343(12) \\ \mathbf{C25} & 0.0722(27) & 0.0448(20) & 0.0832(39) & -0.0122(21) & 0.0307(29) & 0.0359(01) \\ \mathbf{C26} & 0.0531(06) & 0.0394(07) & 0.0377(10) & -0.0139(93) & 0.0042(88) & 0.0005(87) \\ \mathbf{C31} & 0.0287(91) & 0.0478(02) & 0.0244(41) & -0.0180(86) & -0.0047(80) & -0.0105(81) \\ \mathbf{C32} & 0.0344(97) & 0.0544(10) & 0.0377(02) & 0.0102(80) & 0.0140(8) & -0.013(294) \\ \mathbf{C33} & 0.0465(30) & 0.0835(47) & 0.0857(40) & 0.0230(16) & 0.0382(32) & -0.0132(94) \\ \mathbf{C34} & 0.0416(09) & 1.241(85) & 0.0875(40) & 0.0230(16) & 0.0368(22) & -0.033(38) \\ \mathbf{C35} & 0.0797(34) & 0.0761(45) & 0.0875(40) & 0.0028(93) & 0.012(106) & -0.0107(96) \\ \mathbf{C42} & 0.105(54) & 0.0224(10) & 0.065(7(13) & 0.0062(93) & 0.0122(10) & -0.0047(10) \\ \mathbf{C44} & 0.2102(74) & 0.0312(32) & 0.0438(54) & 0.0038(04) & 0.0192(62) & 0.055(663) \\ \mathbf{C45} & 0.0236(11) & 0.0365(31) & 0.055(18) & 0.0038(04) & 0.0129(11) & -0.0047(11) \\ \mathbf{C44} & 0.2102(74) & 0.0312(32) & 0.065(34) & -0.0126(77) & -0.0015(94) & 0.0298(10) \\ \mathbf{C55} & 0.0437(11) & 0.0438(69) & -0.0216(97) & -0.025(11) & -0.017(97) \\ \mathbf{C44} & 0.2102(74) & 0.0312(32) & 0.065(34) & -0.0033(27) & -0.0223(33) & 0.0042(90) \\ \mathbf{C55} & 0.0431(10) & 0.0058(11) & 0.0038(04) & -0.0018(97) & -0.0125(17) \\ \mathbf{C55} & 0.0435(11) & 0.058($	C6	0.0504(16)	0.0448(24)	0.0526(33)	-0.0069(01)	0.0213(05)	0.0131(96)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4	0.0999(18)	0.0771(18)	0.0668(21)	0.0263(90)	0.0291(94)	0.0338(92)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.0274(99)	0.0486(08)	0.0423(14)	-0.0140(86)	-0.0169(82)	-0.0007(86)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.0455(14)	0.0756(30)	0.0418(13)	-0.0079(88)	-0.0018(92)	-0.0201(91)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.0294(03)	0.1345(69)	0.0451(29)	-0.0147(11)	0.0020(97)	-0.0330(99)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.0430(18)	0.0900(35)	0.0394(15)	-0.0325(97)	-0.0339(01)	0.0102(04)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.0834(35)	0.0602(19)	0.0146(12)	-0.0084(84)	-0.0001(99)	-0.0047(06)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.0372(02)	0.0480(12)	0.0552(30)	-0.0034(87)	0.0114(87)	-0.0320(82)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.0438(00)	0.0422(08)	0.0536(07)	-0.0103(93)	-0.0007(91)	-0.0017(82)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.0754(23)	0.0652(37)	0.0410(17)	-0.0059(98)	-0.0176(92)	0.0216(04)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	0.0722(29)	0.0763(50)	0.0692(41)	0.0170(16)	-0.0230(15)	0.0343(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.0464(11)	0.0606(38)	0.1091(86)	-0.0032(35)	0.0162(22)	0.0211(94)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.0722(27)	0.0448(20)	0.0832(39)	-0.0122(21)	0.0307(29)	0.0359(01)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	0.0531(06)	0.0394(07)	0.0377(10)	-0.0139(93)	0.0042(88)	0.0005(87)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.0287(91)	0.0478(02)	0.0244(91)	-0.0180(86)	-0.0047(80)	-0.0105(81)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	0.0344(97)	0.0544(10)	0.0377(02)	0.0102(80)	0.0140(8)	-0.0132(94)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33	0.0465(30)	0.0835(47)	0.0854(43)	0.0078(16)	0.0203(11)	0.0086(08)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	0.0416(09)	0.1241(85)	0.0508(18)	0.0098(45)	0.0182(89)	-0.0153(38)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35	0.0737(34)	0.0761(45)	0.0875(40)	0.0230(16)	0.0368(32)	-0.0304(32)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36	0.0792(33)	0.0267(12)	0.0754(45)	0.0028(93)	0.0121(06)	-0.0107(96)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C41	0.0830(29)	0.0140(93)	0.0205(98)	-0.0127(74)	-0.0015(94)	0.0090(04)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42	0.1054(54)	0.0224(10)	0.0607(33)	0.0062(93)	-0.0126(11)	-0.0047(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C43	0 1095(61)	0.0385(34)	0.0537(21)	-0.0070(03)	0.0413(10)	0.0004(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C44	0.2102(74)	0.0312(32)	0.0438(26)	0.0088(04)	0.0192(62)	0.0556(63)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C45	0.1263(88)	0.0653(71)	0.0665(44)	-0.0033(27)	-0.0273(33)	0.0407(45)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C46	0.0647(31)	0.0636(43)	0.0505(18)	0.0034(01)	-0.0005(04)	0.0298(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C51	0.0400(40)			0.0000(01)	0.0 (.)	0.0 ()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C52	0.0477(19)	0.0470(11)	0.0496(09)	-0.0216(97)	-0.0087(93)	0.0024(90)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C53	0.0477(12) 0.0682(42)	0.0478(09)	0.0660(34)	-0.0198(95)	-0.0213(16)	-0.0041(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C54	0.0002(42) 0.0329(17)	0.0400(07)	0.0685(41)	0.0130(17)	-0.0250(11)	-0.0175(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C55	0.0525(11)	0.1149(68)	0.0395(16)	-0.0280(08)	-0.0014(97)	-0.0125(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C56	0.0504(06)	0.0909(31)	0.0273(01)	-0.0357(90)	- 0.0029(85)	-0.0077(99)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C61	0.0334(97)	0.0381(06)	0.0275(01)	-0.0041(83)	-0.0032(88)	-0.0080(83)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C62	0.0568(09)	0.0575(20)	0.0307(07)	0.0076(91)	0.0148(91)	0.0119(92)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C63	0.0691(23)	0.0547(23)	0.0558(29)	0.0044(03)	0.0319(11)	0.0158(01)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C64	0.0451(11)	0.0547(23)	0.0954(59)	-0.0254(18)	0.0427(21)	-0.0062(95)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C65	0.0431(10)	0.0507(31)	0 0797(45)	-0017(11)	-0.0004(12)	-0.0020(96)
	C66	0.0437(05)	0.0533(15)	0.0287(04)	-0.0098(94)	-0.0088(94)	0.0 (90)

stoichiometry, irrespective of the ratios of the starting reagents. This material is likely to be a polymer in which the copper links by intermolecular bonds to the nitrile functionalities as well as to both the one and three positions of Dicy⁻. Although it is polymeric, the IR peaks are sharp and the analytical data good. The facile formation of this compound gives good indication of the affinity between cyanoimidazolate and Cu(I). If triphenylphosphine is added prior to the addition of Dicy⁻ in the synthetic procedure, a new compound, Cu(Dicy)(PPh₃)₂, precipitates. The insolubility of this species, unusual

T.	AI	3L	Е	Г	V		Bond	D	istances	(Å)
----	----	----	---	---	---	--	------	---	----------	----	---

Bond	Distance	Atoms
Cu1–P1	2.280(05)	P1-Cu1-
Cu1–P2	2,246(05)	P1-Cu1-
Cu1–N1	2.072(14)	P2-Cu1-
Cu1–N3	2.131(14)	P1Cu1-
P1-C11	1.838(18)	P2-Cu1-
P1-C21	1.813(19)	N1Cu1-
P1C31	1.833(18)	Cu1-P1-
P2-C41	1.849(18)	Cu1-P1-
P2-C51	1.823(18)	C11-P1-
P2C61	1.843(18)	Cu1-P1-
N1-C1	1.340(20)	C11-P1-
N1-C3	1.372(19)	C21-P1-
C1-N2	1.353(20)	Cu1-P2-
N2-C2	1.379(21)	Cu1-P2-
C2–C3	1.381(22)	C41-P2-
C2-C6	1.442(23)	Cu1–P2–
C3–C4	1.494(22)	C41-P2-
C4-N3	1.254(21)	C51-P2-
C4-01	1.374(20)	Cu1-N1-
01–C5	1.445(20)	Cu1-N1-
C6-N4	1.161(22)	C1-N1-0
C11–C12	1 394(22)	N1-C1-1
C11-C16	1.387(22)	C1-N2-0
C12–C13	1.386(23)	N2-C2-C
C13-C14	1.376(23)	N2-C2-C
C14–C15	1.373(23)	C3-C2-C
C15-C16	1.396(22)	N1-C3-C
C21-C22	1.412(22)	N1-C3-C
C21-C26	1.416(22)	C2-C3-C
C22-C23	1 369(24)	C3-C4-N
C23–C24	1.384(24)	C3-C4-C
C24 -C25	1.379(25)	N3C4C4C4C4C4C4C4C4C4C
C25-C26	1.371(25)	Cu1-N3-
C31–C32	1.391(21)	C4-01-0
C31–C36	1.376(21)	C2-C6-N
C32–C33	1.375(24)	P1-C11-
C33–C34	1.369(27)	P1-C11-
C34–C35	1.392(28)	C12-C11
C35-C36	1.374(26)	C11-C12
C41-C42	1.381(24)	C12–C13
C41–C46	1.369(24)	C13–C14
C42–C43	1.381(25)	C14-C15
C43-C44	1.435(31)	C11–C16
C44–C45	1.322(32)	P1-C21-
C45-C46	1.354(28)	P1-C21-
C51-C52	1.385(21)	C22-C21
C51–C56	1.415(22)	C21-C22
C52-C53	1.369(24)	C22C23
C53-C54	1.374(26)	C23C24
C54-C55	1.347(25)	C24–C25
C55-C56	1.362(23)	C21–C26
C61–C62	1.390(21)	P1-C31-
C61-C66	1.386(22)	P1-C31-
C62-C63	1.392(23)	C32-C31
C63-C64	1.358(25)	C31–C32
C64–C65	1.372(25)	C32–C33

TABLE V. Bond Angles (°)

Atoms	Angle	Atoms	Angle
P1-Cu1-P2	119.8(2)	C33–C34–C35	119(2)
P1-Cu1-N1	108.5(4)	C34-C35-C36	120(2)
P2-Cu1-N1	120.0(4)	C31-C36-C35	121(2)
P1-Cu1-N3	105.5(4)	P2-C41-C42	118(2)
P2-Cu1-N3	114.1(4)	P2-C41-C46	122(2)
N1-Cu1-N3	82.1(6)	C42-C41-C46	119(2)
Cu1-P1-C11	111.4(7)	C41-C42-C43	122(2)
Cu1-P1-C21	121.8(6)	C42-C43-C44	118(2)
C11-P1-C21	103.8(9)	C43-C44-C45	117(2)
Cu1-P1-C31	111.3(6)	C44-C45-C46	127(3)
C11–P1–C31	103.0(9)	C41-C46-C45	118(2)
C21-P1-C31	103.6(9)	P2-C51-C52	125(2)
Cu1-P2-C41	113.5(6)	P2-C51-C56	118(2)
Cu1-P2-C51	113.6(7)	C52–C51–C56	118(2)
C41-P2-C51	104(1)	C51-C52-C53	120(2)
Cu1-P2-C61	118.1(7)	C52–C53–C54	122(2)
C41-P2-C61	101.1(9)	C53-C54-C55	119(2)
C51-P2-C61	104.7(9)	C54-C55-C56	121(2)
Cu1-N1-C1	142(2)	C51-C56-C55	121(2)
Cu1-N1-C3	110(1)	P2-C61-C62	121(2)
C1-N1-C3	107(2)	P2C61C66	119(2)
N1 - C1 - N2	113(2)	C62-C61-C66	120(2)
C1-N2-C2	103(2)	C61-C62-C63	119(2)
N2-C2-C3	112(2)	C62-C63-C64	121(2)
N2-C2-C6	123(2)	C63-C64-C65	120(2)
C3–C2–C6	126(2)	C64-C65-C66	121(2)
N1-C3-C2	105(2)	C61-C66-C65	119(2)
N1-C3-C4	117(2)		
C2-C3-C4	138(2)		
C3-C4-N3	121(2)		
C3-C4-01	107(2)		
N3-C4-O1	132(2)		
Cu1-N3-C4	110(1)		
C4-01-C5	115(2)		
C2-C6-N4	178(3)		
P1-C11-C12	122(2)		
P1-C11-C16	119(2)		
C12-C11-C16	119(2)		
C11-C12-C13	121(2)		
C12-C13-C14	118(2)		
C13-C14-C15	122(2)		
CI4-CI5-CI6	120(2)		
CII-CI6-CI5	120(2)		
P1-C21-C22	120(2)		
P1-C21-C26	125(2)		
C22-C21-C26	115(2)		
C21-C22-C23	122(2)		
C22C23-C24	121(2)		
023-024-025	119(2)		
C24-C25-C26	121(2)		
C21-C26-C25	122(2)		
P1-C31-C32	114(2)		
PI-C31-C36	126(2)		
C32-C31-C36	119(2)		
C31-C32-C33	119(2)		
	1.1.1/27		

for phosphine complexes, again suggests a polymeric structure and implies that the copper may be four coordinate. The sharp single peak in the cyanide stretching region implies a symmetrically bridging imidazolate ligand.

The tendency toward four coordination showed up in an unusual way in the preparation of the carbonyl complex. In a procedure similar to that which produced Cu(Dicy)(PPh₃)₂, a monocarbonyl complex precipitated which we formulated based on analytical data with a methanol of solvation viz. [Cu(CO)(Dicy)·(CH₃OH)]. The IR spectrum, which we reproduce as Fig. 1, was particularly well resolved, but had several inexplicable features. The very sharp peak at 3364 cm⁻¹ could only be N-H not involved in hydrogen bonding, and the O-H of the methanol seemed not to be present. The $C \equiv N$ and $C \equiv O$ peaks left very clear signatures but the peak at 1634 cm^{-1} was also unexplained. Although this compound had insolubility similar to those described above, it did react with triphenylphosphine in methylene chloride to produce a soluble species with loss of carbon monoxide. Layering the solution with hexane produced crystals suitable for diffraction and the solved structure is shown in Fig. 2. The four coordinate copper has picked up two phosphine ligands, presumably by releasing from coordination one of the imidazole nitrogens, as well as the C=O. The surprising feature is the formation of a methyl imino ester functionality on the ring system, and its participation in a bidentate chelation to the copper. In order to be certain that this group was indeed present, and not the isomeric N-methyl amide function, several tests were performed on the X-ray data. The positions of N3 and O1 were interchanged. This resulted, after re-refinement, in a very slightly poorer R factor, and significantly poorer temperature factors for the two atoms. In addition, the difference map calculated with all hydrogens present except that on N3, showed a definite residual in the vicinity of N3 and none around O1. There was also a smaller residual near N2 so some tautomerism between N3 and N2 could not be ruled out from the X-ray data, but the IR data favors a single location, most likely at N3. Thus the Cu(I)CO moiety appears to promote rapid and quantitative alcoholysis of one of the nitrile functions. There is some precedence for such a reaction in both alkyne [5] and nitrile [6] chemistry, and based on these observations as well as our own, we suggest a mechanism in which precoordination of nitrile occurs, followed by polarization and nucleophilic attack by the alcohol. Rate enhancement is typically large in cases of metal assisted solvolysis [7].

The stabilization of the imino ester by coordination is an interesting aspect of this work since the isomerism to the alkyl amide is favored thermodynamically [8]. In previous studies of similar

Fig. 3. Summary of synthesis.

reactions, the imino ester group was adduced mainly from IR and NMR evidence although another crystal structure was recently reported [9]. Our data for the C=N and C-O lengths of 1.254 Å and 1.374 Å agree closely with the previously reported data for the imino ester group as does the observed IR band at 1634 cm⁻¹. The imidazole ring, the nitrile, and N4 are coplanar within experimental error while N3 and O1 are twisted slightly out of this plane. In the light of the crystal structure, the IR spectrum of Fig. 1 is perfectly understandable and we now formulate the precursor as Cu(CO)(Dicyie), where Dicyie designates the mono-iminoester of dicyanoimidazole.

The reactions we have observed are summarized in Fig. 3. We are continuing the investigation of Cu(I) chemistry with ligands of greater sigma donor strength in combination with various imidazoles.

Conclusion

It is well known that Cu(I) shows a strong affinity for ligands that are weak sigma donors and good pi acceptors. Indeed, as the donor strength increases, so does the tendency toward disproportionation. Thus strongly basic amines destabilize Cu(I) relative to Cu(II) [1]. On the other hand, Cu(I) normally can only bind one carbon monoxide and may reduce its coordination number if the pi acceptors are too numerous or too strong. This latter generalization is less well documented however and the several of the cases we have examined by X-ray crystallography show retention of four coordination. It may be that average Cu(I) coordination numbers will increase as more structures are determined as happened some years ago for Sn(II) which is seldom 'carbene-like' in its coordination shell.

Supplementary Material

Listings of observed and calculated structure factor amplitudes are available from the authors on request.

Acknowledgments

The authors are grateful to Prof. Andreas Ludi, Bern, Switzerland, for helpful discussions, and for support from NSF INT-8304329 for international cooperation. P.G.R. acknowledges support from the donors of the Petroleum Research Fund adminstered by the American Chemical Society. L.R.G. is grateful to the Ministry of Education of China for support as a visiting scholar and to Fuzou University for granting a leave of absence. J.C.B. acknowledges support from CIRIT (Catelonia).

References

- 1 P. G. Rasmussen, J. E. Anderson and J. C. Bayón, *Inorg. Chim. Acta*, 87, 159 (1984).
- 2 U.S. Pat. 2534331 (1950) to D. W. Woodward.

- 3 W. A. Sheppard and O. W. Webster, J. Am. Chem. Soc., 95, 2695 (1973).
- 4 J. Ibers and W. C. Hamilton (eds.), 'International Tables for X-ray Crystallography', Vol. IV, Kynoch Press, Birmingham, 1974, Table 2.2 and Table 2.3.1.
- 5 A. Streitwieser and C. H. Heathcock, 'Introduction to Organic Chemistry', 3rd edn., Macmillan, New York, 1985, p. 295; R. A. Bell, M. L. Chisholm, D. A. Couch and L. A. Rankel, *Inorg. Chem.*, 16, 677; 698; 2177 (1977).
- 6 P. F. B. Barnard, J. Chem. Soc. A, 2140 (1969); H. C. Clark and L. E. Manzer, *Inorg. Chem.*, 10, 2699 (1971);
 M. Wada and T. Shimohigashi, *Inorg. Chem.*, 15, 954 (1976).
- 7 D. A. Buckingham, F. R. Keene and A. M. Sargeson, J. Am. Chem. Soc., 95, 5649 (1973); D. G. Butler, I. I. Creaser, S. F. Dyke and A. M. Sargeson, Acta Chem. Scand. Ser. A, 32, 789 (1978).
- 8 J. W. Schulenberg and S. Archer, in 'Organic Reactions', Vol. 14, Wiley, New York, 1965, Chap. 1.
- 9 L. G. Marzilli, M. F. Summers, J. H. Ramsden, N. Bresciani-Pahor and L. Randaccio, J. Chem. Soc., Dalton Trans., 511 (1984).