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Id. Us- 

mis study has determined the influence of va r i a t i ons  i n  t ruck size and 
weight cons t r a in t s  on the s t a b i l i t y  and cont ro l  proper t ies  of heavy vehic les .  
The s i z e  and weight cons t r a in t s  of i n t e r e s t  include ax le  load, gross vehic le  
weight, length,  width, type of mul t ip le - t ra i le r  combinations, and bridge 
forinula allowances. Variations i n  loca t ion  of the center  of grav i ty  of the 
3ayload were a l so  considered a s  a  separa te  subjec t .  The inf luence of these 
parametric var ia t ions  on s t a b i l i t y  and cont ro l  behavior was explored by means 
of both fu l l - sca le  vehic le  t e s t s  and computer simulations.  

In  Volume I ,  the f indings of the study a r e  presented i n  a nanner which i 
intended to inform the non-technical reader and, s p e c i f i c a l l y ,  the persons 
concerned with formulating po l i c i e s  and laws regarding t ruck s i z e  and weight. 
For each s i z e  and weight " issuer '  the s t a b i l i t y  and cont ro l  problem areas  a r e  
addressed and the inf luence of s i z e  and weight va r i a t i ons  is  quant i f ied .  
The r e s u l t s  a r e  then reviewed i n  the l i g h t  o f  t h e i r  po ten t i a l  i np l i ca t ions  
f o r  t r a f f i c  sa fe ty .  

Volumes TI and I11 provide (a) background informat ion concerning t e s t  
procedures and ana ly t i ca l  methods and (b)  de ta i led  data .  
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This document c o n s t i t u t e s  the f i n a l  r e p o r t  on Contract  Number 

FH-11-9577, e n t i t l e d  "The Yeasurement of Pavement /Truck I n t e r a c t i o n  

Under Experimental Conditions." The p r o j e c t  has addressed a  very broad 

ob jec t ive ,  namely, t o  determine the  manne,r in which changes i n  the  s i z e  

and weight of heavy t rucks  and t ruck  combinations w i l l  a f f e c t  the con- 

t r o l l a b i l i t y  of such veh ic les .  The p r o j e c t  has endeavored to  apply the  

cur ren t  s t a t e  of the  a r t  i n  v e h i c l e  dynamics resea rch  to  t h i s  examina- 

t i o n  of the  mechanical performance of hea.vy veh ic les .  The v e h i c l e  config- 

u ra t ions  of i n t e r e s t  involve those t ruck  types which a r e  the  l a r g e s t  among 

commercial highway vehic les .  It i s  t h i s  c l a s s  of veh ic les  which i s  

pecu l i a r ly  sub jec t  to  c o n s t r a i n t  i n  s i z e  and weight dimensions a s  a  r e s u l t  

of both f e d e r a l  and s t a t e  laws. 

S i z e  and weight laws come i n  a  g rea t  v a r i e t y  of types.  Weight- 

cons t ra in ing  laws, i n  genera l ,  a r e  motivated by concerns f o r  p ro tec t ing  

the  pavement, i t s e l f ,  o r  the  br idge s t r u c t u r e s  from the  damage accruing 

from repeated i n t e n s e  loading.  The l eng th ,  width, and height  of commercial 

veh ic les  a r e  constrained so  a s  to  l i m i t  t h e  degree to  which t rucks  pre- 

sen t  an o b s t a c l e  t o  o t h e r  road t r a f f i c  and, of course ,  to a s sure  t h a t  trucks 

w i l l  f i t  under br idge overpasses. Other laws a r e  imposed to  r e s t r i c t  the 

s p e c i f i c  types of multiple- t r a i l e r  combinations which a r e  allowed. In  many 

cases ,  ind iv idua l  s t a t e s  have w r i t t e n  laws which impose r e s t r i c t i o n s  on 

the  l eng ths ,  weights,  and even ax le  confFgurations o f  s p e c i f i c  veh ic le  com- 

binat ions .  A l l  such laws a r e  sub jec t  to  cont inual  modif ica t ion due to  the 

evolut ion of t rucking technology, the  experience which a  given j u r i s d i c t i o n  

has had wi th  t ruck  accidents  (and, perhaps, with ?avement damage), and the 

ambitions of the  t rucking indust ry  toward improved opera t ing ef f  i c i encp .  



Since  so  many s i ze -  and weight -cons t ra in ing  laws e x i s t  and s i n c e  

many p res su res  e x i s t  f o r  t h e i r  con t inu ing  mod i f i ca t ion ,  t h e r e  is  a  f r e -  

quent ly- recurr ing  need f o r  t e c h n i c a l  informat ion  p e r t a i n i n g  t o  t h e  p o s s i b l e  

r epe rcuss ions  t o  changes i n  t h e  c o n s t r a i n t s .  A h o s t  of t e c h n i c a l  i s s u e s  

demand c o n s i d e r a t i o n  whenever changes i n  s i z e  and weight  c o n s t r a i n t s  a r e  

be ing  contemplated. .bong t h e s e  a r e a s  a r e  t h e  fo l lowing : 

Pavement and Bridge D e t e r i o r a t i o n  

Transpor t a t ion  Economics 

Energy Consump t i o n  

Inter-Modal S h i f t  

Air Q u a l i t y  

Noise 

T r a f f i c  S a f e t y  

This  s tudy  has  been concerned only  w i t h  t h e  l a s t  i tem on t h e  above 

l i s t .  F u r t h e r ,  t h i s  work has  been conf ined  on ly  t o  t h a t  p o r t i o n  of  t he  

t r a f f i c  s a f e t y  s u b j e c t  i nvo lv ing  t h e  s t a b i l i t y  and c o n t r o l  q u a l i t i e s  of 

heavy t r u c k s  t h a t  i n f l u e n c e  t h e  t r u c k  d r i v e r ' s  a b i l i t y  t o  c o n t r o l  t h e  

motions of h i s  v e h i c l e .  The b a s i c  s t r u c t u r e  of  t h i s  r e s e a r c h  has involved 

the  fo l lowing s t e p s  : 

1)  The i d e n t i f i c a t i o n  of s i z e  and weight  " i s sues"  which 

hold t h e  p o t e n t i a l  f o r  changing t r u c k  dimensional  and 

loading  limits i n  t h e  f u t u r e .  (Such i s s u e s  embrace each 

of t h e  " s i z e  and weight  v a r i a b l e s "  such a s  a x l e  l o a d ,  

g ros s  v e h i c l e  weight ,  v e h i c l e  l e n g t h ,  e t c . )  

2) The s e l e c t i o n  of cand ida te  va lues  which a r e  l i k e l y  t o  

be promoted f o r  c o n s i d e r a t i o n  a s  changes i n  t he  s i z e  and 

weight v a r i a b l e s .  (For example, t h e r e  has been a  r e c e n t  

change, a t  t h i s  w r i t i n g ,  i n  t h e  f e d e r a l  al lowance f o r  

t r u c k  width ,  from 96 t o  102 inches  (244 t o  259 cm) .)  

3 )  The i d e n t i f i c a t i o n  of s p e c i f i c  v e h i c l e  tvpes  which a r e  

l i k e l y  t o  be  in f luenced  by t h e  change i n  the  v a r i a b l e  

under cons ide ra t ion .  



4 )  The formula t ion  of hypotheses l i n k i n g  t h e  cons idered  

changes i n  s i z e  and weight v a r i a b l e s  t o  t h e  s t a b i l i t y  

and c o n t r o l  p r o p e r t i e s  of vehi.cles. 

5 )  The i d e n t i f i c a t i o n  of spec i f ic :  maneuvering scena r ios  

i n  which t h e  a l t e r e d  v e h i c l e  p r o p e r t i e s  would be 

manifested.  

6 )  The conduct of  f u l l - s c a l e  v e h i c l e  t e s t s  and computer - 
s imula t ions  employing t h e  above maneuvers a s  a means of 

c h a r a c t e r i z i n g  t h e  dl t e r ed  v e h i c l e  p r o p e r t i e s .  

C l e a r l y ,  t h e  bulk  of e f f o r t  i n  t h e  s tudy has e n t a i l e d  t h e  a c t u a l  

t e s t i n g  and s imula t ion  work mentioned i n  I tem 6 .  The primary r e s u l t  of 

t h i s  work is a compiled s e t  of measures of s t a b i l i t y  and c o n t r o l  charac- 

t e r i s t i c s  of heavy v e h i c l e s ,  a s  they i l l u s t r a t e  t h e  in f luence  of changes 

i n  s i z e  and weight v a r i a b l e s .  This  f i r s t :  volume of t he  r e p o r t  has been 

prepared i n  such a way a s  t o  render t hese  r e s u l t s  of maximum u t i l i t y  t o  

those  d i r e c t l y  concerned wi th  dec i s ions  and po l i cy  making i n  t h e  a r e a  of 

s i z e  and weight l e g i s l a t i o n .  I t  is assumed chat  t h e  ma jo r i ty  of persons 

making up t h i s  group have no background I.n t h e  s t a b i l i t y  and c o n t r o l  

behavior  of motor v e h i c l e s .  Fu r the r ,  i t  i s  supposed t h a t ,  whi le  t h i s  group 

is i n t e r e s t e d ,  t o  some degree,  i n  t he  r e s e a r c h  methodology and da ta-  

process ing  techniques employed, they a r e  w i l l i n g  t o  l e t  those  having more 

t e c h n i c a l  e x p e r t i s e  examine those  f a c e t s  of the work i n  d e t a i l .  

Accordingly, Volume I i s  configured t o  provide only  an overview of 

t h e  s tudy methodology, i n  Chapter 2 ,  and a condensed p r e s e n t a t i o n  of t he  

f i n d i n g s ,  i n  Chapter 3 .  The f ind ings  a r e  organized according t o  c a t e g o r i e s  

of s i z e  and weight i s s u e s .  This  s t r u c t u r e  is seen  a s  being most u s e f u l  to 

those concerned wi th  f u t u r e  po l i cy  o r  law making s i n c e  i t  is u s u a l l y  a 

s p e c i f i c  s i z e  and weight c o n s t r a i n t  which i s  being cons idered .  Thus, f o r  

example, i f  one i s  concerned wi th  a p rospec t ive  change i n  a g ros s  weight 

l i m i t a t i o n ,  t h e  s e c t i o n  i l l u s t r a t i n g  a l l  of t h e  in f luences  of g ros s  weight 

on t r u c k  s t a b i l i t y  and c o n t r o l  p r o p e r t i e s  w i l l  a f f o r d  a convenient r e f e r -  

ence. (The gene ra l  reader  v i l l  note, however, t h a t  t h i s  format l eads  t o  

some redundancy, from one s e c t i o n  of t h e  r e p o r t  t o  t h e  n e x t . )  Although 



the e s sen t i a l  findings pertaining to  each s i ze  and weight issue a re  

summarized within each of the respective par t s  of Chapter 3 ,  an overal l  

conclusions and recommendations discussion i s  a lso presented in  Chapter 

4 .  

Volumes I1 and 111 of the f i n a l  report  provide detai led coverage of 

the methods employed and also present more technically-complete represen- 

ta t ions of the data showing vehicle response properties.  

A l l  engineering uni t s  presented i n  the text of t h i s  report  a re  

shown i n  both the English and metric systems of uni ts .  ' he re  vehicle 

weights a r e  expressed, the metric un i t ,  m ton (metric ton) ,  i s  used i n  

deference t o  common pract ice,  although the standard s c i e n t i f i c  term fo r  

t h i s  metric unit  i s  ac tua l ly  the megagram. 



OVERVIEW OF THE STUDY METHODOLOGY 

I n  t h i s  chap te r ,  c e r t a i n  elements of t h e  s t r u c t u r e  of t he  r e s e a r c h  

w i l l  be d iscussed  so  a s  t o  g i v e  t h e  reader  t h e  neans to  understand t h e  

r e s u l t s  presented  i n  Chapter 3 .  .b ou t l ined  i n  the  In t roduc t ion ,  t h e  pro- 

j e c t  was guided by a  s e t  of s i z e  and weight i s s u e s  which were def ined  e a r l y  

i n  t he  p r o j e c t .  These i s s u e s  a r e  d i scussed ,  and t h e  r e s p e c t i v e  v e h i c l e  

conf igu ra t ions  involved wi th  each i s s u e  a r e  i d e n t i f i e d ,  i n  Sec t ion  2 . 1 .  

For each v e h i c l e  type ,  a  b a s e l i n e  conf igu ra t ion  was i d e n t i f i e d ,  

r e p r e s e n t i n g  more-or-less convent ional  v e h i c l e  c h a r a c t e r i s t i c s ,  t oge the r  

w i th  t h e  cu r ren t  maximum loading  found in. i n t e r s t a t e  t rucking .  Of course ,  

it is  recognized t h a t  ( a )  a  g r e a t  d e a l  of v a r i a t i o n  i n  v e h i c l e  des ign  

d e t a i l s  p r e v a i l s  i n  s e r v i c e  and (5) many very  s i g n i f i c a n t  v a r i a t i o n s  i n  

load  placement occur simply a s  a  r e s u l t  of t he  d i v e r s i t y  of products  

c a r r i e d  by motor t rucks .  For purposes of  keeping t h e  p r o j e c t  scope w i t h i n  

manageable bounds, however, t h e  t r u c k  conf igu ra t ions  s tud ied  here  a r e  con- 

f i n e d  t o  only  the  most popular  v a r i e t i e s  found ac ros s  t h e  U .  S .  Also,  t ruck  

~ a y l o a d s  were considered t o  c o n s t i t u t e  only  homogeneous commodities whose 

center -of -gravi ty  l o c a t i o n  r e s ided  a t  t he  geometric c e n t e r  of t h e  payload 

volume (un le s s  o  t h e m i s e  s p e c i f i e d )  . 
The i n f l u e n c e  of  s i z e  and weight changes was considered only i n  terms 

of t he  impact of such changes on the  s t a b i l i t y  and c o n t r o l  c h a r a c t e r i s t i c s  

of  e x i s r i n g  v e h i c l e s .  That is ,  t h e r e  was no a t tempt  to  cons ider  v e h i c l e  

des igns  which might, h y p o t h e t i c a l l y ,  come i n t o  Froduction i n  the  f u t u r e  i n  

response t o  l i b e r a l i z e d  s i z e  o r  weight c o n s t r a i n t s .  On the  o t h e r  hand, t he  

"ex i s t i ng"  types of v e h i c l e  conf igu ra t ions  were represented  ( i n  a l l  c a s e s ,  

unless  o therwise  s p e c i f i e d )  w i t h  t i r e  and suspension load  c a p a c i t i e s  s u f f i -  

c i e n t  f o r  the  increased  loads  which were considered.  



Following an o u t l i n e  o f  t h e  s i z e  and weight i s s u e s ,  below, and a 

l i s t i n g  of t h e  v e h i c l e  types  cons ide red ,  t h e  means f o r  e v a l u a t i n g  t h e  

s t a b i l i t y  and c o n t r o l  imp l i ca t ions  of  s i z e  and weight  changes is d i scussed  

i n  Sec t ion  2.2. I n  t h i s  d i scuss ion ,  t h e  format f o r  d a t a  p r e s e n t a t i o n  w i l l  

be presented .  S ince  t h e  u l t i m a t e  i n t e r e s t  i n  s t a b i l i t y  and c o n t r o l  charac- 

t e r i s t i c s  is  i n  connect ion  w i t h  t h e i r  implied i n f l u e n c e  on t r a f f i c  s a f e t y ,  

a  p o r t i o n  of  Sec t ion  2 . 2  is devoted t o  o u t l i n i n g  t h e  r a t i o n a l e  making t h i s  

connection.  

2 , 1  The S i z e  and Weight I s s u e s  

S i x  gene ra l  i s s u e s  have been i d e n t i f i e d  a s  embodying t h e  types  of 

s i z e  and weight c o n s t r a i n t s  which a r e  placed upon heavy t rucks  e i t h e r  by 

s t a t e  o r  f e d e r a l  law. The i s s u e s  a r e  a s  fo l lows:  

1 )  Load allowed on a  s i n g l e  o r  tandem p a i r  of a x l e s  

2 )  Gross weight  of  a  v e h i c l e  combination 

3 )  Length of  e i t h e r  i n d i v i d u a l  v e h i c l e  elements  o r  of an 

o v e r a l l  combination of elements  (where an "element" 

r e f e r s  t o  a  power u n i t  o r  a  t r a i l e r )  

4 )  Types of m u l t i p l e  t r a i l e r  combinat ions 

5 )  Width of a  v e h i c l e  

6) Cons t r a in t s  i n  a x l e  placement imposed by a  b r idge  formula 

.4n a d d i t i o n a l  ca tegory  of v e h i c l e  dimensions f o r  which a l l  of t h e  

s t a t e s  have imposed c o n s t r a i n t s  i s  t h e  v e h i c l e ' s  o v e r a l l  he igh t .  Height ,  

p e r  se, has no t  been inc luded a s  a v a r i a b l e  i n  t h i s  s t u d y ,  a l though t h e  

he igh t  of t h e  payload c e n t e r  of g r a v i t y  is  inc luded.  S ince  t h e  v e h i c l e ' s  

h e i g h t  is  only  of  s i g n i f i c a n c e  t o  t h e  s t a b i l i t y  and c o n t r o l  p r o p e r t i e s  

i n s o f a r  a s  i t  permi ts  loading  of f r e i g h t  t o  produce d i f f e r i n g  va lues  of 

composite height of c e n t e r  of  g r a v i t y  (c.g. h e i g h t ) ,  t h e  he igh t  i s s u e  can be 

?resumed t o  be addressed by t h e  f i n d i n g s  p e r t a i n i n g  t o  c.g. he igh t .  



The s i x  i s s u e s  l i s t e d  above have been addressed using f u l l - s c a l e  

t e s t s  as  we l l  as  simulation methods. The values of each s i z e  and weight 

v a r i a b l e ,  together  wi th  the choices of base l ine  veh ic le  conf igurat ions ,  

a r e  explained f o r  each "issue" below. 

2 . 1 . 1  . M e  Loading. Axle load laws a r e  m i t t e n  t o  cons t ra in  the  

loading on both single-  and tandem- ( i .e , ,  , closely-spaced p a i r )  a x l e  

arrangements. The current  f e d e r a l  limits f o r  a x l e  loading on vehic les  using 

the I n t e r s t a t e  Highway System, f o r  example, i s  20,000 15s (9.07 m tons)  f o r  

s i n g l e  ax les  and 34,000 l b s  (15.42 m tons) f o r  tandems. I n  choosing 

vehic les  with which t o  explore the  inf luence of changes i n  ax le  load l i m i t s ,  

i t  is necessary t o  i d e n t i f y  vehic les  whose loading is c u r r e n t l y  const ra ined,  

i n  normal s e r v i c e ,  by the l i m i t a t i o n s  placed upon a x l e  loading. 

Shown i n  Figure 1 i s  the  veh ic le  s e t  se lec ted  f o r  the study of ax le  

loading inf luence.  Of these  veh ic les ,  t11e maximum payload which can be 

c a r r i e d  by t h e  f i r s t  f i v e  veh ic le  types is f requent ly  constrained by a x l e  

load l e v e l s ,  although the  maximum loading of the f ive-axle t r a c t o r -  

s e m i t r a i l e r  (D)  is o f t e n  s inul taneously  constrained by both the  maximum 

allowabie tandem load and the  maximum al.Lowable gross weight. For veh ic les  

A ,  3 ,  C ,  and E ,  the  gross  weight i s  not  d i r e c t l y  constrained by the  f e d e r a l  

l i m i t a t i o n  on gross  weight. Thus, the  a : d e  load l i m i t a t i o n s  represent  a 

de fac to  cons t ra in t  on gross veh ic le  weight. 

I n  the  case of the  f ive-axle doubl? ( F ) ,  i t  would be very r a r e  f o r  

ax le  load l i m i t a t i o n s  t o  se rve  a s  the  d i r e c t  cons t ra in t  on v e h i c l e  load- 

ing. Since the  ax les  a r e  spread s u f f i c i e n t l y  from one another ,  the s ingle-  

axle  load l i m i t a t i o n s  apply such t h a t  a .saxirnum of 20,000 l b s  (9.07 n tons)  

could be l e g a l l y  ca r r i ed  on any o f  the  ax les  a f t  of the s t e e r i n g  axles .  

Nevertheless, a  r a t h e r  l a r g e  f o r e l a f t  b ias  i n  a x l e  load d i s t r i b u t i o n  would 

be required i n  order t o  reach the  20,000,-lb (9.07-m tons) ax le  load l i m i t  

(while the gross  weight otherwise remains wi thin  the f e d e r a l  allowance of 

80,000 l b s  ( 3 6 . 2 8  m tons ) .  

I n  a l l  cases which were s tud ied ,  the  s t e e r i n g  ax le  was taken to be 

"under-loaded," from a l e g a l  point of view, recognizing tha t  s t ee r ing  ax les  
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Figure I. Axle Loading briotion 



a r e  operated a t  r e l a t i v e l y  l i g h t  loads f o r  a v a r i e t y  of reasons encompassing 

s a f e t y ,  r i d e ,  economics, and ease-of-steering considera t ions .  

The loading cases which were covered f o r  each veh ic le  were chosen 

t o  provide: 

1) a common basel ine  case  

2 )  cases which increment the  ax le  load l e v e l s  both up and 

down from the  cur ren t ly  federally-allowed maximums 

3) cases which serve t o  i l l u s t r a t e  the p o s s i b i l i t i e s  which 

e x i s t  f o r  inducing a f o r e / a f t  b ias  i n  load d i s t r i b u t i o n  

and which may become exaggerated through increased ax le  

load allowances i n  the fu tu re .  

2.1.2 Gross Vehicle Weight. Only a c e r t a i n  few of the commonly- 

applied vehic le  configurations have a s u f f i c i e n t  number of axles  t h a t  they 

a r e  able  to  reach the  l e v e l s  of t o t a l  load f o r  which gross vehic le  weight 

l i m i t a t i o n s  a r e  s e t .  Shown i n  Figure 2 a r e  two vehic les  which a re  ab le  

to  be loaded up t o  the  federa l ly-speci f ied  gross load limit of 80,000 

l b s  (36.25 m tons ) .  Although higher values of gross  vehic le  weight a r e  

permitted i n  c e r t a i n  s t a t e s ,  under the "grandfather clause" of the 

Federal Aid Highway Act [ I ] ,  t h i s  study h.as considered gross weight v a r i a t i o n s  

only as per turbat ions  about the 80,000-lb (36.28-111 ton) limit which nomin- 

a l l y  app l i e s  t o  the  veh ic le  types shown i.n the f igure .  These types a r e  

by f a r  the  most p o ~ d a r  i n  i n t e r s t a t e  se rv ice  and thus nave received a 

g rea te r  degree of study he r s .  

The loading v a r i a t i o n s  which a r e  l i s t e d  i n  Figure 2 were chosen to 

provide: 

1) a common base l ine  (cases A-1 and B-1)  

2 )  cases which simply increment the gross  weight up from 

80,000 l b s  (36.28 m tons) (cases A-6,2,7 and 3-5,?,4) 

3) cases covering the s i t u a t i o n  i n  which the t r ac to r -  

s e m i t r a i l e r  is  loaded t o  its gross weight with uniform 

tandem loads ,  and then the f i f t h  wheel pos i t ion  is noved 





a f t  on the  t r a c t o r  ( t o  r ep resen t  t he  common p r a c t i c e  on 

t h e  p a r t  of t r u c k  d r i v e r s  seeking a b e t t e r  r i d e ) ( c a s e s  

A-5 and A-9) 

4 )  a hypo the t i ca l  a l t e r n a t i v e  t o  t h e  b a s e l i n e  t r a c t o r -  

s e m i t r a i l e r  case ,  by which the  c u r r e n t  80,000 l b  (36.28 m 

tons)  gross  weight i s  c a r r i e d  i n  a  more a f t -b i a sed  load 

d i s t r i b u t i o n ,  w i th  35,000 l b s  (15.87 rn tons)  on each tandem 

suspension ( case  A-4) 

5 )  t r a c t o r - s e m i t r a i l e r  and doubles cases  r ep resen t ing  the  pre- 

1974 va lue  f o r  federal ly-al lowed gross  weight of 73,280 

l b s  (33.23 m tons)  ( ca ses  A-3 and B-3). 

I n  t h e  po r t ion  of t he  s tudy p e r t a i n i n g  t o  l eng th  v a r i a t i o n s  and t o  types  

of m u l t i p l e - t r a i l e r  combinations, veh ic l e s  having h igher  than 80,000 l b  

(36.28 rn ton)  gross  weight capac i ty  a r e  considered.  These veh ic l e s  a r e  

each considered a t  one loading  cond i t ion ,  however, and a r e  not  examined i n  

terms of t h e i r  s e n s i t i v i t y  t o  v a r i a t i o n s  i n  gross  weight .  

I n  a d d i t i o n  to  t he  var ious  gross  weight cond i t ions  l i s t e d  i n  t h e  

t a b l e  i n  F igure  2 ,  v a r i a t i o n s  i n  l oca t ion  of t h e  payload mass cen te r  were 

a l s o  examined. While payload placement v a r i a t i o n s  cannot be c i t e d  a s  s i z e  

and weight i s s u e s ,  pe r  s e ,  i t  i s  apparent  t h a t  t h e  s e n s i t i v i t y  of v e h i c l e  

behavior t o  such v a r i a t i o n s  w i l l  be influ.enced by the  abso lu t e  magnitude 

of t h e  payload weight which accompanies the gross  weight allowances. The 

examined v a r i a t i o n s  inc luded a range of v e r t i c a l  and l a t e r a l  placements of 

t h e  payload f o r  cases  of both 80,000 l b  (36.28 m ton)  and 88,000 l b  (39.91 

m ton)  gross  weight. Shown i n  Figure  3 ,  payload placement v a r i a t i o n s  were 

implemented only  on the  two most popular  l ine-haul  v e h i c l e  conf igu ra t ions ,  

t h e  f ive-axle  t r a c t o r - s e m i t r a i l e r  and the  f ive-axle double.  

Shown i n  Figure  4 a r e  a  s e t  of v a r i a t i o n s  i n  the  l o n g i t u d i n a l  loca- 

t i o n  of t he  payload mass cen te r  such a s  c,ome about when a po r t ion  of the  

load  is removed a t  an  in t e rmed ia t e  d e s t i n a t i o n .  Again, these  l a t t e r  va r i a -  

t i o n s  i n  payload placement were examined us ing  va lues  of 80,000 l b s  (36.28 

m tons)  and 88,000 l b s  (39.91 m tons)  f o r  t he  o r i g i n a l  gross  v e h i c l e  weight 

( p r i o r  t o  p a r t i a l  unloading) . 
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In a d d i t i o n  t o  t h e  i n s i g h t  which t h e  payload placement v a r i a t i o n  

cases  g ive  t o  t h e  gene ra l  i s s u e  of g r o s s  weight  al lowance,  t h e  r e s u l t s  of 

t h e s e  e x e r c i s e s  have a l s o  been used simply to  s c a l e  payload i n f l u e n c e s  such 

a s  a r e  be ing  borne by t h e  range of normal t ruck ing  o p e r a t i o n s  c u r r e n t l y .  

For example, it is h e l p f u l  i n  i n t e r p r e t i n g  t h e  s i g n i f i c a n c e  of a  change i n  

g ros s  weight t o  compare t h e  r e l a t i v e  magnitude of t h e  r e s u l t i n g  performance 

change w i t h  t h e  change which occurs  a t  t h e  c u r r e n t  g r o s s  weight  l i m i t ,  

simply due t o  v a r i a t i o n s  i n  payload c .g .  he igh t .  S ince  a l l  k inds  of 

f r e i g h t  a r e  c a r r i e d  every day,  ranging  i n  payload c.g.  h e i g h t s  from approxi-  

mately 70 inches  (178 cm) t o  a s  much a s  110 inches  (279 cm), we can look 

upon t h e  magnitude of t h e  impl ied  changes i n  s t a b i l i t y  and c o n t r o l  a s  

i n d i c a t i n g  performance v a r i a t i o n s  which a r e  being more-or-less "coped with" 

i n  t ruck ing  ope ra t ions ,  today. (Although comparat ive d a t a  of t h i s  s o r t  

w i l l  be presented  l a t e r ,  t h e  r eade r  is advised  t h a t  i t  i s  probably no t  

j u s t i f i e d  t o  assume t h a t  a l l  v e h i c l e  o p e r a t i n g  cond i t ions  which a r e  being 

"coped with" today a r e ,  i n  f a c t ,  o f f e r i n g  equa l  l e v e l s  of s a f e t y  pe r fo r -  

mance. ) 

2.1.3 Vehic le  Length. While p r i o r  t o  1983, t h e  f e d e r a l  govern- 

ment s p e c i f i e d  no c o n s t r a i n t s  on v e h i c l e  l e n g t h ,  a l l  of t h e  s t a t e s  have 

r egu la t ed  va r ious  l e n g t h  l i m i t s  f o r  many yea r s .  The most popular  form of 

l e n g t h  r e s t r i c t i o n ,  over  t h e  y e a r s ,  has  been simply a l i m i t a t i o n  on t h e  

maximum o v e r a l l  l e n g t h  allowed f o r  a  given s t y l e  of v e h i c l e  conf igu ra t ion .  

For example, a l l  of t h e  s t a t e s  have,  i n  t h e  p a s t ,  imposed some r e s t r i c t i o n  

on the  o v e r a l l  l e n g t h  of t r a c t o r - s e m i t r a i l e r  combinat ions.  More r e c e n t l y ,  

because of apparenc c o n f l i c t s  which have a r i s e n  i n  the  manner i n  which 

o v e r a l l  l e n g t h  al lowances a r e  u t i l i z e d ,  t h e r e  have been more s t a t e  regula-  

t i o n s  adopted f o r  l i m i t i n g  t h e  maximum l e n g t h  of t r a i l e r s ,  d i r e c t l y .  

Pre-emptive f e d e r a l  l e g i s l a t i o n  e f f e c t i v e  i n  1983 p r o h i b i t s  t h e  

s t a t e s  from r e g u l a t i n g  o v e r a l l  l e n g t h  on t r a c t o r - s e m i t r a i l e r s  and conven- 

t i o n a l  doubles combinat ions.  Also, t h e  s t a t e s  a r e  prevented from l i m i t i n g  

t r a i l e r  l eng ths  t o  l e s s  than  s p e c i f i c  va lues  f o r  t h e s e  two r e s p e c t i v e  types  

of combinations. These f e d e r a l  s t a t u t e s  may a l s o  have a n a j o r  e f f e c t  upon 

the  c o n f i g u r a t i o n  of t r a c t o r  des igns  s i n c e  t h e r e  w i l l  no longer  be 



compet i t ion  between t h e  t r a c t o r  and t h e  t r a i l e r  i n  t h e  apportionment of 

o v e r a l l  length .  I n  t h e  minds of many, th i . s  compet i t ion  was a t  t h e  r o o t  

of t he  evo lu t iona ry  des ign  process  which Led t o  t h e  s h o r t e s t  of t h e  t r a c t o r  

cab and wheelbase dimensions i n  t h e  p a s t .  

Xoreover, t h e  i s s u e  of v e h i c l e  l e n g t h  c o n s t i t u t e s  a  major p o r t i o n  

of modern s i z e  and weight con t rove r s i e s .  I n  t h i s  s t u d y ,  t e s t  and simula- 

t i o n  e f f o r t s  have addressed a broad range of v e h i c l e  types  which have 

t r a d i t i o n a l l y  been involved i n  controversi .es  over  v e h i c l e  l eng th .  S ince  

t h e  l e n g t h  i s s u e s  a r e  most o f t e n  prompted by t h e  concerns of t h e  t ruck ing  

community f o r  t h e  c a r r i a g e  of low-density f r e i g h t ,  t h e  s tudy  of l e n g t h  impli-  

c a t i o n s  i n  t h i s  p r o j e c t  has  embraced t h e  unusual  "high-cube" combinations 

such  a s  t h e  so-ca l led  "Rocky Mountain Doubles ," "Turnpike Doubles, " and 

T r i p l e s  . 
The a r r a y  of v e h i c l e s  s t u d i e d  w i t h  regard  t o  t h e  i n f l u e n c e  of l eng th  

parameters  on s t a b i l i t y  and c o n t r o l  performance a r e  shown i n  Figure  5. The 

cases  shown inc lude  va r ious  v e h i c l e  types  which a r e  c u r r e n t l y  found i n  one 

form o r  ano the r  i n  va r ious  j u r i s d i c t i o n s  around t h e  U.S. P l e a s e  no te  t h a t  

v e h i c l e  c o n f i g u r a t i o n  G i n c l u d e s ,  i n  one v a r i a t i o n ,  a  "quadruples" combina- 

t i o n  which i s  not  known t o  have been ope ra t ed  anywhere i n  Xorth America, bu t  

which is inc luded f o r  s tudy h e r e  f o r  t h e  sake  of comprehensiveness. 

Each nominal c o n f i g u r a t i o n  is  examined f o r  v a r i o u s  va lues  of l e n g t h  

of t h e  cargo-carrying elements ,  and, i n  t h e  cases  of v e h i c l e s  A ,  3 ,  and C ,  

f o r  va r ious  va lues  of t h e  wheelbase of t he  power u n i t .  For t h e  longe r ,  

m u l t i p l e - t r a i l e r  combinations, t r a c t o r  wheelbase is not  cons idered  a s  a  

v a r i a b l e  s i n c e  a n a l y s i s  has  shown [8,10] t h a t  t r a c t o r  wheelbase is of 

l i t t l e  importance t o  t h e  dynamic p r o p e r t i e s  which a r e  of primary i n t e r e s t  

w i th  t h e s e  v e h i c l e  t y p e s .  

2.1.4 Types of  Mul t ip le-Tra i le r  Combinations. One very  gene ra l  s i z e  

and weight i s s u e  simply concerns the  nominal types  of mu l t ip l e -  t r a i l e r  con- 

f i g u r a t i o n s  which a r e  allowed w i t h i n  a  g iven  j u r i s d i c t i o n .  I n  t h i s  s t u d y ,  a  

number of b a s i c  conf igu ra t ions  were i d e n t i f i e d  , and t h e i r  nominal s t a b i l i t y  

and c o n t r o l  c h a r a c t e r i s t i c s  were evaluatet i .  Shown i n  Figure  6 a r e  t h e  
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v e h i c l e  types  t o  be addressed .  Note t h a t  t h e  f i r s t  v e h i c l e  on ly  inco rpora t e s  

one t r a i l e r ,  bu t  does employ two a r t i c u l a t i o n  p o i n t s  ( thereby c o n s t i t u t i n g  

a " f u l l "  t r a i l e r  r a t h e r  t han  a s e m i t r a i l e r ) .  Although t h e  next  f o u r  

v e h i c l e  combinations could be simply c l a s s e d  a s  "doubles,"  each i s  

d i s t i n g u i s h e d  e i t h e r  by t h e  p e c u l i a r  va lues  of t r a i l e r  l e n g t h s  i n  which they 

a r e  commonly found o r  by t h e  numbers of a x l e s  employed. Also, t h e  "B-train" 

c o n f i g u r a t i o n  shown a s  i t em E d i f f e r s  g e n e r i c a l l y  from t h e  o t h e r s  i n s o f a r  a s  

both t r a i l e r s  a r e  h i t ched  a s  s e m i t r a i l e r s ,  w i th  no independent d o l l y  element. 

The i n c l u s i o n  of " type  of m u l t i p l e - t r a i l e r  combinat ions '~ a s  a  s e p a r a t e  

i s s u e  i n  t h e  s tudy is done p r i m a r i l y  f o r  t h e  convenience of t h e  u s e r  of t h i s  

document who may have only t h i s  s u b j e c t  on h i s  mind. C lea r ly ,  t h e  r e p o r t i n g  

o f  r e s u l t s  f o r  each of t he  v e h i c l e  types  i n  F igure  6 simply draws from t h e  

ex tens ive  d a t a  developed p rev ious ly  i n  behalf  of t h e  v e h i c l e  l eng th  i s s u e .  

Thus, t h e  " types  of combinations" i s s u e  is  included simply f o r  the  sake  of 

comparing the  dynamic behavior  of t h e  d i f f e r e n t  t ypes ,  a s  i f  t h e  type ,  it- 

s e l f ,  was t h e  s u b j e c t  of cont roversy  (which has  occas iona l ly  been t h e  case  

i n  t h e  p a s t  ) . 
2.1.5 Width of Vehicles .  For many y e a r s ,  the  n a t i o n a l  convention 

f o r  the  maximum width of road v e h i c l e s  i n  t h e  U.S. was 96 inches.  Ce r t a in  

s t a t e s  have allowed g r e a t e r  w id ths ,  but  very  few t rucks  were ever  con- 

s t r u c t e d  t o  widths g r e a t e r  than 96 inches  (244 cm). Fede ra l  l e g i s l a t i o n  

enacted i n  1983 has preempted t h e  s t a t e  l i m i t a t i o n s  on width w i t h  a  gene ra l  

allowance of 102-inch (259-cm) width f o r  v e h i c l e s  on roads  having l a n e  

widths of 12  f t  ( 3 . 7  m) o r  more. 

I n  t h i s  s tudy,  the  s u b j e c t  of  width  v a r i a t i o n s  has been covered us ing  

t h e  v e h i c l e  arrangements shown i n  Figure  7 .  The f i g u r e  i d e n t i f i e s  v e h i c l e  

conf igu ra t ions  embodying va r ious  schemes by which a g r e a t e r  width allowance 

n i g h t  be implemented. For an " idea l "  s c e n a r i o ,  t h e  s tudy  considered v e h i c l e s  

which might be  cons t ruc t ed  us ing  a x l e s ,  t i r e s ,  sp r ing  placement, and load  

bed which were a l l  dimensioned to  make f u l l  u se  o f ,  s a y ,  a  102-inch (259-cm) 

allowance. Such an arrangement is  termed " idea l "  i n s o f a r  a s  i t  o f f e r s  the  

g r e a t e s t  improvements i n  dynamic p e r f o r m a n c ~ a r t i c u l a r l y  r o l l  s t a b i l i t y .  

Other p o s s i b l e  implementations of a  102-inch (259-cm) allowance inc lude  the  

mere widening of t h e  load bed wi thout  widening t h e  t i r e  t r a c k  o r  s p r i n g  

spac ing .  





As an a d d i t i o n a l  v a r i a n t  on t h e  width  ques t ion ,  t n e  s tudy  has con- 

s i d e r e d  combination v e h i c l e s  i n  which t h e  t r a i l e r  i s  a t  a  102-inch (259-cm) 

width,  wh i l e  t he  t r a c t o r  is only  96 inches  (244  cm) wide. This  configura-  

t i o n  is  of i n t e r e s t  s i n c e  t h e r e  appears  t o  be very  l i t t l e  commercial i n c e n t i v e  

f o r  widening t r a c t o r s  fo l lowing a l i b e r a l i z e d  width al lowance,  given t h a t  

such widening may imply a r a t h e r  c o s t l y  v e h i c l e  r edes ign  process .  

2.1.6 Cons t r a in t s  i n  Axle Placement Imposed by a Bridge Formula. Hany 

s t a t e s  and t h e  f e d e r a l  government c u r r e n t l y  c o n s t r a i n  t r u c k  a x l e  placement 

and Loading by means of a  so-cal led "bridge formula." Such formulas repre-  

s e n t  t h e  c i v i l  eng inee r ' s  account ing  of t h e  br idge  s t r e s s e s  d e r i v i n g  from 

t h e  mult i -point  l oad ing  of  b r idge  beams by t h e  a x l e s  of a  t r u c k  combination. 

I n  gene ra l ,  b r idge  formulas promote t h e  g r e a t e s t  p o s s i b l e  spreading  of t h e  

a x l e s  on veh ic l e s .  For  example, t he  g ros s  weight ,  W ( l b s ) ,  which can be 

c a r r i e d  on the  I n t e r s t a t e  Highway System i s  l i m i t e d  by t h e  fo l lowing formula: 

where . 

L is t h e  d i s t a n c e  i n  f e e t  between t h e  extremes of any group 
of  two o r  more consecut ive  a x l e s  

N is t h e  number of  a x l e s  under cons ide ra t ion  

C lea r ly ,  t h e  load  al lowance goes up a s  t he  d i s t a n c e  between 

a x l e s  g e t s  l a r g e r  and a s  t h e  t o t a l  number of a x l e s  i n c r e a s e s .  Although t h e r e  

a r e  a  number of s u b t l e  i n t e r a c t i o n s  between the  l ayou t  of a  s e t  of a x l e s  and 

the  b r idge  formula allowance, i t  can be s t a t e d  f a i r l y  simply t h a t  t h e  b r idge  

formula promotes longer  wheelbase t r a c t o r s  and t r a i l e r s .  A t  t h e  same time, 

the  c u r r e n t  f e d e r a l  b r idge  formula c o n s t i t u t e s  a  redundant load  l i m i t  v i t h  

s i n g l e  and tandem load  l i m i t a t i o n s  and wi th  a r b i t r a r y  g ros s  v e h i c l e  weight 

l i m i t s .  Moreover, t h e  b r idge  formula i s  seen  a s  s e rv ing ,  p r i m a r i l y ,  t o  

i n f l u e n c e  the  placement of a x l e s  on v e h i c l e s  meant t o  c a r r y  high l e v e l s  of 

gross  weight. I n  f a c t ,  some propose t h a t  t he  b r idge  formula be used a s  t h e  

only  c r i t e r i o n  f o r  l i m i t i n g  g ross  weight ,  thereby abandoning any a r b i t r a r y  

gross  weight l i m i t s .  I n  regard  f o r  t h i s  p r o p o s i t i o n ,  t h e  g ros s  weights  which 



would be allowed f o r  va r ious  combinations under a  bridge-formula-only g ros s  

weight l i m i t a t i o n  a r e  determined he re  and the  s i g n i f i c a n c e  of such a  con- 

s t r ' a i n t  scheme d iscussed .  

2 .2  A Means f o r  Evalua t ing  t h e  In f luence  of S i z e  and Weight Cons t r a in t s  
on t h e  S t a b i l i t y  and Contro l  P r o p e r t i e s  of Trucks 

Given t h a t  the  above i s s u e s  d e s c r i b e  the  v a r i a t i o n s  i n  v e h i c l e  load- 

i ng  and conf igu ra t ion  which a r e  of i n t e r e s t  h e r e ,  the  s tudy  i s  designed t o  

provide a  methodical  s o r t i n g  ou t  of  t h e  r e l a t i o n s h i p  between changes i n  t hese  

v e h i c l e  d e s c r i p t i o n s  and t h e  r e s u l t i n g  s t a b i l i t y  and c o n t r o l  c h a r a c t e r i s t i c s .  

C lea r ly ,  t he  i n t e r e s t  i n  s t a b i l i t y  and c o n t r o l  c h a r a c t e r i s t i c s  stems from t h e  

conv ic t ion  t h a t  they a r e  somehow r e l a t e d  t o  s a f e t y  performance. This premise 

is  defended by t h e  r a t i o n a l e  t h a t  t h e  d r i v e r ' s  a b i l i t y  t o  c o n t r o l  t h e  

v e h i c l e t o  make i t  go i n  t h e  d i r e c t i o n  he chooses a t  t h e  speed he chooses- 

is u l t i m a t e l y  l i m i t e d  by t h e  physics which de termine  t h e  response  of t h e  

v e h i c l e  t o  s t e e r i n g  and braking  i n p u t s .  Accordingly,  t h e  au tho r s  hypothes ize  

t h a t  l i m i t a t i o n s  i n  t h e  dynamic maneuvering c a p a b i l i t i e s  of heavy t rucks  

s e r v e  to  l i m i t  (1)  t he  v i a b l e  o p t i o n s  whi.ch a r e  open t o  the  t r u c k  d r i v e r  i n  

braking  o r  s t e e r i n g  t o  avoid the  t r a f f i c  c o n f l i c t s  produced by o t h e r  v e h i c l e s  

and ( 2 )  t he  t o l e r a n c e  which is  a v a i l a b l e  t o  compensate f o r  any i n a t t e n t i v e -  

ness  o r  i n d i s c r e t i o n  on t h e  p a r t  of t h e  t:ruck d r i v e r ,  h imsel f .  

I n  c e r t a i n  cases ,  t h e  acc iden t  record  has  been shown to  c o r r e l a t e  very  

c l o s e l y  wi th  c e r t a i n  of t h e  s t a b i l i t y  ancl c o n t r o l  c h a r a c t e r i s t i c s  o f  heavy 

t rucks .  The most dramat ic  of such corre l .a t ions  has been made between t h e  

r o l l o v e r  involvement of t r a c t o r - s e m i t r a i l e r s  and the  nominal l e v e l  of r o l l  

s t a b i l i t y  possessed by accident- involved v e h i c l e s  [15] .  I n  t h i s  ca se ,  t h e  

involvement of t r a c t o r - s e m i t r a i l e r s  i n  r o l l o v e r s  has been seen  t o  i n c r e a s e  

by ten-fold due t o  t h e  change i n  inhe ren t  r o l l  s t a b i l i t y  which fo l lows  from 

t h e  loading  extremes---empty to f u l l y  loaded.  Because t h i s  r e l a t i o n s h i p  i s  

r a t h e r  well de f ined ,  t h i s  s tudy has  made a  p a r t i c u l a r  po in t  of i l l u s t r a t i n g  

t h e  i n f l u e n c e  of s i z e  and weight  f a c t o r s  on t h e  r o l l  s t a b i l i t y  l e v e l s  of 

v e h i c l e s .  



Another ca se  i n  p o i n t  concerns a  dynamic response  c h a r a c t e r i s t i c  which 

is  known t o  be p a r t i c u l a r l y  mani fes ted  by t h e  m u l t i p l y - a r t i c u l a t e d  t r u c k  

comb inat ions-- truck/  f  u l l  t r a i l e r s ,  doubles , and t r i p l e s .  This  phenomenon 

w i l l  be de f ined  l a t e r  a s  t h e  "rearward a m p l i f i c a t i o n "  c h a r a c t e r i s t i c  by which 

a  snaking  a c t i o n  is set  up i n  mult iple-element  t r a i n s  du r ing  r a p i d  s t e e r i n g  

maneuvers such a s  may be undertaken t o  suddenly avoid  an o b s t a c l e .  This  

phenomenon is  such t h a t  t h e  rearmost  t r a i l e r  element exper iences  an  ampli- 

f i e d  tendency t o  be r o l l e d  over i n  t h e  maneuver. The a c c i d e n t  record  i s  

known to  con ta in  v a r i o u s  examples of m u l t i p l e - t r a i l e r  c o n f i g u r a t i o n s  which 

have s u f f e r e d  an  e x t r a o r d i n a r i l y  h igh  inc idence  of a c c i d e n t s  i n  which only  

t h e i r  rearmost  t r a i l e r  has  over turned  [ 2 , 3 , 4 ] .  Thus, i n  t h e  examination of 

t h e  va r ious  types  of m u l t i p l e - t r a i l e r  combinations and t h e  s e n s i t i v i t y  of 

t h e s e  combinations t o  l oad ing  and l e n g t h  v a r i a t i o n s ,  t h e  "rearward ampl i f i -  

ca t ion"  c h a r a c t e r i s t i c  has  been q u a n t i f i e d  as a  key i n d i c a t o r  of s t a b i l i t y  

and c o n t r o l  behavior .  

Other i n d i c a t o r s  of dynamic performance w i l l  a l s o  be de f ined .  With 

each i n d i c a t o r ,  t h e r e  is  a n  under ly ing  hypothes is  t h a t  t h e  i n d i c a t o r  can be 

i n t e r p r e t e d  on a  s c a l e  of more / less  s a f e t y  q u a l i t y .  In t h e  two cases  j u s t  

c i t e d ,  we know t h a t  ( a )  when t h e  va lue  of  t h e  measure increases-  t h e  v e h i c l e ' s  

s a f e t y  q u a l i t y  is d e c l i n i n g ,  and (b)  some b a s i s  e x i s t s  f o r  a s s ign ing  a  

nominal s c a l e  of  importance t o  t h e  measure which is  obta ined .  I n  o t h e r  

words, i n  t hese  c a s e s ,  t h e  hypo thes i s  has  been proven t o  a s u b s t a n t i a l  de- 

gree.  Other  measures w i l l  be used, however, f o r  which t h e  connection between 

t h e  performance i n d i c a t o r  and t h e  a c c i d e n t  record  has not  been e f f e c t i v e l y  

demons t r a t ec+mos t ly  because of  i n s u f f i c i e n t  d e t a i l  i n  t he  coding of a c c i d e n t  

da t a .  The use  of  such i n d i c a t o r s  is  r a t i o n a l i z e d ,  h e r e ,  only  on t h e  s t r e n g t h  

of  a  preponderance of p r o f e s s i o n a l  opin ion  which holds  t h e s e  t o  be important  

measures of s a f e t y  q u a l i t ~ f u l l y  recogniz ing  t h a t  some w i l l  a rgue  t h a t  no 

measure is accep tab le  u n t i l  i t s  connect ion  w i t h  acc iden t  involvement is 

c l e a r l y  demonstrated. Never the less ,  t h e  purpose of t h i s  r e s e a r c h  i s  t o  g i v e  

the  p o l i c y - h e r  t h e  b e n e f i t  of t h e  b e s t  e v a l u a t i o n s  a v a i l a b l e  w i t h i n  t h e  

c u r r e n t  s t a t e  of t h e  a r t .  Accordingly,  t h e  r e s u l t s  c o n s t i t u t e  a  blend of 

measures having a  demonstrated r e l a t i o n s h i p  to s a f e t y ,  t oge the r  w i t h  those  

measures which a r e  s imply he ld  a s  pe r suas ive  t o  t h e  s a f e t y  r e sea rch  

p r o f e s s i o n a l .  



2.2.1 Maneuvering Scenarios Employed i n  Simulation and Vehicle 

Tests .  The s t a b i l i t y  and c o n t r o l l a b i l i t y  of v e h i c l e s ,  under the  influence - 
of v a r i a t i o n s  i n  s i z e  and weight v a r i a b l e s ,  was assessed by ex t rac t ing  

measures of performance from the  response of veh ic les  i n  simulated or  t e s t e d  

maneuvers. That is, the  vehic les  were subjected t o  prescr ibed condi t ions  of 

speed and con t ro l  input  and then the  response t o  those condit ions was quanti-  

f i e d  by means of the " rnea~ures ,~ '  such as  cliscussed e a r l i e r .  I n  each case ,  

the  maneuvering condit ion was s u f f i c i e n t l y  standardized t h a t  d i f fe rences  i n  

the  behavior of vehic les  i n  var ious  s i z e  and weight conf igurat ions  could be 

a t t r i b u t e d  to  the s i z e  and weight va r i ab les  themselves. Five bas ic  types 

of maneuvers were employed i n  the  study.  These maneuvers a r e  l i s t e d  below, 

with the  v a r i a t i o n s  i n  method needed to  determine the d i f f e r i n g  response 

p roper t i e s  of i n t e r e s t .  The measures of performance w i l l  be introduced here ,  

and then defined more completely i n  the  next sec t ion .  

2.2.2.1 S t ra igh t - l ine  braking.  This c l a s s i c  maneuver involves 

braking from a  defined i n i t i a l  speed, wi th  braking input  held constant  

throughout the s top .  I n  successive s t o p s ,  the braking input  l e v e l  i s  in- 

creased u n t i l  a  " c o n t r o l l a b i l i t y  limit" is  reached. This l i m i t  i s  defined 

a s  the condi t ion i n  which lockup i s  achieved a t  a l l  wheels on any s i n g l e  

o r  tandem ax le  s e t .  The l i m i t a t i o n  i n  c o n t r o l l a b i l i t y  which follows from 

t h i s  condit ion der ives  from the  f a c t  t h a t  the  pneumatic t i r e  is  unable t o  

produce the  l a t e r a l  forces  needed f o r  d i r e c t i o n a l  con t ro l  when the  t i r e  has 

ceased to  r o t a t e .  When t h i s  condi t ion has occurred on a l l  wheels of a  

s i n g l e  o r  tandem a x l e  s e t ,  the vehic le  is  e i t h e r  ( a )  unsteerable ,  i f  f r o n t  

wheels a r e  locked, o r  (b)  is  unstable  t o  the point  of producing a  d ivergent  

yaw motion i n  e i t h e r  the  power un i t  o r  t r a i l e r ,  such a s  shown i n  Figure 8 ,  

i f  the wheels on a  non-steering a x l e  s e t  a r e  locked. If the  wheels on a  

d o l l y  a x l e  lock up, the  do l ly  becomes unstable  i n  yaw and r o t a t e s  about i t s  

p i n t l e  hook causing the r e a r  t r a i l e r  t o  s t r i k e  the  lead u n i t .  I f  the  wheels 

on the t r a c t o r ' s  r e a r  ax le  a r e  locked, the  t r a c t o r  becomes unstable  i n  yaw, 

producing the  so-called "jackknife" divergency by which the t r a c t o r  cab 

swings around the f i f t h  wheel center  and ~ v e n t u a l l y  s t r i k e s  the  s i d e  of the 

t r a i l e r .  If the wheels on a  s e m i t r a i l e r  a r e  locked,  a r a t h e r  s luggish  
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i n s t a b i l i t y ,  termed " t r a i l e r  swing," o c c u ~ : w i t h  t h e  s e m i t r a i l e r  r o t a t i n g  

about  t h e  f i f t h  wheel connection.  

I n  t h i s  s tudy  , t h e  s t r a i g h t - l i n e  braking  maneuver was employed only  

f o r  t h e  sake  of c h a r a c t e r i z i n g  limit s topp ing  d i s t a n c e ,  where the  occurrence  

of "axle  lockup,"  a s  d iscussed  above, was taken t o  d e f i n e  t h e  l i m i t  condi- 

t i o n .  Yaneuvers of t h i s  type  were conducted i n  both t h e  f u l l - s c a l e  t e s t  

a c t i v i t i e s  and us ing  computerized s imula t ion .  The s t r a i g h t - l i n e  braking  of 

v e h i c l e s  was examined f o r  ca ses  i nvo lv ing  v a r i a t i o n s  i n  a x l e  l oad ,  g ros s  

weight ,  h e i g h t  of payload c e n t e r  of g r a v i t y ,  and l e n g t h  of v e h i c l e  elements .  

2.2.1.2 Braking i n  a  t u r n .  When a  v e h i c l e  i s  i n  a f a i r l y  normal, 

s t eady  t u r n  cond i t ion  and then  is sub jec t ed  t o  a  s eve re  braking i n p u t ,  t h e  

ensuing l o s s  of c o n t r o l  accompanying wheel lockup cond i t ions  , such as 

summarized above, occurs  very  r a p i d l y .  One can employ t h e  braking-in-a-turn 

t e s t  f o r  c h a r a c t e r i z i n g  e i t h e r  s topp ing  c a p a b i l i t y  o r  t h e  d i r e c t i o n a l  con- 

t r o l  i m p l i c a t i o n s  of t h e  "ax le  lockup" cond i t ions .  I n  t h i s  s t u d y ,  f u l l -  

s c a l e  t e s t i n g  showed t h a t  s topp ing  d i s t a n c e s  achieved i n  a  mild s e v e r i t y  

t u r n  were i n d i s t i n g u i s h a b l e  from those  achieved dur ing  braking  i n  a  s t r a i g h t  

l i n e .  Accordingly, t h i s  type  of maneuver was employed i n  computer simula- 

t i o n s  only  a s  a means of desc r ib ing  t h e  i n f l u e n c e  of t r a c t o r  wheelbase on 

t h e  r a p i d i t y  of  t h e  j ackkn i f e  response  r e s u l t i n g  from lockup of t h e  t r a c t o r ' s  

d r i v e  wheels. 

2.2.1.3 Abrupt ( J - turn)  s t e e r i n g .  An abrupt ly-appl ied  s t e e r  i n p u t ,  

such a s  a  d r i v e r  may execute  upon e l e c t i n g ,  a t  t he  l a s t  moment, t o  fo l low 

a freeway e x i t  ramp, produces bo th  an  i n i i z i a l  t r a n s i e n t  n o t i o n  and,  subse- 

quen t ly ,  a  quasi-s teady t u r n ,  a s  shown i n  F igu re  9 .  Various c o n t r o l  i s s u e s  

a r e  r a i s e d  by the  v e h i c l e ' s  response  t o  such s t e e r  i n p u t s .  Regarding t h e  

t r a n s i e n t  phase of t h e  maneuver, i t  is  we:L1 recognized t h a t  c o n t r o l l a b i l i t y  

degrades when t h e  v e h i c l e ' s  response begins  t o  l a g  excess ive ly ,  i n  time, 

behind t h e  d r i v e r ' s  c o n t r o l  i n p u t .  

When t h e  more-or-less s t eady  response is  achieved,  t he  c l a s s i c  re- 

sponse i tem of i n t e r e s t  concerns a  r a t h e r  s u b t l e  proper ty  which the  dynami- 

c i s t  c a l l s  "unde r s t ee r .  " This proper ty  d e s c r i b e s  t h e  r e l a t i o n s h i p  between 



Figure 9. Layout of  J -Turn Maneuver 



the amount of s t e e r i n g  t h a t  the  d r i v e r  a p p l i e s ,  and the t igh tness  of the  

tu rn  which is  produced. For example, let: us consider a f ixed-ra t io  path 

which can be negotiated a t  near-zero speed by means of a c e r t a i n  input 

angle a t  the s t e e r i n g  wheel. I f  an increas ing steering-wheel angle must 

be appl ied  to  nego t i a te  the  same curve when speed is increased,  the  

veh ic le  i s  sa id  to  exh ib i t  an  understeer behavior. The magnitude of the  

a d d i t i o n a l  s t e e r  input  needed per u n i t  of increas ing l a t e r a l  acce le ra t ion  

descr ibes  the  "understeer gradient" (expressed he re in  i n  u n i t s  of degrees 

of s t e e r  input a t  the f r o n t  wheels per g of l a t e r a l  a c c e l e r a t i o n ) .  'hen 

a v e h i c l e  r equ i res  a decreasing s t e e r  input  to  t r a c k  a f ixed-radius path 

a t  increas ing speed, i t  is  sa id  to exh ib i t  an overs teer  behavior. The 

overs tee r  c h a r a c t e r i s t i c  is apparent  i n  d a t a  presented i n  t h i s  r epor t  

whenever the  "understeer gradient" exhibited by a veh ic le  takes  on a 

negative value. 

While a g rea t  body of l i t e r a t u r e  has been developed on the  understeer 

sub jec t  (e.g., [ 5 , 6 , 7 ] ,  i t  s u f f i c e s  to say here t h a t  small o r  negative 

values of the understeer gradient  become of concern insofa r  a s  a very small 

s t ee r ing  input s u f f i c e s  t o  produce a v e r r  t i g h t  turn .  In an extreme case,  

the vehic le  may become unstable  i n  yaw such t h a t  a moderately-rapid jack- 

knife  type of motion is produced i n  response to  an in f in i t e smal ly  small 

inc rease  i n  s t e e r  input .  

To permit cha rac te r i za t ion  of the unders teer  property,  t e s t  maneuvers 

were conducted using a r a t h e r  rapid  appl. ication of s t e e r i n g  up to a p rese t  

s t e e r i n g  input  which was mechanically l imi ted .  In  successive t e s t  runs ,  the 

s t e e r  l e v e l  was incremented upwards u n t i l  the ro l lover  condi t ion was 

achieved. For the very l a r g e  matr ix  of v e h i c l e  condi t ions  examined using 

computer simulation,  the understeer property was examined by means of a s t e e r  

input which was slowly increased from zero up to the ro l lover  l e v e l .  Thus 

the  computerized maneuvers were implemented by means of an e f f i c i e n t  "sweep" 

through t h e  range of turning responses. 

2.2.1.4 Steady turning.  In addi t ion to the aoove turning condi- 

t ion  i n  which a quasi-steady-state tu rn  is sought f o r  examining the under- 

s t e e r  c h a r a c t e r i s t i c ,  th ree  o ther  measures a r e  obtained from a s t r i c t l y  

steady-turn maneuver. Each of these w i l . 1  be discussed i n  turn .  



a )  The so-called " s t a t i c  r o l l  s t a b i l i t y "  measure descr ibes  the  

maximum s e v e r i t y  turn  which the  veh ic le  w i l l  t o l e r a t e  without 

su f fe r ing  ro l lover .  While t e s t  measurements of t h i s  property 

were obtained by observing r o l l  behavior i n  the  "quasi-steady" 

por t ion of t h e  J-turn maneuver described above, the  simula- 

t i o n  used f o r  t h i s  type of ana lys i s  simply imposed a  sweep of 

t u r n  s e v e r i t y  l e v e l  u n t i l  r o l l o v e r  occurred. The simulation 

model assumes, however, t h a t  the  veh ic le  responds to each 

increment of tu rn  s e v e r i t y  a s  i f  the  input  condi t ion were 

being s t e a d i l y  maintained. The s t a t i c  r o l l  s t a b i l i t y  pro- 

pe r ty  was evaluated f  o r  cases  involving v a r i a t i o n  i n  ax le  

load,  gross  veh ic le  weight, height  and l a t e r a l  placement of 

the  payload cen te r  of g rav i ty ,  and veh ic le  width. 

The low-speed o f f t rack ing  of veh ic le  combinations expresses 

the  r e l a t i v e  ease wi th  which t ight- radius  tu rns  a r e  nego- 

t i a t e d  given t h a t  a l l  t r a i l i n g  elements i n  a  v e h i c l e  combina- 

t i o n  tend t o  t r a c k  inboard i n  such turns .  The involved 

maneuver s inp ly  e s t a b l i s h e s  how f a r  off  of the  path of the  

t r a c t o r ' s  s t e e r i n g  t i r e s  i s  t h e  path  subtended by the  t i r e s  

on the  rearmost ax le  of the  combination during t r a v e l  around 

a  90-degree i n t e r s e c t i o n  turn.  The s p e c i f i c  tu rn  condit ion 

which was employed assumes t h a t  a  35-f t (10.7-m) rad ius  tu rn  

is  subtended by the  ou te r  t i r e  on the t r a c t o r ' s  s t e e r i n g  axle.  

The low-speed o f f t rack ing  ana lys i s  was appl ied only i n  cases 

involving v a r i a t i o n s  i n  veh ic le  length .  

c )  The high-speed off  t racking of vehic les  involves the  tendency 

of t r a i l i n g  u n i t s  t o  " f l i n g  out" away from the center  of a 

t u r n  when t h e  c e n t r i p e t a l  acce le ra t ion  l e v e l  i s  high. The 

a c t u a l  d i s t ance  ou t s ide  of the  path of t h e  t r a c t o r  t i r e s  a t  

which t r a i l e r  t i r e s  might be t racking is  not larg-n the  

order of 2 f e e t  ( . 6  m ) .  Nevertheless,  t h e  phenomenon is of 

i n t e r e s t  because i t  suggests t h e  p o s s i b i l i t y  o f  t r a i l e r  t i r e s  

s t r i k i n g  a curb while t r avers ing ,  say,  an e x i t  ramp on an 

urban expressway ( thus ,  perhaps, i n c i t i n g  a  ro l lover  of the  



combination v e h i c l e ) .  4 s impl i f ied  ana lys i s  of high- 

speed o f f t r ack ing  behavior was employed during the  study to 

show the  inf luence of s e m i t r a i l e r  length ,  and the  configura- 

t i o n  of mul t ip le - t r a i l e r  combinations, on t h i s  c h a r a c t e r i s t i c .  

2.2.1.5 Emergency s t e e r i n g  to  avoid an  obs tac le .  The conduct of a  

normal lane-change maneuver r e q u i r e s ,  f i r s t ,  a counterclockwise and then a  

clockwise r o t a t i o n  of the s t ee r ing  wheel, a s  shown i n  Figure IOa. This 

s t ee r ing  sequence accounts f o r  the i n i t i a l  r e d i r e c t i o n  of the  veh ic le  so 

t h a t  i t  becomes pointed toward t h e  t a r g e t  lane  and l a t e r  provides f o r  the 

recovery of the i n i t i a l  heading a s  the t a r g e t  lane  i s  achieved. When a  

s t ee r ing  input of t h i s  type i s  conducted very rap id ly ,  such a s  shown i n  

Figure lob-attempting t o  avoid s t r i k i n g  an o b s t a c l e t h e  lef t - then-r ight  

sequence tends to s e t  up a  t'crack-the-whip" motion i n  veh ic le  combinations 

having mul t ip le  a r t i c u l a t i o n  points .  This type of motion response i s  of 

s a f e t y  i n t e r e s t ,  a s  suggested e a r l i e r ,  because of the  increased l ikel ihood 

tha t  the  rearmost t r a i l e r  i n  such combination vehic les  w i l l  experience a  

ro l lover .  Since t h i s  phenomenon is  of p r a c t i c a l  s ign i f i cance  only i n  the 

case  of mu1 t ip ly -a r t i cu la ted  veh ic les ,  the "obstacle-avoidance" maneuvering 

scenario has only been applied t o  vehic les  of t h i s  type. 

I n  fu l l - sca le  t e s t s ,  one s e t  of obstacle-avoidance maneuvers was 

conducted using a  pre-established course through which a  t e s t  d r i v e r  guided 

the vehic le .  The course provided an "obstacle" which was 12 f e e t  ( 3 . 5 5  m )  

wide. The t e s t  speed and length  dimensions of the  course were such t h a t  

the  lef t - then-r ight  s t e e r i n g  sequence took place  wi thin  a nominal period of 

approximately 4 seconds. Another s e t  of maneuvers of t h i s  bas ic  type were 

conducted using a  mechanical s t ee r ing  l i m i t e r  device which aided the d r i v e r  

i n  applying balanced Left- and right-going s t e e r  inputs  within a nominal 

2-second period.  The amplitude of the s t e e r  input was sequenced from run 

t o  run i n  order to seek out  the  condit ion which f i r s t  produced ro l lover  of 

the rearmost t r a i l e r  i n  the  veh ic le  combination. 

Simulations covering a  broad a r ray  of veh ic le  conf igurat ions  were 

conducted using a  s impl i f ied  ana lys i s  program which solved f o r  the extent  

of the sagn i f i ed  response which is experienced by the  rearmost t r a i l e r .  The 

measure of performance, termed "rearward ampl i f ica t ion,  " descr ibes  how much 

more severe i s  the ro l lover  impetus experienced a t  the  l a s t  t r a i l e r  than a t  

the t r a c t o r .  
2 9 



figure IOa. Normal Lone Change Maneuver 

Figure lob. Emergency Obstacle 
Avoidance Maneuver 



2.2.2 Measures of Performance. I:n this sec t ion ,  the  measures of 

performance used to  evaluate  veh ic le  response i n  each of the var ious  maneuver 

types w i l l  be described.  I n  genera l ,  the  response of the  veh ic le  i n  time 

i s  f i r s t  expressed i n  terms of time h i s t o r i e s  of the  p e r t i n e n t  va r i ab les  

def in ing the  instantaneous speed, pos i t ion  on the  road,  r o l l  angle,  l a t  e ra1  

acce le ra t ion ,  e t c .  This unwieldy format i s  then reduced i n t o ,  perhaps, a  

p lot  of one response v a r i a b l e  versus another.  F i n a l l y ,  a  scheme is  devised 

f o r  assigning a  s i n g l e  numerical value a s  an  aggregate measure of the over- 

a l l  response. This measure can then be used i n  a  d i r e c t  d i sp lay  of the 

inf luence of some parameter, such a s  length  or  gross  weight f o r  example, on 

veh ic le  s t a b i l i t y  and con t ro l .  I n  t h e  d iscuss ion which follows,  the measures 

used t o  evaluate  s i z e  and weight inf luences  i n  t h i s  study w i l l  be e x p l i c i t l y  

defined.  In  most cases ,  these  measures have been reduced to  single-number 

kinds of cha rac te r i za t ions  such a s  j u s t  descr ibed.  I n  a  few cases ,  only a  

q u a l i t a t i v e  i n t e r p r e t a t i o n  i s  made d i r e c t l y  from da ta  i n  the  time h i s to ry  

format. 

2.2.2.1 S t ra igh t - l ine  braking. S ' t ra ight- l ine  braking performance 

was measured in the  f i e l d  t e s t s  s h p l y  by means of the  stopping d i s t ance  

covered from t h e  i n s t a n t  of pedal app l i ca t ion  t o  the end of the s top .  Simu- 

l a t e d  stopping performances reported i n  t h i s  document were conducted using 

an i n i t i a l  v e l o c i t y  value of 55 mph (88 h / h ) .  

2.2.2.2 Braking i n  a  turn .  illthough f u l l - s c a l e  t e s t s  were run 

measuring stopping d i s t ances  obtained while braking i n  a  curved path ,  the  

braking-in-a-turn r e s u l t s  reported here ,pertain only to  the case  of t r a c t o r  

jackknife response i n  a  turn .  The v e h i c l e  was put i n t o  a  steady tu rn  and 

then braked such t h a t  a l l  wheels on the  d r ive  ax les  of the  t r a c t o r  were 

locked. The purpose of the  maneuver was t o  evaluate  the r a p i d i t y  wi th  which 

the jackknife motions ensued, f o r  t r a c t o r s  of d i f f e r i n g  wheelbase. 

Shown i n  Figure 11 is  a  t y p i c a l  yard r a t e  response of t h e  t r a c t o r  i n  

t h i s  maneuver. The yaw r a t e  v a r i a b l e  ind ica tes  t h e  r a t e  a t  which the 

veh ic le  i s  r o t a t i n g  about i t s  v e r t i c a l  a x i s .  Note t h a t  the  yaw r a t e  s igna l  

r i s e s  to the  i n i t i a l  steady-turn value  and then diverges  upward a f t a r  the  

brakes a r e  applied.  The performance of the  veh ic le  i s  evaluated i n  t h i s  

nanewer  bp two measures--one which is derived from the  yaw r a t e  s i g n a l  and 



Figure II. Tractor Yaw Response Defining The 
Jackknife Diverqence Measure, Delta T 



one which i s  derived from the a r t i cu l a t ion  angle s ignal .  The f i r s t  measure, 

DELTA-T, describes the time which elapses while the yaw r a t e  diverges from 

an i n i t i a l  threshold of 1.05 times the i n i t i a l  steady-turn value to 2.0  

times tha t  value, as  shown i n  Figure 11. This measure was selected to pro- 

vide some ins ight  in to  the differences i n  time response demanded of the 

dr iver  i f  he i s  to take correct ive action to prevent a jackknife. 

The second measure, A R ( 2 - 3 ) ,  describes the average r a t e  of yaw 

ro ta t ion  of the t rac tor  prevailing over the in te rva l  i n  which the a r t icu la-  

t ion  angle went from twice to three times i t s  i n i t i a l  steady-turn value, as 

diagrammed in  Figure 1 2 .  (Note that  the a r t icu la t ion  angle i n  question i s  

the included angle between the center l ine of the t r ac to r  and the center l ine 

of the semi t ra i le r . )  In  other words, the measure describes how rapidly the 

a r t i cu l a t ion  angle is changing, a short  time a f t e r  the jackknifing in- 

s t a b i l i t y  has begun. Clearly, larger  values of t h i s  measure imply that  the 

dr iver  must a c t ,  not only more quickly, but a lso with greater  correct ive 

control action, i f  he i s  to avoid a complete jackknife r e s u l t ,  with the 

t rac tor  cab impacting the s ide  of the t r a i l e r  and the vehicle proceeding out 

of control.  

The larger  the value of e i t he r  of the measures used to describe the 

onset of jackknifing, the poorer the vehicle 's  presumed safety qual i ty .  

2 . 2 . 2 . 3  Xon-constant and quasi-constant radius turning. Shown i n  

Figure 13 are  example yaw r a t e  time h i s to r i e s  f o r  the response of t r a c t o r  

semitrai lers  to  an abruptly-applied (and then held) s teer ing input. In one 

se t  of vehicle response data to be shown l a t e r  in  the report ,  such time 

h i s to r i e s  w i l l  be inspected d i r ec t ly  as  a means of showing that t r a i l e r  

length variat ions have very l i t t l e  influence on the response of t rac tors .  

In general, however, vehicle response in  t h i s  type of maneuver w i l l  be 

characterized by one of two measures. The f i r s t  of these i s  a neasure of 

t ransient  behavior and i s  i l l u s t r a t ed  in  the t r ac to r  yaw r a t e  signal shown 

in  Figure 14. The f igure i l l u s t r a t e s  a response time measure which i s  

defined by the time needed to reach 90% of the steady-state value of yaw 

ra t e .  This measure i s  of in te res t  insofar as  long values of response time 

generally imply tha t  the dr iver  must adopt a more ant icipatory method of 

s teer ing,  s ince the vehicle takes longer to respond. 
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Figure 13. Example Yaw Rate Responses of Tractor 
and Semitrailer to an Abrupt Steer Input 
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The second measure, and the  one used most widely i n  t h i s  r epor t  to 

charac te r i ze  the tendency toward yaw i n s t a b i l i t y  i n  response to  s t e e r i n g ,  is 

shown i n  Figure 15. The f i g u r e  shows a p l o t  of the  so-called "handling 

diagram" of a t ruck o r  t r a c t o r ' s  yaw response. The p l o t  is constructed using 

a s e t  of response va r i ab les  and veh ic le  parameters which have a c e r t a i n  

s p e c i a l  r e l a t ionsh ip  t o  one another i n  the c l a s s i c a l  ana lys i s  of veh ic le  yaw 

behavior (see,  e .g . ,  [6,7]). Basical ly ,  the handling diagram shows how the 

s t e e r i n g  gain changes with increas ing l e v e l s  of l a t e r a l ,  or  c e n t r i p e t a l ,  

acce le ra t ion .  I f  a  veh ic le  exh ib i t s  a behavior which is curving upward and 

toward the r i g h t  on the handling diagram a s  l a t e r a l  acce le ra t ion  inc reases ,  

it could be sa id  to  i l l u s t r a t e  an increas ing s t e e r i n g  gain with increas ing 

s e v e r i t y  of turn.  I n  f a c t ,  t h e  l o c a l  s lope a t  any point  along the handling 

curve d i r e c t l y  reveals  the  l e v e l  of the  so-called "understeer gradient"  which 

was discussed i n  Section 2.2.1. For purposes of presenting r e s u l t s  i n  a 

condensed fo rm i n  t h i s  r e p o r t ,  the value of understeer gradient  p reva i l ing  

a t  an a r b i t r a r y  l a t e r a l  acce le ra t ion  l e v e l  of 0.25 g ' s  w i l l  be evaluated f o r  

each of the condi t ions  involving s i z e  and weight v a r i a t i o n s .  Note t h a t  the  

understeer gradient  is defined a s  the  nesat ive  inverse  of the l o c a l  s lope of 

the handling diagram. 

The concern which prompts the  s e l e c t i o n  of such a measure is  to  

i d e n t i f y  veh ic les  f o r  which the  s t e e r i n g  gain  increases  inord ina te ly  with 

increased tu rn  s e v e r i t y .  Such a behavior implies t h a t  the d r ive r  w i l l  be 

confronted with a highly s e n s i t i v e ,  and possibly even unstable ,  response t o  

s t e e r i n g  during a severe  cornering maneuver such a s  occurs upon enter ing an 

interchange ramp a t  excessive speed. A response c h a r a c t e r i s t i c  of t n i s  

type i s  shown a t  the  right-hand curve of Figure 15. In  f a c t ,  the s lope of 

t h i s  curve i n  the v i c i n i t y  of .25 g l a t e r a l  acce le ra t ion  is such t h a t  the  

understeer gradient  has approached a value of -3.47 a t  which the veh ic le  

operating a t  55 mph (88 h / h )  is d i r e c t i o n a l l y  unstable .  That i s ,  when 

such a veh ic le  is being operated a t  t h i s  speed and tu rn  s e v e r i t y ,  the  

veh ic le  w i l l  exh ib i t  a  continuously growing yaw motion i n  response to any 

s t e e r i n g  per turbat ion.  To successful ly  d r i v e  such a veh ic le  a t  t h i s  operat-  

ing po in t ,  the  d r i v e r  must be continuously compensating f o r  the inherent  

tendency t o  jackknife throughout the cot  nering maneuver. 

It should be pointed out  here t h a t  the person concerned only with 

the  sa fe ty  aspects  of policy making on s i z e  and weight i s sues  may have l i t t l e  
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o r  no i n t e r e s t  i n  the  d e t a i l s  of the  ana lys i s  of veh ic le  yaw response. Thus, 

to  serve the  needs of these readers ,  the  r a t h e r  complex mat ter  of s t ee r ing  

gain a t  higher turn s e v e r i t i e s  has been reduced t o  a s i n g l e  measure, the 

understeer gradient  appearing a t  0.25 g ' s t r a c t o r  l a t e r a l  acce le ra t ion .  Given 

the manner i n  which simulated s t ee r ing  inputs  were applied to  inves t iga te  

these  phenomena ( t h a t  i s ,  i n  a quasi-steady ramp fashion) ,  the  value of the 

understeer gradient  l i k e l y  t o  be found on a t y p i c a l  t r ac to r - semi t ra i l e r  is  

i n  the  vici ini ty of t2.5 deglg. When we f ind t h a t  a change i n  some s i z e  and 

weight v a r i a b l e  produces a lower, and pe.rhaps even negative,  value of t h i s  

measure, we can conclude thac t h e  s t e e r i n g  con t ro l  qua l i ty  of the  v e h i c l e  is  

degrading. A s  i n  a l l  o the r  measures used t o  present  r e s u l t s  here,  however, 

the f i n a l  evaluat ion of performance change r e s t s  upon a comparison between 

measures obtained i n ,  say ,  a basel ine  case  versus measures obtained with a 

s i z e  or  weight change. 

2 .2 .2 .4  Constant-radius turning.  Three measures of performance 

were derived from d i f f e r e n t  maneuvering scenar ios  employing nominally- 

constant-radius turns .  

The f i r s t  of these  measures q u a n t i f i e s  the " s t a t i c  ro l lover  threshold" 

of the  vehic le .  Shown i n  'Figure 16 i s  an i l l u s t r a t i o n  of the  l a t e r a l  accel-  

e r a t i o n  versus r o l l  angle r L a t i o n s h i p  f o r  a t r ac to r - semi t ra i l e r  t h a t  i s  

subjected to steady turning i n  progressively t i g h t e r  turns .  The f i g u r e  

shows t h a t ,  a s  l a t e r a l  acce le ra t ion  increases ,  "wheel l i f t o f f "  occurs a t  

one ax le  and then another u n t i l  ro l lover  occurs. That i s ,  the  typ ica l  case 

i s  that the wheels on the ins ide  of the turn  do not become unloaded simul- 

taneously, but r a t h e r  i n  a progressive sequence depending upon the  suspension, 

t i r e ,  and veh ic le  s t r u c t u r a l  s t i f  fnesses  involved. It follows,  then, t h a t  

wheel l i f t o f f ,  per s e ,  i s  an i n s u f f i c i e n t  ind ica to r  of the imminent ro l lover  

condit ion.  

Accordingly, a measure of the  ro l lover  r e s i s t ance  which a veh ic le  

provides has been defined i n  terms of the  peak value of l a t e r a l  acce le ra t ion  

which the  veh ic le  can t o l e r a t e  without proceeding to  a complete r o l l o v e r -  

regardless  of which wheels may have l i f t e d  off  of the  ground a t  the  

occasion of reaching t h i s  peak. Shown i n  Figure L i  i s  a p l o t  of the  l a t e r a l  

acce le ra t ion  versus r o l l  angle response f o r  two t r ac to r - semi t ra i l e r s .  The 

vehic le  labeled "A" shows a peak l a t e r a l  acce le ra t ion  value of 0.325 g ,  and 
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the peak condition involves a rather  low, 6-degree, value of t r a i l e r  r o l l  

angle. The vehicle labeled "B" shows an intermediate peaking behavior i n  

the v ic in i ty  of a 6-degree r o l l  angle and then reaches an overal l  peak value 

of 0.278 g a t  around 14 degrees of t r a i l e r  r o l l  angle. The r o l l  s t a b i l i t y  

of both vehicles would be reported, here,  simply in  terms of the respective 

maximum values of l a t e r a l  acceleration which define the i r  "rollover thresholds. I' 

The "low-speed off tracking" behavior of a r t icu la ted  vehicles was 

characterized according to  the wheel paths exhibited during the t rave l  of 

the vehicle around a 90-degree intersect ion corner. Shown i n  Figure 18 is 

an example s e t  of inner- and outer-most wheel paths for  a t ractor-semitrai ler  

combination negotiating the intersect ion.  The f igure defines the "maximum 

path width" which i s  used to report the low-speed offtracking r e su l t s  i n  

t h i s  report.  

"High-speed offtracking" was examined i n  t h i s  study only by neans of 

a simplified analysis looking a t  the behavior of one t r a i l e r  a t  a time. The 

accumulated offtracking at ta ined on a multiple-unit combination was simply 

obtained by adding the contributions to  of ftracking introduced by the sum 

of the vehicle 'elements. The high-speed off tracking measure i s  simply the 

rad ia l  distance from the path inscribed by the ourside t i r e  on the : rac tor fs  steer-- 

ing axle to that  of the outside, rearmost t r a i l e r  t i r e ,  as shown in  Figure 19. 

2.2.2.5 Emergency s teer ing to avoid an obstacle. Computerized 

simulations have been conducted to evaluate the so-called "rearward ampli- 

f ication" behavior of multiply-articulated combinations i n  various length 

and weight configurations. The key response variable  upon which the rear- 

ward amplification measure i s  based is the l a t e r a l  acceleration response. 

A s  shown in  Figure 20, the left-then-right s teer ing input produces a similar 

type of l a t e r a l  acceleration response from each of the vehicle elements. The 

rearward amplification measure i s  obtained by comparing the l a t e r a l  accel- 

e ra t ion  response of the t rac tor  with tha t  of the rearmost t r a i l e r .  This 

measure defines the r a t i o  of the peak value of l a t e r a l  acceleration a t  the 

rear  t r a i l e r  to  the peak value of l a t e r a l  acceleration occurring a t  the 

t rac tor .  By th i s  r a t i o ,  we obtain a measure which describes the vehicle 's  

a b i l i t y  to amplify, a t  the l a s t  t r a i l e r ,  the severi ty  of the maneuver which 

was i n i t i a t e d  a t  the t rac tor .  
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Figure 19. High Speed Offtracking in a Steady Turn 
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To the degree tha t  d i f fe r ing  obstacle-avoidance emergencies impose 

d i f fe r ing  leve ls  of demand for  the severi ty  of the avoidance maneuver which 

i s  needed, the vehicle showing a lower l eve l  of rearward amplification w i l l  

be ab le  to achieve a wider l a t e r a l  displacement to  c lear  an obstacle  with- 

out suffer ing rollover of its l a s t  t r a i l e r .  Thus lower values of rearward 

amplification a re  desirable  and a r e  expected to r e su l t  i n  fewer incidences of 

rear - t ra i le r  rol lover  i n  actual  service.  

2 . 3  Test and Simulation Methods 

The influence of s i z e  and weight var iables  on the dynamic behavior of 

trucks and truck combinations was studied by means of So t h  ful l -scale  t e s t s  

and computerized simulation. A t o t a l  of nine d i f f e r en t  vehicle combina- 

t ions were se t  up f o r  fu l l - sca le  tes t ing ,  covering a t o t a l  of 24 cases 

addressing s i z e  and weight variables.  The vehicles,  t e s t  equipment, pro- 

cedures, and de ta i led  r e su l t s  pertaining to the t e s t  program a r e  presented 

i n  Volume 11. The t e s t  data have been scrutinized and compared with the 

r e su l t s  obtained using computer simulations. ' Various comparisons of these 

data  s e t s  a r e  presented i n  Section 2 . 3  of Volume 11, showing tha t  the t e s t  

r e su l t s  basical ly  confirm the simulation findings in the major areas 

studied. 

h t o t a l  of 1 2  d i f fe ren t  vehicle configurations were examined using 

computerized simulations, covering some 156 s i z e  and weight conditions. 

Since the t e s t  and simulation r e su l t s  have been found to be i n  broad agree- 

ment and s ince the simulated matrix of conditions i s  much more complete 

(and, of course, more cleanly controlled) than tha t  covered by ful l -scale  

t e s t s ,  the data presented in  t h i s  volume of the report  ;rill be drawn almost 

exclusively from the simulation resu l t s .  

2 . 3 . 1  Simulation Models Used. The simulation r e s u l t s  were 

obtained using eight d i f fe ren t  computer programs, ranging over a broad scale  

of complexity. These basic  computerized tools a r e  l i s t e d  below. 



1 )  S impl i f i ed  Braking Model -- used i n  c a l c u l a t i n g  t h e  nominal 

i n f l u e n c e  of  loading  and l e n g t h  parameters  on s topp ing  

d i s t a n c e  performance. 

2 )  Simpl i f i ed  "Rearward .lmplif i c a t i o n "  Analys is  [8 1 -- 
employing a  s p e c i a l i z e d  l i n e a r  a n a l y s i s  f o r  c a l c u l a t i n g  

t h e  rearward a m p l i f i c a t i o n  e x h i b i t e d  by each v e h i c l e  element 

and by t h e  t o t a l  combination of elements  comprising a  mul t ip le-  

u n i t  t r a i n .  

3 )  Low-Speed Of f t r ack ing  Model - -  used t o  c a l c u l a t e  wheel pa ths  

of  mul t ip le-uni t  t r a i n s  when n e g o t i a t i n g  a  90-degree i n t e r -  

s e c t i o n  a t  zero  speed.  

4 )  High-Speed Of f t r ack ing  Analysis  [ 9 ]  -- used t o  c a l c u l a t e  t h e  

e x t e n t  of outboard o f f t r a c k i n g  of s e n i t r a i l e r s  du r ing  

corner ing  a t  highway speeds .  

5 )  Linear  Yaw Plane  Model [LO] - -  used f o r  e v a l u a t i n g  t h e  r e a r -  

ward a m p l i f i c a t i o n  of mu1 t i p  l e - u n i t  t r a i n s  i n  t hose  cases  i n  

which a l o a d  b i a s  e x i s t s  such t h a t  f r o n t -  and r ea r - loca t ed  

t i r e s  a r e  no t  being loaded uniformly.  

6) S t a t i c  Ro l l  Model [ I l l  -- f o r  e v a l u a t i n g  the  s t a t i c  r o l l o v e r  

t h re sho ld  on v e h i c l e s  having d i f f e r i n g  load ing  and width  

conf igu ra t ions  . 
7 )  Yaw/Roll Model [12] - used f o r  eva lua t ing  yaw s t a b i l i t y  and 

o t h e r  t r a n s i e n t  and s t e a d y - s t a t e  c h a r a c t e r i s t i c s  of v e h i c l e  

response  t o  s t e e r i n g  inpu t .  

8) "Complete" HandlinglBraking Nodel [13] -- used f o r  confirm- 

ing  t h e  braking  performance r e s u l t s  obta ined  us ing  t h e  

s i m p l i f i e d  braking  program and f o r  e v a l u a t i n g  t h e  dynamics 

of t r a c t o r  j ackkn i f e  du r ing  braking  i n  a  t u rn .  

The broad ma t r ix  of cases  t o  be s tud ied  by means of s imu la t ion  

n e c e s s i t a t e d  a  p l a n  f o r  e f f i c i e n t l y  e v a l u a t i n g  a  l a r g e  number of v e h i c l e  

conf igu ra t ions  and maneuvering cond i t ions .  Accordingly,  the  mu1 t i p l i c i t y  



of models which were used here  simply r e f l e c t s  the  authors '  view of the  

b e s t  approach toward accomplishing the  work. As indicated above, models 1 

and 3 were developed i n  the  course of t h i s  work, while models 2 and 4 through 

8 were developed previously and have been documented i n  the  c i t e d  references .  

2 . 3 . 2  Conventions Per ta in ing  t o  Vehicle Descriptions.  I n  order  t o  

conduct the  simulation exerc i se  i n  a fashion which revea l s  t h e  inf luence 

of s i z e  and weight va r iab les  wi th  a minimum of confusing cross- inf luences  

from o ther  v a r i a b l e s ,  a number of conventions were adopted. I n  general ,  

these conventions were intended t o  s tandardize  veh ic le  desc r ip t ions  and 

payload-placement p rac t i ces  so  t h a t  more o r  l e s s  " typical"  commercial truck- 

ing operat ions  were represented.  Since,  of course,  the re  e x i s t s  a tremen- 

dous range of equipment design and payload placements p reva i l ing  i n  a c t u a l  

service ,  the  f indings  of t h i s  s tudy must be viewed a s  represent ing some 

s o r t  of "median" s e n s i t i v i t i e s  to  s i z e  and weight va r iab les .  Although the  

degree of genera l i ty  of these  f indings  is  not  explored here ,  the authors  

suggest  t h a t  t h e  cases i n  which payload placement was purposely varied i n  

a l l  th ree  dimensions (see  Sect ion 3.3) should provide use fu l  d a t a  f o r  those 

concerned with trucks having "non-median" loading.  

Unless otherwise s p e c i f i e d  i n  the  repor t ing of r e s u l t s ,  the  follow- 

ing conventions were adopted. 

Tires  -- A l l  vehic les  were equipped with a r ib-tread r a d i a l  t i r e ,  - 
s i z e  LO. 00R20/load range G.  

Suspensions -- Steer ing  ax les  on t r a c t o r s  and trucks were represented 

with p roper t i e s  typifying 12,000 l b  (5.44 m ton) gross  a x l e  weight r a t i n g s  

(GAWR). S ingle  axles  on the  r e a r  of t r a c t o r s  o r  t rucks  o r  on t r a i l e r s  

o r  d o l l i e s  were represented with p roper t i e s  typifying 23,000 l b  (10.43 m 

ton) GAWR equipment. Tandem axles  on t rucks ,  t r a c t o r s ,  t r a i l e r s ,  and d o l l i e s  

were represented with p roper t i e s  typifying conventional four-spring suspen- 

s ions  having 38,000 lb (17.23 m ton) GAWR. O f  course,  the  unsprung axle 

weights character iz ing d r ive  axles  were appropr ia te ly  higher than the weights 

of t r a i l e r  axles .  



Brakes - Brake torque output was proportioned among the  ax les  

according to  a t y p i c a l  p r a c t i c e  of s i z i n g  torque capaci ty  t o  the  a x l e  

weight r a t i n g .  This p r a c t i c e  d i s t ingu i shes  between the  t r a c t o r  s t e e r i n g  

axle ,  t r a c t o r  d r i v e  a x l e s ,  and t r a i l e r  ax les ,  yroviding brake torque ga ins ,  

per  l b  of GAWR, which a r e  r a t ioed :  1.0 t o  0.8 t o  0.9 f o r  the  th ree  respec- 

t i v e  ax le  loca t ions .  These proportions were applied uniformly , according 

to  the GAWR of both s i n g l e  and tandem a:cle s e t s .  (Note t h a t  t h i s  p r a c t i c e  

would appear, a t  f i r s t  glance,  to  imply a r a t h e r  s t rong braking c a p a b i l i t y  

a t  the  t r a c t o r  s t e e r i n g  axle.  I n  f a c t ,  the  f r o n t  brakes a r e  t y p i c a l l y  found 

to  be q u i t e  i n e f f i c i e n t  con t r ibu to r s  to  the veh ic le '  s o v e r a l l  stopping 

c a p a b i l i t y ,  given t h a t  these brakes a r e  capable of supporting only a small 

l e v e l  of r e t a r d a t i o n  fo rce  a t  the  f r o n t  t i r e s  i n  comparison with the  high 

l e v e l  of dynamic load which p r e v a i l s  a t  rhe f r o n t  a x l e  during a stop .) 

Payload Placement -- I n  a l l  base l ine  veh ic le  conf igurat ions ,  t r a i l e r s  

were represented wi th  a composite c .  g .  height  of 80 inches (203 cm) . The 

"composite" mass was defined t o  include the  t r a i l e r  body plus  the  7ayload. 

I n  genera l ,  t h i s  convention implies a payload c . g . height of approximately 

84 inches (213 cm). When veh ic le  lozding was increased to represent  a 

g r e a t e r  gross  weight o r  ax le  weight allowance, the new payload c .g .  height  

was ca lcu la ted  a s  follows: 

-Given the i n t e r i o r  volume of the involved t r a i l e r ,  the dens i ty  

of a  homogeneous payload which y i e l d s  t h e  base l ine  value of 

c. g . height was determined. 

-The a d d i t i o n a l  volume of a payload of t h i s  dens i ty  needed to  

reach the new weight l e v e l  was determined. 

-This a d d i t i o n a l  amount of " f re igh t"  was considered to  be 

added on top of  the  e x i s t i n g  load of f r e i g h t .  

Thus, whenever load was increased,  using t h i s  convention, both the 

weight and the  c. g. height  of the  payload increased.  The r a t i o n a l e  f o r  

t h i s  convention is t h a t  those trucking operations which can u t i l i z e  an 

increased gross o r  ax le  weight allowance a r e  the ones which a r e  c u r r e n t l y  

t ranspor t ing f r e i g h t  i n  non-cube-full loads. That is ,  they can make use of 

the add i t iona l  allowance because they s t i l l  have room l e f t  i n  t h e i r  t r a i l e r s .  



Vhen t h e  al lowance is g ran ted ,  however, t h e  a d d i t i o n a l  f r e i g h t  i s ,  f  igura-  

t i v e l y  speaking ,  p laced  on top of  t h e  e x i s t i n g  load .  While i t  i s  recognized 

t h a t  t h e  a c t u a l  loading  scheme becomes modified i n  t h e  c a s e  of mixed-density 

f r e i g h t  f o r  which t h e  denser  products  a r e  loaded on t h e  bottom, t h e  homo- 

geneous case  is used a s  a  r e f e r e n c e  because i t  is  both t h e  s i m p l e s t  and one 

of t h e  most d e s t a b i l i z i n g ,  from t h e  p o i n t  of view of e l e v a t i n g  t h e  composite 

c .g.  he igh t .  

I n  a d d i t i o n  t o  t h e  use  o f  t h e  above convention f o r  e s t a b l i s h i n g  c.g. 

h e i g h t ,  t he  yaw, p i t c h ,  and r o l l  moments of  i n e r t i a  of loaded t r a i l e r s  were 

determined us ing  the  same assumptions f o r  payload d i s t r i b u t i o n .  

Xany o t h e r  parameters  d e s c r i b i n g  geometr ic ,  i n e r t i a l ,  k inemat ic ,  

and compliance c h a r a c t e r i s t i c s  of  t h e  v e h i c l e  types  under s tudy  were f i x e d  

t o  r e p r e s e n t  t y p i c a l  equipment. These d e s c r i p t i o n s  a r e  documented i n  

Volume 11. 



CHAPTER 31 

P ~ S E N T A T I O N  OF FINDINGS 

This chapter of the  repor t  presents  the  r e s u l t s  of computerized 

simulations which i l l u s t r a t e  the f indings  r e l a t i n g  s i z e  and weight va r i -  

ab les  to  measures of s t a b i l i t y  and control..  This p resen ta t ion  i s  organized 

according t o  s i z e  and weight i s sues .  That: i s ,  having arranged the simula- 

t i o n  study to  examine the  inf luence of s p e c i f i c  changes i n  a x l e  load ,  gross  

veh ic le  weight, e t c . ,  on the  behavior of s p e c i f i c  veh ic le  types,  t h e  r e s u l t s  

can be presented according t o  the  "axle  load i s sue , "  the  "gross weight 

i s sue , "  and so  on. For each i s s u e ,  r e s u l t s  w i l l  be presented and the  

apparent s ign i f i cance  t o  t r a f f i c  s a f e t y  wi.11 be discussed.  For each i s s u e ,  

a l l  of the r e s u l t s  a v a i l a b l e  per ta in ing t o  t h a t  i s s u e  w i l l  be presented,  

even though c e r t a i n  por t ions  of those  data  may a l s o  appear under the  heading 

of another s i z e  and weight i s sue .  For example, c e r t a i n  of the increases  i n  

.axle  load which were s tudied cause the  gross veh ic le  weight to  exceed 

cur ren t  gross weight l imi ta t ions .  Thus the da ta  pe r t a in ing  to veh ic les  i n  

such a  conf igurat ion would appear i n  the  presenta t ions  covering both the 

ax le  load and gross weight i s sues .  

Var ia t ions  i n  the maximum load permitted on e i t h e r  s i n g l e  o r  tandem 

ax les  were examined using s i x  d i f f e r e n t  veh ic le  conf igurat ions .  The follow- 

ing performance ca tegor ies  were hypothesized t o  be of i n t e r e s t  i n  connection 

with ax le  load allowances: 

I )  Stopping Distance 

2 )  Yaw S t a b i l i t y  

3) Roll  S t a b i l i t y  

4 )  Rearward Xmplif i c a t i o n  

The inf luences  o f  axle  load l i m i t  on each of these  performance ca tegor ies  

is presented below. 



3.1.1 Stopping Dis tance .  The minimum s topping  d i s t a n c e  performance 

of any road v e h i c l e  depends upon t h e  fo l lowing f a c t o r s :  

I)  The dynamic loads  imposed upon each t i r e  du r ing  t h e  

s t o p  

2) The brake  torque  which is developed a t  each wheel 

3) The p r e v a i l i n g  t i r e / r o a d  f r i c t i o n  l e v e l .  

I n  g e n e r a l ,  d i f f e r e n c e s  i n  braking performance due t o  the  des ign  of d i f f e r -  

i n g  v e h i c l e s ,  o r  due t o  d i f f e r i n g  load  c o n d i t i o n s  on t h e  same v e h i c l e ,  

d e r i v e  from d i f f e r e n c e s  i n  t h e  r e l a t i o n s h i p  between t h e  loads  imposed a t  

each wheel and t h e  r e s p e c t i v e  brake  torque  l e v e l s  which a r e  developed. The 

key i s s u e  i n  determining performance , then,  i nvo lves  the  "balance" between 

t h e  imposed wheel l oads  and t h e  app l i ed  torques .  When t h e  to rque  Level 

becomes too g r e a t ,  g iven  t h e  wheel l oad ,  lockup occur s ,  w i th  i t s  a t t e n d a n t  

t h r e a t  of l o s s  of c o n t r o l .  When the  wheel load  is l a r g e  r e l a t i v e  t o  the  

a v a i l a b l e  brake  torque ,  t h e  b rake  w i l l  " s a t u r a t e "  i n  i t s  torque  output  such 

t h a t  t he  maximum s topp ing  p o t e n t i a l  w i l l  n o t  be r e a l i z e d .  

Heavy t rucks  have many d i f f i c u l t  problems i n  regard  t o  t h e  torque  

ba lance  i s s u e ,  i n  p a r t  because of t h e  tremendous changes i n  t h e  l e v e l  and 

d i s t r i b u t i o n  of l o a d ,  from a x l e  t o  a.xle, which occur due t o  changes i n  

l oad ing  s t a t e .  F u r t h e r ,  t h e r e  a r e  very  l a r g e  d i f f e r e n c e s  i n  t h e  braking 

performances of d i f f e r i n g  t r u c k s .  I t  is known, f o r  example, t h a t  wide 

v a r i a t i o n s  e x i s t  i n  ( a )  t h e  braking  performance c a p a b i l i t i e s  measured among 

d i f f e r i n g  t r u c k  braking  sys  t e n s ,  under c a r e f u l l y  c o n t r o l l e d  cond i t ions  ( s e e  

f o r  example, [16])  , (b) t h e  to rque  performance of i n d i v i d u a l  t r u c k  brakes ,  

from day t o  day [ 2 4 ] ,  and ( c )  t h e  s t a t e  o f  maintenance of t r u c k  braking  

systems on t h e  road [ 2 5 ] .  

A s  w i l l  b e  shown, t hen ,  i t  i s  p o s s i b l e  t h a t  i nc reased  a x l e  load  w i l l  

s e r v e  t o  i n c r e a s e  t h e  s topp ing  d i s t a n c e s  achieved by c e r t a i n  t rucks  and 

dec rease  t h e  s topping  d i s t a n c e s  achieved by o t h e r s .  I n  f a c t ,  t o  pu t  i t  

s imply ,  a s  long a s  t h e  changes i n  l oad ing  which a r e  being cons idered  a r e  

reasonably  small ( s a y ,  10 t o  20%) ,  t rucks  can be found which w i l l  g i v e  almost  

any l e v e l  of braking  performance t h a t  one could reasonably  expect .  Given 



t h i s  s t a t e  of a f f a i r s ,  i t  i s  disconcer t ing t h a t  the re  a r e  no survey d a t a  

ava i l ab le  showing how the a c t u a l  brake system behavior of trucks i s  d i s -  

t r i b u t e d  over the prevai l ing t ruck ?opulation.  One concludes, then,  t h a t  

i t  is not poss ible  t o  provide a d e f i n i t i v e  assessment of the l i k e l y  influence 

of any weight change on the  stopping performance of t rucks  i n  s e r v i c e  today. 

Thus, the  ob jec t ives  of t h i s  s tudy,  as they apply to  braking performance, 

can only be met i n  the  context of examples of t ruck braking system perfor-  

manc e . 
The reader w i l l  note  t h a t  t h i s  s i t u a t i o n  i s  seen a s  pecul iar  to  

the  braking performance sub jec t  and does not apply to  the o t h e r  aspects  of 

t ruck  s t a b i l i t y  and control  behavior which w i l l  be t r ea ted .  I n  the authors '  

assessment of the s t a t e  of knowledge on these mat te r s ,  the braking perfor-  

mance of trucks s tands  out  as pecu l i a r ly  eluding an order ly  examination of 

" represen ta t ive  behavior." 

Simulations run i n  t h i s  study invol-ved vehic les  which were o u t f i t t e d  

with brake systems as described i n  Sect ion 2 . 3 . 2 .  These cases a r e  seen a s  

represent ing typ ica l  p r a c t i c e  i n  new ven ic le  design a s  i t  was pract iced i n  

accordance with the f e d e r a l  braking standard,  FWSS 121, over the  period 

1978 through 1982. These brake systems a r e  r e l a t i v e l y  high i n  torque capacity 

except f o r  brakes on t h e  s t e e r i n g  axle.  llhus the v e h i c l e ' s  stopping dis-  

tance performance i s  t y p i c a l l y  l imi ted  by the occurrence of wheel lockup 

r a t h e r  than by s a t u r a t i o n  i n  brake torque. Vehicles subjected to f u l l -  

s c a l e  t e s t s  i n  t h i s  study were character ized by a mix of brakes,  some of 

which could produce the  torque l e v e l s  needed f o r  wheel lockup on dry road 

su r faces ,  and some of which were l imi ted  i n  torque capacity such t h a t  lockup 

could not be reached. 

Shown i n  Figure 21, s imulat ion r e s u l t s  a r e  supplemented with samples 

of t e s t  da ta  so as to  give a broad view of the poss ib le  inf luences  of ax le  

load v a r i a t i o n s  on stopping d i s t ance  capab i l i ty .  The f i g u r e  shows minimum 

stopping dis tances  achieved from 5 5  mph (88 km/h) without lockup of the 

wheels on any axle. Simulation r e s u l t s  a r e  given f o r  stopping on both a d r y ,  

h igh-fr ic t ion,  pavement and a s l ippery  pavement. The so-called "su" values 

shown f o r  the  respec t ive  surfaces  represent  the  r a t i o  of the maximum t i r e  

t r a c t i o n  force which can be sus ta ined to  the v e r t i c a l  load on the t i r e .  





Observations 

1) For t rucks  having t h e  " represen ta t ive ,  as-designed" type of 

brake system behavior,  increased a x l e  loading r e s u l t s  i n  small  reduct ions  

i n  stopping dis tance .  

2 )  This type of veh ic le  e s p e c i a l l y  b e n e f i t s  when t h e  increased 

loading is  appl ied  toward t h e  r e a r  of the  veh ic le ,  s i n c e  i t  is  t y p i c a l l y  

t h e  t r a i l e r  brakes which produce excessive torque l e v e l s  and which otherwise 

tend t o  limit stopping d i s t ance  c a p a b i l i t y  by causing "premature" wheel lock- 

up. As  a  case i n  po in t ,  note the  s imulat ion r e s u l t s  f o r  t h e  t r ac to r -  

s e m i t r a i l e r  i n  condi t ion E-3. 

3) For t rucks  with brake systems which, e i t h e r  through des ign,  

random v a r i a b i l i t y ,  o r  l ack  of maintenance e x h i b i t  l i m i t a t i o n s  i n  torque 

output (such t h a t  wheel lockup cannot be a t t a i n e d ) ,  increased a x l e  loading 

r e s u l t s  i n  increases  i n  stopping d i s t ance .  Note the  inc reases  i n  stopping 

d i s t a n c e  accompanying increased axle  loads i n  the  t e s t  cases  shown. I f  a l l  

of the  brakes on a v e h i c l e  a r e  torque-l imited,  i n  both the  base l ine  and 

increased-axle-load cases ,  t h e  stopping d i s t ance  w i l l  i nc rease  approximately 

i n  proportion t o  t h e  change i n  t o t a l  gross  weight incurred wi th  the increase  

i n  a x l e  load. For example, i f  the increased a x l e  loading causes the gross  

veh ic le  weight t o  r i s e  by LO%, t h e  veh ic le  w i l l  e x h i b i t  minimum stopping 

d i s t ances  which a r e  approximately 10% longer .  ( I t  is poss ib le ,  of course,  

t h a t  the  veh ic le  might be torque-limited i,n i t s  s topping behavior on a high- 

f r i c t i o n  su r face  but is ab le  t o  achieve wh.ee1 lockup on a low-fr ic t ion 

su r face .  I n  such cases ,  an inc rease  i n  a x l e  load could be seen to inc rease  

s topping d i s t ances  on dry roads ,  but  decrease  s topping d i s t ances  on s l i p p e r y  

roads. ) 

4 )  Although not p e r t i n e n t  t o  the  a x l e  load i s s u e ,  per s e ,  i t  

should be noted t h a t  vehic les  B ,  D ,  and E e x h i b i t  r e l a t i v e l y  long stopping 

d i s t ances  due t o  a c h a r a c t e r i s t i c  which is  p e c u l i a r  t o  the four-spring-type 

tandem ax le  arrangements employed on these  veh ic les .  Because the re  is a 

" t r a n s f e r  of load1' from t h e  f r o n t  ax le  of a tandem p a i r  to  the  r e a r  during 

braking,  the tandem-equipped vehic les  tend to  incur premature iockup of :he 

wheels on the l ightly-loaded ( f r o n t )  a x l e  of the  p a i r .  Thus, when the stopping 

d i s t ance  measure uses wheel lockup as i t s  l i m i t i n g  c r i t e r i o n ,  tandem-axle 

vehic les  exh ib i t  poorer performance, a s  shown. 



I n t e r p r e t a t i o n  

The d i f f e r e n c e s  i n  brake  system behavior  e x h i b i t e d  by t h e  s imula ted  

ve r sus  t e s t e d  v e h i c l e s  sugges t  t h a t  one cannot  c o n f i d e n t l y  g e n e r a l i z e  on 

t h e  l i k e l y  i n f l u e n c e  of i nc reased  a x l e  load  on s topping  performance. C l e a r l y ,  

a  g e n e r a l i z a t i o n  would be p o s s i b l e  only  i f  t h e  d i s t r i b u t i o n  of t he  highly-  

v a r i a n t  braking  p r o p e r t i e s  of t h e  t r u c k  popula t ion  were known. Perhaps i t  

is u s e f u l  t o  t h e  policy-maker t o  know t h a t ,  i n  t h e  wors t  ca se  ( r ep resen ted  

by torque- l imi ted  braking  sys t ems) ,  s topp ing  d i s t a n c e s  w i l l  i n c r e a s e  a s  

l oad ing  i n c r e a s e s ,  by t h e  r a t i o  of t h e  g ros s  v e h i c l e  weights  involved .  

One cannot  show how i n c r e a s e s  i n  s topping  d i s t a n c e  w i l l  tend t o  

change t h e  l i k e l i h o o d  of a v e h i c l e ' s  o v e r a l l  a c c i d e n t  involvement. The only  

known d a t a  which speak ,  even i n d i r e c t l y ,  t o  t h i s  s u b j e c t  have come from a 

s tudy  sponsored by t h e  Na t iona l  Highway T r a f f i c  Sa fe ty  Adminis t ra t ion  which 

examined t h e  i n f l u e n c e  of t h e  h i g h e r  performance "121"* braking systems on 

acc iden t  expe r i ence  (261. The s tudy  showed t h a t  t he  improved n a t u r e  of t h e  

"121" systems y i e l d e d  no d i s c e r n i b l e  b e n e f i t s ,  i n  t e n s  of acc iden t  

involvement. 

3.1.2 Yaw S t a b i l i t y .  I n  Sec t ion  2.2.2.3, a rneasu re  of t h e  so-cal led 

"unders teer"  f a c t o r  was def ined .  By t h e  d e f i n i t i o n  used h e r e ,  t h i s  i nd i -  

c a t o r  of t h e  v e h i c l e ' s  s t e a d y  t u r n  response  t o  s t e e r i n g  i s  evalua ted  a t  a  

l a t e r a l  a c c e l e r a t i o n  l e v e l  of  0.25 g. Shown i n  F igu re  22 a r e  t he  v a l u e s  of 

t h e  unde r s t ee r  measure f o r  d i f f e r i n g  v e h i c l e s  which a r e  loaded up to  v a r i o u s  

maximum a x l e  load  limits. I t  is  impor tant  t o  no te  t h a t  a x l e  l oads  were not 

cons idered  t o  approach t h e  " l i m i t "  va lues  on t h e  s t e e r i n g  a x l e s  of any of  

t h e s e  v e h i c l e s .  Rather ,  s t e e r i n g  a x l e  l oads  were set t o  r e p r e s e n t  more-or- 

l e s s  t y p i c a l  cond i t ions  f o r  " f u l l y  loaded" v e h i c l e s .  

I n  a d d i t i o n  t o  t h e  a x l e  load  v a r i a t i o n s  on each v e h i c l e ,  t h e  f i g u r e  

a l s o  inc ludes  t h e  r e s u l t s  of  c a l c u l a t i o n s  f o r  a  p e c u l i a r  r e f e r e n c e  c o n d i t i o n  

*Pe r t a in ing  t o  air-braked t rucks  and t r a i l e r s  b u i l t  t o  meet t h e  
Federa l  Hotor Vehicle S a f e t y  Standard (MVSS) 121. 





which i s  known to occur occasional ly  i n  trucking p r a c t i c e  and which very 

s e r i o u s l y  degrades yaw s t a b i l i t y .  This condi t ion involves the  placement of 

r a d i a l  t i r e s  on the  s t e e r i n g  ax le  of a t ruck o r  t r a c t o r  and bias-ply,  

lug-tread t i r e s  on the  d r i v e  axles .  While such p r a c t i c e s  may occur most 

f requent ly  when a f l e e t  is i n  t h e  process of changing from b ias  t i r e  usage 

t o  r a d i a l s ,  i t  is a l s o  known t h a t  var ious  purchasers of new veh ic les  

s p e c i f i c a l l y  request  such a t i r e  mix when t h e  veh ic le  i s  assembled by the 

manufacturer. While the  wisdom of such a request  seems dubious, a t  b e s t ,  

the  inf luence of t h i s  t i r e  mix on the  understeer measure serves  a s  a con- 

venient  point  agains t  which t o  compare the  r e s u l t s  showing t h e  inf luence of 

ax le  load var ia t ion .  

The suggestion here is  t h a t  s i n c e  t h e  t i r e  mix case  represen t s  a 

known, and very powerful, d is turbance on yaw s t a b i l i t y  i n  cur ren t  p r a c t i c e ,  

any s i z e  o r  weight allowance t h a t  might reduce the  understeer l e v e l  i n t o  

the  range produced by t h i s  t i r e  mix would be, i n  the view of the  au thors ,  

deserving of se r ious  concern, indeed. Unfortunately,  i t  is not poss ib le ,  

given the  cur ren t  s t a t e  of knowledge, to f o r n  a complete l o g i c a l  argument 

by which the  maximum "acceptable" reduct ion i n  under s t e e r  l e v e l  is i d e n t i f i e d .  

Another point  of reference was provided i n  a previous research study 

[14] which included t h e  examination of yaw s t a b i l i t y  f o r  t r a c t o r s  o u t f i t t e d  

wi th  bias-ply,  r ib- t read t i r e s  on t h e  f r o n t  ax le  and bias-ply,  lug-tread 

t i r e s  on the  d r ive  a x l e ( s ) .  This case  i s  known t o  have been a very common, 

i f  not  the  s i n g l e  most common, t i r e  arrangement employed on heavy-duty 

veh ic les  through the end of the  1970's. The r e s u l t i n g  inf luence of t h i s  

r i b / l u g  m i x  on understeer gradient  was shown to  be t h e  s i n g l e  most powerful 

item serving to reduce unders teer  from among a number of o ther  common in- 

se rv ice  v a r i a t i o n s .  It is p e r t i n e n t  t o  note  t h a t  the r i b / l u g  mix of bias-  

ply t i r e s  introduces an understeer reduction which is on the  order of one- 

half  of t h e  magnitude of reduction accruing with the  mix of rad ia l - r ib  and 

bias-lug t i r e s  considered i n  the  s imulat ions  reported i n  Figure 22. 

Fina l ly ,  i t  was pointed out i n  Sect ion 2 . 2 . 2 . 3  t h a t  the  understeer 

behavior was examined using simulations i n  t h i s  study by means of the  so- 

c a l l e d  "ramp input" of s t e e r  angle.  That i s ,  the  simulation merely repre- 

sented a gradually increas ing s t e e r  input  so a s  to  provide a "scan" of the 



whole range of l a t e r a l  acceleration up to the rollover leve l .  As i s  dis- 

cussed in  Volume I1 (Section 2.3.2.1) , t h i s  maneuver condition yields values 

of the understeer measure which f a l l  3 to 5 deg/g above the values obtained 

i n  steady-state turns. Thus, data obtained in  quasi-steady-state turning 

t e s t s  of actual  vehicles,  reported i n  Volume 11, show understeer gradients 

whose absolute values are ,  indeed, well below the levels  shown i n  Figure 

22 ,  although the r e l a t i ve  influence of s i ze  and weight var iat ions found 

from t e s t  data a re  essent ia l ly  ident ical  to those obtained in  the "ramp- 

steer" simulations. 

Observations 

Looking over the resu l t s  presented in  Figure 22 ,  the following 

observations can be made: 

1) Increases i n  axle load l i m i t ,  implemented by simply increasing 

the load carr ied on non-steering axles,  consistently r e su l t  i n  a reduction 

i n  the understeer qual i ty  of trucks and t rac tors .  

2 )  The influences of increased axle  load on understeer level  are 

much smaller than the reference influence of the rad ia l lb ias  t i r e  mix. On 

the average, a 10% increase i n  axle load level  r e su l t s  in  an understeer 

reduction that  i s  l ess  than 20% of the reduction resul t ing when the base- 

line-loaded vehicle i s  equipped with the mixed- t i r e  arrangement. 

3 )  A key factor  i n  the influence of increased axle  load allowance 

is the decrease i n  the fract ion of the t o t a l  load borne by the f ront  axle 

of the uni t  i n  question. The data in  Figure 22 can be reduced to i l l u s t r a t e  

the relationship bemeen the fract ion of t o t a l  truck o r  t ractor  load borne 

on the s teer ing axle versus the loss i n  understeer below the baseline value. 

Examining such relationships reveals that the two-axle power uni t s  lose an 

average of 1 deg/g of understeer for every 0.06 reduction in  the r a t i o  of 

f ront  axle load to  t o t a l  load. The three-axle power uni t s  were seen to 

lose an average of 1 deg/g of understeer for every 0.025 reduction in  the 

r a t i o  of f ront  axle load to t o t a l  load (ref lect ing the greater t o t a l  load 

carried by the baseline three-axle power un i t s ) .  

4 )  A few cases involving variat ions i n  axle  load for  the five- 

axle tractor-semitrailer were examined for  the sake of the i r  h i s tor ica l  



i n t e r e s t .  For example, F igu re  22 shows Case D-4 l abe led  9.3/32/32 which 

r e p r e s e n t s  t h e  common d i s t r i b u t i o n  employed p r i o r  t o  1974 when t h e  g r o s s  

allowance on t h e  f e d e r a l  highway system was 73,280 l b s  (33.2 m t o n s ) .  (The 

9.3132132 d e s i g n a t i o n  r e f e r s  t o  a l oad ing  scheme i n  which 9.3K l b s  (4 .2  m 

t ons )  is t h e  load  on t h e  s t e e r i n g  a x l e  and 32K l b s  (14.5 m t o n s )  i s  t h e  load  

on both the  t r a c t o r  and t r a i l e r  tandem a x l e  s e t s . )  We s e e  t h a t  t h i s  r a t h e r  

rear -b iased  load  d i s t r i b u t i o n  y i e lded  a r e l a t i v e l y  low v a l u e  of t h e  under- 

s t e e r  measure. When t h e  law changed i n  1974, t h e  a x l e s  on t h i s  v e h i c l e  type 

were t o  be loaded to 12/34/34 (Case D-1) i n  o rde r  t o  r e a l i z e  t h e  maximum 

al lowable  g r o s s  weight  o f  80,000 l b s  (36.3 m t o n s ) .  We s e e  from t h e  f i g u r e  

t h a t  t h i s  arrangement y i e lded  a cons ide rab ly  h ighe r  v a l u e  of  t he  unde r s t ee r  

measure, because of  t h e  more forward weight  d i s t r i b u t i o n .  During t h e  l a t e  

s e v e n t i e s ,  d r i v e r s  began t o  complain a g a i n s t  t h e  more forward weight  b i a s ,  

a l l e g i n g  f r o n t  t i r e  blowout problems, ha rde r  s t e e r i n g ,  and poorer  r i d e  v ibra-  

t i o n s  such t h a t  union l o b b y i s t s  sought  t o  promote t h e  10135135 d i s t r i b u t i o n  

(Case D-3) which i s  a l s o  shown i n  t h e  f i g u r e  [27].  Although t h i s  arrangement 

s t i l l  provides  a g ros s  weight  v a l u e  of 80,000 l b s  (36.3 m t o n s ) ,  t h e  r e a r -  

ward b i a s  does have t h e  nega t ive  e f f e c t  of reducing t h e  unde r s t ee r  level-to 

a va lue  which i s  approaching t h e  pre-1974 performance c h a r a c t e r i s t i c  (Case 

D-4). 

The 10/40/38 d i s t r i b u t i o n  (Case D-5), 'shown y i e l d i n g  t h e  lowest  

unde r s t ee r  l e v e l  f o r  t h i s  v e h i c l e  c o n f i g u r a t i o n ,  was inc luded t o  i l l u s t r a t e  

t h e  behavior  of a v e h i c l e  which: 

a )  is  loaded t o  a h ighe r  g r o s s  weight  v a l u e  of 88K l b s  (39.9 

rn t ons )  by means of a nominal 12/38/38 d i s t r i b u t i o n ,  but  

which 

b)  is then  sub jec t ed  t o  a common, though i l l e g a l ,  " ad jus t -  

ment" which t r u c k  d r i v e r s  use  a s  a means of improving 

r i d e  q u a l i t y  when they a r e  t r a v e l i n g  down t h e  road ,  removed 

from weighing s t a t i o n s .  This  "adjustment" p r a c t i c e  in- 

volves  moving t h e  f i f t h  wheel a f t ,  by means of t h e  so-ca l led  

" s l ide r "  f i f t h  wheel mounting, t hus  imposing a l a r g e r  por- 

t i o n  of the  t r a i l e r  k ingpin  load  on t h e  r e a r  a x l e s  of t h e  

t r a c t o r .  



I n t e r p r e t a t i o n  

Noreover, the  examined increases  i n  ax le  load linit were seen to 

cause measurable reductions in under s  t e e r  l e v e l .  This f inding is inherent ly  

worthy of a t t e n t i o n  because i t  is known t h a t  many heavy trucks and t r a c t o r s  

s u f f e r  from a s t rong n a t u r a l  tendency to  dec l ine  i n  understeer l e v e l  with 

increas ing l e v e l  of l a t e r a l  acce le ra t ion  [14] .  Although t h i s  problem i s  

undoubtedly of g rea te r  concern wi th  c e r t a i n  veh ic le  designs than with 

o t h e r s ,  the prospect  t h a t  an increase  i n  ax le  load allowance might 2romote 

a f u r t h e r  reduction i n  t ruck  understeer l e v e l s ,  genera l ly ,  suggests t h a t  the  

con t ro l  q u a l i t y  of the  trucking f l e e t  would dec l ine  under the  influence of 

such a change. 

We note,  however, t h a t  the  comparison of the understeer losses  de- 

r i v i n g  from increases  i n  ax le  load wi th  Chose der iv ing from the  t i r e  mix 

arrangement i n d i c a t e  t h a t  the  magnitude of t h e  dec l ine  i n  understeer (such a s  

might accompany, say,  a 10% increase  i n  ax le  load l i m i t )  is r e l a t i v e l y  small .  

One might conjecture  t h a t  such a change i n  understeer l e v e l  is unlikely to  

s t a r t l e  the t y p i c a l  t ruck driver--many of whom al ready cope with s u b s t a n t i a l  

day- to-day va r ia t ions  i n  understeer l s v e l  a s  a r e s u l t  of d i f fe rences  i n  

t r a i l e r  loading,  f i f t h  wheel placement, and, i n  the case  of f l e e t  d r i v e r s ,  

due to  opera t ing d i f f e r e n t  t r a c t o r s .  On t h e  other  hand, the re  i s  sound 

reason f o r  concern t h a t ,  even though t ruck  d r i v e r s  may be "coping" with 

c e r t a i n  sub-optimum veh ic le  p roper t i e s  each day, the extent  of the  con t ro l  

task  posed by current  vehic les  may play a s i g n i f i c a n t  r o l e  i n  the  production 

of the  l a rge  number of s ingle-vehic le  accidents  seen with heavy t rucks .  

Since no da ta  base e x i s t s  f o r  showing the s t a t i s t i c a l  s ign i f i cance  of the 

influence of understeer l e v e l  on t ruck acc iden t s ,  however, the r e s u l t s  

presented i n  Figure 22 a r e  proposed simply as  q u a l i t a t i v e  i n d i c a t o r s  of a 

poss ible  sa fe ty  problem. 

3.1.3 3011 S t a b i l i t y .  Roll  s t a b i l i t y  has been character ized i n  

Section 2.2.2.4 by a s t a t i c  measure termed the "rol lover  threshold." This 

measure expresses the  maxinum susta ined :Level of l a t e r a l  acce le ra t ion ,  i n  

g ' s ,  which the  veh ic le  w i l l  t o l e r a t e  wi t l~ou t  r o l l i n g  over. This measure of 

performance becomes influenced by v a r i a t i o n s  i n  a x l e  loading insofa r  a s  such 

v a r i a t i o n s  a l t e r  any of the  following parameters: 



1) the  height of the  payload cen te r  of g rav i ty  

2 )  the  t o t a l  payload weight 

3 )  the  long i tud ina l  d i s t r i b u t i o n  of the  payload, such t h a t  

axles  having d i f f e r i n g  suspension p roper t i e s  a r e  caused 

t o  carry  a l a r g e r  or  smal ler  f r a c t i o n  of t h e  t o t a l  load.  

Calcula t ions  of ro l lover  threshold were done considering t h a t  

v a r i a t i o n s  i n  ax le  loading limits would cause c e r t a i n  s p e c i f i c  changes in 

the  way a c t u a l  trucks would be loaded. A s  was discussed i n  Section 2 . 3 . 2 ,  

any increase  i n  ax le  loading t h a t  provides f o r  a g r e a t e r  payload weight was 

implemented i n  t h i s  s tudy by a scheme i n  which the a d d i t i o n a l  payload was 

imagined t o  be added t o  t h e  top of the  base l ine  load of f r e i g h t .  Thus, in 

some of t h e  cases addressing a x l e  load v a r i a t i o n s ,  payload c. g. height as  

wel l  a s  payload weight a r e  increased.  I n  o ther  cases ,  the  weight imposed by 

a constant  payload i s  simply d i s t r i b u t e d  d i f f e r e n t l y .  

Shown i n  Figure 23  a r e  the  v a r i a t i o n s  i n  ro l lover  threshold which a r e  

ca lcu la ted  t o  r e s u l t  from the indicated a x l e  loading cases .  For the f i r s t  

th ree  veh ic les  shown, the cases involve var ious  l e v e l s  of load imposed upon 

t h e  rear-placed (non-steering) s i n g l e  and tandem axles .  I n  each case  wi th  

these veh ic les ,  the  gross  weight of the veh ic le  is d i r e c t l y  a f fec ted  by the  

v a r i a t i o n  i n  ax le  loading. I n  t h e  cases  shown f o r  the  f ive-axle  t r a c t o r -  

s e m i t r a i l e r ,  c e r t a i n  cases involve an increased a x l e  load l i m i t  which r e s u l t s  

i n  an increase  in  the gross weight of the  veh ic le ,  while o the r  cases  involve 

only a r e d i s t r i b u t i o n  of load among axles .  

Obserzations 

The following observations can be drawn from the  r e s u l t s  shown i n  

Figure 23: 

1) The r o l l o v e r  threshold  i s  decidedly reduced by inc reases  i n  

ax le  load l i m i t .  

2 )  The decreases a r e  approximately i n  proportion to  the  f r a c t i o n a l  

change i n  t h e  ax le  load l i m i t  which is represented.  For the  f i r s t  three  

veh ic les  shown i n  the  f i g u r e ,  a 10% increase  i n  a x l e  load limit y ie lds  an 

average of 0.025 g reduct ion i n  t h e  r o l l o v e r  threshold.  



0 Payload C.G. Height - 105" (Cube-full Load) 

A Payload C.G. Height Varies with Grcss Weiqht- 
Median Density Freight. 

Figure 23. Influence of Axle Load Vcrriotions on Rollover Threshold 



3) The s t e e p e s t  s e n s i t i v i t y  of r o l l o v e r  t h re sho ld  t o  a x l e  loading  

is  seen  i n  t h e  case  of t h e  three-axle  t r a c t o r - s e m i t r a i l e r .  This  r e s u l t  i s  

p a r t i a l l y  expla ined  by observ ing  t h a t  wi th  only  a 27-foot t r a i l e r  l eng th ,  

t he  r i s e  i n  t h e  payload c o g .  height: accompanying an i n c r e a s e  in a x l e  load  

on t h e  t r a c t o r  r e a r  and t r a i l e r  a x l e s  i s  t h e  g r e a t e s t  of any of t h e  v e h i c l e s  

shown. (Also n o t e  t h a t  t he  i n c r e a s e  i n  loading  on s i n g l e  a x l e s  considered 

he re  is  twice  as l a r g e ,  p e r  a x l e ,  than t h e  i n c r e a s e  f o r  tandem a x l e s . )  

4) Resu l t s  f o r  t h e  f ive-axle t r a c t o r - s e m i t r a i l e r  show t h a t  r o l l -  

ove r  t h re sho ld  reduces,  a t  a given va lue  of g r o s s  v e h i c l 2  weight ,  a s  t he  

t r a c t o r ' s  load  becomes d i s t r i b u t e d  more towards t h e  f r o n t .  This  obse rva t ion  

r e f l e c t s  t h e  f a c t  t h a t  road t r a c t o r s  commonly employ f r o n t  suspensions which 

a r e  q u i t e  s o f t  i n  comparison t o  t h e  r e a r  suspens ions .  Thus, when a g r e a t e r  

f r a c t i o n  of t he  load  i s  borne by a suspens ion  which is l e s s  a b l e  t o  con- 

t r i b u t e  r o l l - r e s i s t a n c e ,  t h e  v e h i c l e  is permi t ted  t o  r o l l  through a l a r g e r  

ang le  a s  l a t e r a l  a c c e l e r a t i o n  i n c r e a s e s  such t h a t  a lower n e t  r o l l o v e r  

threshold  r e s u l t s .  

5 )  The s e n s i t i v i t y  t o  load  d i s t r i b u t i o n  is of the o p p o s i t e  sense ,  

from a s a f e t y  p o i n t  of  view, t o  t h a t  observed above r ega rd ing  the  i n f l u e n c e  

of loading  on unde r s t ee r  q u a l i t y .  That is ,  a more forward-biased loading  

on a t r u c k  o r  t r a c t o r  tends  t o  i n c r e a s e  unde r s t ee r  l e v e l  b u t  dec rease  

r o l l o v e r  threshold .  Note i n  t h e  r e s u l t s  f o r  t h e  f ive -ax le  t r a c t o r -  

s e m i t r a i l e r ,  however, t h a t  t h e  i n f l u e n c e  of load  d i s t r i b u t i o n ,  per  s e ,  is 

no t  a s  s t r o n g  a s  t he  in f luence  of t h e  payload weight and c .g .  he igh t  changes 

t h a t  accompany the  increased  loading .  For example, cons ide r  t he  cases  

involv ing  t h e  load  d i s t r i b u t i o n s  12/34/34 and 12/38/38 which y i e l d  80,000 

and 88,000 l b s  .(36.3 and 39.9 m t ons )  g r o s s  weights .  Although t h e  l a t t e r  

ca se  involves  a more rear -b iased  load  d i s t r i b u t i o n  on the  t r a c t o r ,  t he  

r o l l o v e r  threshold  is lower by 0.03 g ' s  than  i n  t h e  12/34/34 case ,  i . e . ,  t h e  

e f f e c t  of increased  a x l e  load  ( I tem 1 )  is  s t r o n g e r  than  t h e  e f f e c t  of 

s h i f t i n g  more load  t o  the  f r o n t .  

I n t e r p r e t a t i o n  

The above r e s u l t s  provide  one set of measures desc r ib ing  t h e  i n l l u -  

ence of a x l e  load  limits. on r o l l o v e r  t h re sho ld .  These measures r e f l e c t  a 



p a r t i c u l a r  base l ine  loading condi t ion and a l s o  a s p e c i f i c  scheme f o r  

r e l a t i n g  the  increased loading arrangement t o  a new placement of the payload. 

Clear ly ,  the  a c t u a l  inf luence of a load increase  on the payload c.g.  height 

could vary tremendously such t h a t  the  range of poss ib le  inf luences  of a x l e  

load limits on ro l lover  threshold is g rea t  indeed. For example, one can 

imagine a trucking opera t ion t h a t  common1,y hauls  a dense commodity, having 

a low c .g. height ,  and which l a t e r  u t i l i z e s  an increased ax le  load allowance 

by carrying some low-density f r e i g h t  on top of the  "old" load. The ne t  

increase  i n  the  e leva t ion  of the  payload c .  g . would be markedly g rea te r  

than the inf luences  represented here.  Horeover, the  motor f r e i g h t  system 

i n  the U.S. i s  remarkably v e r s a t i l e  and, i n  c e r t a i n  cases,  could con- 

ceivably include cases i n  which a ne t  reduct ion i n  the c .g .  height would 

accrue  a s  a r e s u l t  of an increased ax le  load limit. Thus, the above da ta  

showing t h e  inf luence of a x l e  load l i m i t  on ro l lover  threshold a r e  seen as  

merely represent ing one example, namely, the  case  involving median f r e i g h t  

d e n s i t i e s  and homogeneous-density commodities . 
The c r u c i a l  ques t ion beyond the  i s sue  of genera l i ty  is  tha t  of the 

importance of the ro l lover  threshold of vehic les  to  t r a f f i c  sa fe ty .  Shown 

i n  Figure 2 4  i s  a p l o t  of accident  d a t a  which provides an unusually c l e a r ,  

although s impl i f i ed ,  view of the  importance of the ro l lover  threshold 

performance of heavy vehic les .  This curve derived from accident data  

reported t o  the  Bureau of Motor Car r i e r  Safety (BMCS) of the  U.S. Department 

of Transportat ion over the years 1976 through 1979. The f i g u r e  shows t h a t  

a remarkable c o r r e l a t i o n  e x i s t s  between the  percent of r o l l o v e r s  occurring 

among single-vehicle accidents* (SVA) involving t r ac to r - semi t ra i l e r s  and 

the ro l lover  threshold  of each vehic le .  This p l o t  represents  some 9,000 

single-vehicle accidents  involving three-axle t r a c t o r s  pu l l ing  two-axle, 

van-type s e m i t r a i l e r s .  thong these  9,000 accidents ,  more than 2,000 r o l l -  

overs were recorded. These d a t a  were resolved i n t o  the i l l u s t r a t e d  forinat 

of Figure 2 4  with the  a id  of a computerized procedure f o r  ca lcu la t ing  the  

ro l lover  threshold of such veh ic le  combinations, given the  value of gross  

veh ic le  weight wnich i s  reported to  BMCS with  each accident .  Knowing t h e  

*The accident  da ta  a r e  p lo t t ed  i n  t h i s  percentage fashion i n  order 
to  express an accident  *-type of measure and a l s o  because ro l lover  
events a r e  recorded i n  the BMCS d a t a  f i l e  only i f  they occur i n  single-  
veh ic le  accidents .  



Figure  24. Pe rcen t  of s i n g l e - v e h i c l e  a c c i d e n t s  i n  which r o l l o v e r  occu r s  
as a  f u n c t i o n  of t h e  v e h i c l e ' s  i n h e r e n t  r o l l o v e r  t h r e s h o l d ,  
i n  g ' s .  
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gross veh ic le  weight, the  ana lys i s  assumed t h a t  payload was placed i n  a 

fashion represent ing mediuwdensity f r e i g h t .  Typical values f o r  t i r e s ,  

spr ing,  and geometric p roper t i e s  were then employed to  c a l c u l a t e  r o l l o v e r  

thresholds fo r  each increment of gross weight i n  the accident  f i l e .  

From Figure 24, we see  t h a t  the  t y p i c a l  emptx t r ac to r - semi t ra i l e r s  

experience ro l lover  i n  approximately f i v e  percent of t h e i r  S V A t s .  When 

such veh ic les  a r e  loaded, on the o the r  hand, the  reduction i n  r o l l  s t a b i l i t y  

due t o  the  g r e a t e r  weight and higher c.g.  loca t ion  causes an eight-  to 

nine-fold increase  i n  the incidence of ro l lover .  The f i g u r e  c l e a r l y  

e s t a b l i s h e s  t h a t  the  ro l lover  of t r ac to r - ' s emi t ra i l e r s  is  highly s e n s i t i v e  

to the  v e h i c l e ' s  inherent  ro l lover  threshold i n  the 0.3 to 0.4 range per- 

t a in ing  to typ ica l ,  f u l l y  loaded u n i t s .  The s lope of the s e n s i t i v i t y  i n  

t h i s  range can be nominally evaluated a t  an approximate th ree  percent change 

i n  ro l lovers /~VA per 0 .01  g change i n  ro l lover  threshold.  

Looking a t  the  ro l lover  threshold r e s u l t s  obtained f o r  the cases  

involving the  f ive-axle t r ac to r - semi t ra i l e r ,  Figure 25 shows the implied 

inf luence of a x l e  loading limits on the f r a c t i o n  of rollovers/SVA. Because 

of the  s teep s lope of the  accident da ta  curve, w e  see  t h a t  the examined 

range of ax le  load v a r i a t i o n s  could be in te rp re ted  as  y ie ld ing a 33% to  

60% range of rollovers/SVA. Noting t h a t  ro l lover  of heavy trucks is pre- 

dominantly a single-vehicle accident problem [15],  one can take the  incre- 

mental increase  i n  r o l l o v e r s / S V ~  and produce a crude est imate of the poss ible  

increase  i n  the t o t a l  number of ro l lovers  which would be experienced by 

vehic les  f o r  a sub jec t  loading case .  For example, i n  Figure 25 we could 

surmise t h a t  a change from the  12/34/34 loading t o  the  12/38/38 case would 

r e s u l t  i n  an  estimated 25% increase  i n  the incidence of ro l lover  accidents  

( f o r  f ive-axle tractor-van s e m i t r a i l e r  combinations* loaded to  the  GVW limit 

and dispatched wi th  nedian-density, homogeneous f r e i g h t ) .  

*Note again t h a t  a l l  es t imat ions  of the influence 02 s i z e  and weight 
va r i ab les  on perfomance assume e x i s t i n g  veh ic les  which a r e  being employed 
to carry  increased loads without a l t e r i n g  t h e i r  design c h a r a c t e r i s t i c s .  
Unless otherwise noted,  however, t i r e s ,  sp r ings ,  e t c . ,  a r e  not loaded i n  
excess of t h e i r  load ratings. 
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While example cases such a s  t h i s  become r a t h e r  tenuous due to a l l  of 

the  q u a l i f i e r s  which de f ine  the  s p e c i f i c  case,  the major point  here is  t h a t  

the accident  record c l e a r l y  i n d i c a t e s  t h a t  the r o l l o v e r  threshold value  i s  

a remarkably powerful determinant of t ruck r o l l o v e r  involvement . Accordingly, 

the r o l l o v e r  threshold r e s u l t s  shown previously a r e  seen a s  i n d i c a t o r s  of 

a c e n t r a l  s a f e t y  concern. 

3.1.4 Rearward Amplification. Axle load allowances have been shown 

i n  the foregoing p resen ta t ion  t o  be implemented i n  a manner which, i n  

c e r t a i n  cases ,  induce a b i a s  i n  the f o r e / a f t  d i s t r i b u t i o n  of load on a 

veh ic le  element. The rearward load b ias  which i s  incurred on three-axle 

t r a c t o r s ,  f o r  example, a s  a r e s u l t  of an inc rease  i n  the tandem load allow- 

ance, was seen t o  degrade unders teer  l e v e l .  b more s u b t l e  inf luence of an 

increased a x l e  load allowance is t h a t  i t  may be u t i l i z e d  i n  c e r t a i n  cases  

by means of f o r e l a f t  b ias ing of the  placement of payload i n  a t r a i l e r .  

Such b ias ing  of load placement might t ake  p lace  inadver tent ly ,  of 

course, o r  might accrue due t o  the  need t o  sh ip  an awkward combination of 

payloads by loading them onto a s i n g l e  t r a i l e r ,  perhaps a t  sequen t i a l  

loading f a c i l i t i e s ,  i n  order  to  achieve a. f u l l  t r a i l e r  load f o r  i n t e r s t a t e  

shipment. On t h e  conventional doubles combination, the f a c t  t h a t  the gross  

weight is t y p i c a l l y  l imi ted  t o  80,000 l b s  (36.3 m tons) suggests t h a t  the 

s i n g l e  ax les  a t  t h e  r e a r  of t h e  t r a c t o r  and a t  the  t r a i l e r  and do l ly  posi- 

t ions  a r e  t y p i c a l l y  "underloaded," with respec t  to  ax le  load allowances. 

Note t h a t  t h i s  s i t u a t i o n  p r e v a i l s  because the  doubles combination employs 

a l l  s i n g l e  ax les  and thus accrues the  higher a x l e  load allowances provided 

f o r  s i n g l e  ax les  ( a s  opposed to  the  l e s s e r  per-axle allowances f o r  c lose ly  

spaced tandem a x l e  p a i r s ) .  Thus, the  ax les  on the conventional double 

have a c e r t a i n  "reserve" capaci ty  f o r  t o l e r a t i n g  b iases  i n  the long i tud ina l  

placenent of the  payload center  of g rav i ty .  

One poss ib le  inf luence of f o r e / a f t  load b i a s  on a doubles combina- 

t i o n  involves the  rearward ampl i f ica t ion behavior.  While t h i s  mode of 

response is most s e n s i t i v e  t o  l eng th  parameters, and is discussed i n  t h a t  

capaci ty  more thoroughly i n  Section 3.4 . L ,  i t  s u f f i c e s  here t o  say t h a t  

the re  i s  some evidence i n  the  l i t e r a t u r e  t h a t  a severe  load b ias  can 

degrade the rearward ampl i f i ca t ion  behavior of a double-type veh ic le  [ 2 ] .  
Shown in Figure 26 is  a p l o t  of the rearward ampl i f i ca t ion  responses covering 
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Figure 26. Amplification of l a t e r a l  accelerat ion a t  the rear  t r a i l e r  
re lat ive-  t o  the  peak value of l a t e r a l  acceleration a t  the 
t r ac to r  as a function of the frequency of the s teer ing 
input wave. 



f i ve  cases of varied ax le  loading on the conventional double. The plot  

shows the rearward amplification r a t i o  as  i t  varies  over a range of s teer ing 

input frequencies which span the en t i r e  scope of s teer ing reversal  

maneuve rd rom normal lane changes, w i t h ,  s teer ing frequencies between 0 

and 1 radlsec, to emergency obstacle-avoidance maneuvers, for  which the 

s t ee r  input frequency approaches 0 .5  Hz, or 3.14 radlsec. 

Also of some in t e re s t  with regard to  axle load var ia t ion  (although 

b ias  loading is not involved), i s  the three-axle t ractor-semitrai ler  which 

cons t i tu tes  the front unit  of the doubles combination. Since t h i s  vehicle 

is a l so  known to exhibi t  a small l eve l  of rearward amplification, i t s  

s ens i t i v i ty  to var iat ions i n  axle  load al.lowance were examined, and the 

r e su l t s  presented i n  Figure 2 7 .  

Observations 

1) The influence of the various biased loading conditions on the 

rearward amplification behavior of the double i s  r e l a t ive ly  small. Given 

tha t  the rearward amplification measure i s  defined as  the peak value of 

the r a t i o  achieved within a 0.5 Hz ( 3 . 1 4  rad/sec) s teer ing frequency, we 

see that  the worst-case loading causes an approximate f i ve  percent increase 

i n  the measure over the baseline value. 

2 )  I t  i s  seen tha t  the more rear-biased load d is t r ibu t ions  cause 

the peak condition to occur a t  a lower frequency. Although the downward 

s h i f t s  in  frequency a r e  not large,  such s h i f t s  a r e  seen as generally 

undesirable s ince they cause the amplification phenomenon to be more 

prominent a t  frequencies which a re  closer to those found in normal driving 

ac t iv i ty .  

3 )  Although some increase i n  the peak leve l  of the amplification 

r a t i o  i s  seen to derive from forward-biased loads, the curve-shift toward 

the r igh t  renders t h i s  e f f ec t  of l i t t l e  prac t ica l  significance since the 

band of s teer ing frequency lying above the 3 .14  radlsec value is thought 

to be ra ther  unattainable by normal dr ivers .  

4 )  Increased axle  loading on the three-axle t ractor-semitrai ler  

i s  seen t o  increase the amplification r a t i o  without par t icu lar ly  adjusting 

the placenent of the curve with respect to s t ee r  input frequency. The 

peak loading condition produces a f ive  percent increase i n  the amplification 

neasure. 
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Figure 27. Amplification of l a t e r a l  acceleration a t  the semitrai ler  
r e l a t i ve  to the peak value o f  l a t e r a l  acceleration a t  the 
t rac tor  as a function of the frequency of  the s teer ing 
input wave. 



I n t e r p r e t a t i o n  

The v a r i a t i o n s  i n  ampl i f i ca t ion  r a t i o  seen here  a r e  not p a r t i c u l a r l y  

l a rge ,  as  t h i s  phenomenon is  genera l ly  accounted. Given t h a t  the loading 

condi t ions  needed t o  ob ta in  f i v e  percent inc reases  i n  ampl i f i ca t ion  r a t i o  

c o n s t i t u t e  r a t h e r  extreme cases ,  it  would seem appropr ia te  t o  dismiss a x l e  

load allowance a s  a  s i z e  and weight v a r i a b l e  l i k e l y  to  s i g n i f i c a n t l y  

i n £  luence rearward ampl i f i ca t ion .  

3.2 Gross Vehicle Weight 

Two b a s i c  v e h i c l e  conf igurat ions  have been examined f o r  i l l u s t r a t i o n  

of the  in f luence  of gross  veh ic le  weight limits on s t a b i l i t y  and c o n t r o l  

performance. The two veh ic le  types a r e  the  f ive-axle  t r a c t o r - s e m i t r a i l e r  

and t h e  f ive-axle double. These veh ic les  c o n s t i t u t e  the  most popular 

conf igurat ions  cur ren t ly  operated a t  loads  approaching 80,000 l b s  (36.3 m 

tons)  gross  weight. They would, conceivably,  be the  conf igurat ions  most 

a f fec ted  by an inc rease  in the gross  weight allowance beyond 80,000 l b s  

(36.3 m tons) (recognizing,  again ,  t h a t  a host  of o ther  l e s s  numerous 

t ruck combinations a r e  c u r r e n t l y  used i n  i n t r a s t a t e  t r a n s p o r t a t i o n  a t  

Qross weights exceeding t h i s  l e v e l ) .  

The following performance ca tegor ies  were s tudied wi th  regard to 

v a r i a t i o n s  i n  gross  veh ic le  weight : 

1 )  Stopping d i s t ance  

2) Yaw s t a b i l i t y  

3) Rol l  s t a b i l i t y  

4 )  Rearward ampl i f i ca t ion  

I n  examining t h e  inf luence of gross  weight changes, a  base l ine  condi t ion 

7roviding an 80,000-lb (36.3-m ton) gross  weight was f i r s t  defined f o r  

each veh ic le .  As was ou t l ined  i n  Sect ion 2.3.2, t h i s  base l ine  case  

involved a  value  of 80 inches (203 cm) f o r  the  height  of the composite 

c e n t e r  of g rav i ty  of t r a i l e r s .  Load changes up o r  down from the 80,000-lb 

(36.3-m tons) value were then accompanied by changes i n  payload height 

according t o  the ou t l ined  scheme. 



3.2.1 Stopping Distance. The influence of gross weight leve l  

on stopping distance performance was studied in  the same fashion as that  

described e a r l i e r  fo r  the study of axle load influences. The reader i s  

advised to re fer  to  Section 3.1.1 i n  order to assess the peculiar nature 

of the problems posed by truck braking charac te r i s t ics  as  they bear on 

the concerns of t h i s  study. A s  in  the case of the observed f i f  luences of 

axle load changes, i t  w i l l  be shown below tha t  changes in  gross weight 

can e i ther  favorably or  unfavorably influence l i m i t  stopping capabi l i ty .  

Cases i l l u s t r a t i n g  both possible r e su l t s  w i l l  be described. 

Shown i n  Figure 28 a r e  minimum stopping distances obtained from 

an i n i t i a l  velocity of 55 mph (88 'mfh).  Simulation r e su l t s  a re  shown 

for  cases representing both a dry, high f r i c t i on ,  road surface and a 

slippery surface. In  addition to  the simulation r e su l t s ,  t e s t  data a re  

a l so  shown for  two cases of the tractor-semitrailer and doubles combina- 

t ion a t  d i f fe r ing  values of gross weight. 

1 )  There i s  a very minor, but favorable, influence of increased 

gross weight on the stopping distance performance of the simulated vehicle. 

This r e su l t  r e f l ec t s  the f ac t  that  the brake systems of these vehicles 

are  represented a s  having a suf f ic ien t  torque capabi l i ty  for  achieving 

wheel lockup a t  each axle position except the s teer ing axle.  Thus, the 

immediate e f fec t  of increasing gross weight i s  to apply heavier loads to 

the wheels which were being "overbraked" i n  the reference condition, there- 

by rendering a net improvement i n  the overal l  efficiency of the braking 

system. 

2 )  Since the t r a i l e r  brakes a r e  represented as producing the 

highest levels  of brake torque, the loading cases yielding the longest 

stopping distances a r e  those i n  which the overbraked t r a i l e r  ax le(s )  a re  

l ea s t  heavily loaded. The case most c lear ly  i l l u s t r a t i n g  t h i s  condition 

i s  the E-1 loading of the doubles configuration. In t h i s  case, the rear- 

most t r a i l e r  axle i s  the l e a s t  heavily loaded due to (a)  a low value of 

s t a t i c  load (15,000 lbs -- 6.8 m tons) and (b)  the greatest  dynamic reduction 

in  load during the braking process. 
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3 )  The t e s t  da ta  po in t s  show t h a t  increased g ross  weight r e s u l t s  

i n  an increase  i n  stopping d i s t ance .  A s  discussed i n  Section 3.1.1, t h i s  

r e s u l t  r e f l e c t s  the  f a c t  t h a t  the t e s t  veh ic les  incorporated brakes which 

were not genera l ly  capable of achieving wheel lockup during braking on a 

dry pavement. A s  a r e s u l t ,  when a g r e a t e r  load is appl ied ,  t h e  brakes 

become sa tu ra ted  a t  a  given l e v e l  of torque output such t h a t  a longer 

stopping d i s t ance  is  obtained.  These d a t a  represent  the  type of veh ic le  

and brake system arrangement which s u f f e r s  a ne t  l o s s  i n  braking c a p a b i l i t y  

a s  a r e s u l t  of increased gross  weight. 

I n t e r p r e t a t i o n  

As i n  the  case  of the  inf luence of inc reases  i n  ax le  load,  it i s  

not  poss ib le  t o  genera l ize  on the  inf luence of increased g ross  weight on 

limit stopping capab i l i ty .  I f  gross  weight is  increased by, say,  lo%, 

some veh ic les  w i l l  show a small  reduct ion i n  minimum stopping d i s t ance  

while,  i n  t h e  worst case,  o the r s  w i l l  s u f f e r  an increase  i n  stopping d i s -  

tance  of the  order  of t h e  f r a c t i o n a l  inc rease  i n  gross  weight. Since t h i s  

l a t t e r  case poses a p o t e n t i a l  degradation i n  veh ic le  s a f e t y  q u a l i t y ,  i t  

should mer i t  t h e  a t t e n t i o n s  of those concerned wi th  how increased load 

allowances might negat ively  inf luence the  accident  record.  

3.2.2 Yaw S t a b i l i t x .  Yaw s t a b i l i t y  i s  character ized here by means 

of t h e  understeer measure defined e a r l i e r  i n  Section 2.2.2.3. The behavior 

of each of two se lec ted  veh ic le  conf igurat ions  was examined f o r  var ious  

cases of gross v e h i c l e  weight and a l s o  f o r  a case  i n  which the  base l ine  

loading condi t ion is degraded by t h e  i n s t a l l a t i o n  of radia l -p ly  t i r e s  on 

the  t r a c t o r ' s  s t e e r i n g  a x l e  and bias-ply,  lug-tread t i r e s  on t h e  t r a c t o r ' s  

r e a r  axles .  This v a r i a t i o n  was discussed i n  Sect ion 3.1.2. The r e s u l t s  

presented below serve  t o  i l l u s t r a t e  the  inf luence of g ross  weight changes 

as  compared aga ins t  the in f luence  of a common, in-service p r a c t i c e  repre- 

sented by the  t i r e  mix c i t e d  above. 

Shown i n  Figure 29 a r e  the  unders teer  measures obtained f o r  the  

se lec ted  vehic les  a s  a funct ion of the  a x l e  load arrangements which accom- 

pany var ious  gross weight limits. 





Observat ions 

1) Regarding t h e  f ive-axle  t r a c t o r - s e m i t r a i l e r ,  we no te  t h a t  t h e  

b a s e l i n e  cond i t ion  produces t h e  h ighes t  va lue  of unde r s t ee r  and t h a t  a l l  of 

t h e  considered v a r i a t i o n s  cause t h e  performance t o  degrade wi th  r e s p e c t  t o  

t h a t  base l ine .  

2) It i s  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  case  l abe led  9.3132132, 

which c o n s t i t u t e d  t h e  t y p i c a l  load  d i s t r i b u t i o n  f o r  r each ing  t h e  pre-1974 

f e d e r a l  g ros s  weight limit of 73,280 l b s  (33.2 m t o n s ) ,  r e s u l t s  i n  an under- 

s t e e r  l e v e l  which is  v i r t u a l l y  a t  t h e  bottom of a l l  t h e  cases  cons idered .  

3) As was poin ted  ou t  i n  Sec t ion  3.1, t h e  unde r s t ee r  l e v e l  is 

inf luenced s t r o n g l y  by t h e  f o r e l a f t  d i s t r i b u t i o n  of loading  on the  

t r a c t o r - a n d  only  i n  a secondary manner by t h e  a b s o l u t e  l e v e l  of g r o s s  

weight ,  i t s e l f .  Thus, t h e  cases  which g e n e r a l l y  appear  t h e  most f avorab le  

( i . e . ,  o f f e r i n g  t h e  h ighes t  va lue  of unde r s t ee r )  a r e  t hose  which show the  

h ighes t  va lues  of t h e  r a t i o ,  f r o n t  a x l e  l o a d l t o t a l  t r a c t o r  l oad .  Thus, 

g ros s  weight i n c r e a s e s ,  per  s e ,  do no t  c a t e g o r i c a l l y  reduce unde r s t ee r  

level . ;  bu t  do cause  a deg rada t ion  i n  unde r s t ee r  i f  a more rear -b iased  load 

d i s t r i b u t i o n  r e s u l t s .  The most dramat ic  c a s e  suppor t ing  t h i s  p o i n t  i s  t h e  

92,000 l b s  (41.7 m t ons )  g r o s s  weight cond i t ion  of t h e  doubles  combination. 

We s e e  t h a t  t h i s  loading  c o n d i t i o n  (which y i e l d s  t h e  h ighes t  g r o s s  weight 

cons idered)  produces t h e  h ighes t  unde r s t ee r  l e v e l  of a l l  f o r  t h i s  v e h i c l e  

s i n c e  the  12/20 d i s t r i b u t i o n  of t r a c t o r  load  is  t h e  most forward-biased 

o f  a l l  t h e  i n d i c a t e d  load  arrangements. 

4 )  The changes i n  unde r s t ee r  imposed by t h e  examined g ross  weight 

v a r i a t i o n s  are small compared t o  t h e  i n f l u e n c e  of t h e  c i t e d  t i r e  mix 

condi t ion .  For both  v e h i c l e  types ,  t h e  t i re  mix causes a l o s s  of 

approximately 4 deg/g of  unde r s t ee r  w i t h  r e s p e c t  t o  t he  b a s e l i n e  cond i t ion ,  

whi le  a 10% i n c r e a s e  i n  gross  weight  above t h e  b a s e l i n e  va lue  r e s u l t s  i n  

only 0.5 t o  0.8 deg/g r educ t ions  i n  unde r s t ee r .  



I n t e r p r e t a t i o n  

The r e s u l t s  show t h a t  a gross weight increase  w i l l  not  necessa r i ly  

degrade unders t e e r  l e v e l .  The more rear-biased t h e  t r a c t o r  load d i s t r i -  

bution accompanying an increased g ross  weight, however, the g r e a t e r  w i l l  

be the  negat ive  inf luence on unders teer .  

The extent  of unders teer  losses  due t o  increased loading were seen 

t o  be r a t h e r  small  i n  con t ras t  t o  those der iv ing from the common t i r e  mix 

condit ion.  The discuss ion presented i n  Section 3.1.2, however, suggests 

t h a t  heavy-duty t rucks  provide only marginal l e v e l s  of unders teer ,  a t  bes t ,  

i n  in tenned ia t  e-sever i ty  maneuvers. Thus any change i n  v e h i c l e  loading 

allowances which may serve  to  degrade the  unders teer  l e v e l  of a broad 

por t ion  of the t ruck  population should be considered s e r i o u s l y .  It should 

a l s o  be noted t h a t  the more forward weight d i s t r i b u t i o n s  which appear to 

make a gross weight inc rease  more t o l e r a b l e ,  from an unders teer  point  of 

view, w i l l  a l s o  br ing about a reduced r o l l  s t a b i l i t y  performance, a s  shown 

i n  the  next sec t ion .  

3.2.3 Roll S t a b i l i t y .  The inf luence of gross weight changes on 

r o l l  s t a b i l i t y  involves t h e  same mechanisms a s  were ou t l ined  f o r  cases  of 

ax le  weight v a r i a t i o n s ,  i n  Section 3.1.3. That i s ,  gross  weight v a r i a t i o n  

w i l l  inf luence r o l l  s t a b i l i t y  i n  accordance wi th  t h e  accompanying change 

i n  (1) payload c.g. height ,  ( 2 )  payload weight, and (3) the d i s t r i b u t i o n  

of a x l e  load among the  d i f f e r i n g  suspensions on the vehic le .  Shown in 

Figure 30 a r e  values of r o l l o v e r  threshold  ca lcu la ted  f o r  the  two se lec ted  

veh ic le  types as  a funct ion of the  var ious  gross  weight loading schemes. 

Observations 

1)  Gross weight inc reases ,  a s  implemented here,  c a t e g o r i c a l l y  

reduce the  r o l l  s t a b i l i t y  of the  vehic les  s tudied.  

2 )  For a given value of gross weight, the  arrangement of load 

d i s t r i b u t i o n  among ax les  inf luences  the  r o l l o v e r  threshold .  The g r e a t e r  

reduct ions  i n  ro l lover  threshold  de r ive  from the  placement of a g r e a t e r  

f r a c t i o n  of t h e  load on the  t r a c t o r ' s  s t e e r i n g  ax le .  This inf luence i s  a 

r e s u l t  of the  c h a r a c t e r i s t i c a l l y  s o f t e r  suspensions employed on t r a c t o r  

s t e e r i n g  ax les .  
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3) Somewhat d i f f e r i n g  r o l l o v e r  th resho lds  a r e  exh ib i t ed  by t h e  

f r o n t  t r a i l e r  (and t r a c t o r )  a s  opposed t o  the  r e a r  t r a i l e r  (and d o l l y )  of 

t h e  doubles conf igura t ion .  Of course ,  i t  is r a t i o n a l  t o  be consider ing 

s e p a r a t e  r o l l o v e r  th resho lds  f o r  t h e  f r o n t  and r e a r  u n i t s  s i n c e  they a r e  

decoupled, i n  r o l l ,  due t o  the  n a t u r e  of t h e  p i n t l e  h i t c h  dev ice  which 

connects  the  d o l l y  t o  t h e  l e a d  t r a i l e r .  The d i f f e r e n c e s  i n  r o l l o v e r  

th resho ld  va lues  d e r i v e  from a number of d i s t i n c t i o n s  i n  t h e  parameters 

desc r ib ing  t h e  r e s p e c t i v e  u n i t s .  These parameters inc lude  suspension spr ing  

r a t e s ,  f r e e p l a y  i n  l e a f  suspensions ,  and the  composite c .g .  h e i g h t s  of the  

r e s p e c t i v e  f r o n t  and r e a r  " u n i t s , "  To summarize these  d i f f e r e n c e s  i n  a 

most genera l  way, one observes t h a t  t h e  r e a r  t r a i l e r  has a r e l a t i v e l y  high 

composite c e n t e r  of a r a v i t y  but  is supported on r e l a t i v e l y  s t i f f  suspen- 

s i o n s ,  whi le  t h e  l e a d  t r a i l e r  and t r a c t o r  assembly has  a lower composite 

c.g.  he igh t  but i s  supported t o  a l a r g e  degree  by t h e  so£ t e r  t r a c t o r  

suspensions .  

The most conspicuous d i f f e r e n c e  between the  r o l l o v e r  th resho lds  of 

f r o n t  and r e a r  u n i t s  of t h e  double is  seen i n  t h e  case  of the  92,000 l b s  

(41.7 m tons.) g ross  weight.  The observed d i f f e r e n c e  ( v i z . ,  ,295 g ' s f o r  

t h e  f . ront  u n i t  ve r sus  ,331  g ' s  f o r  t h e  r e a r  u n i t )  comes about due t o  t h e  

dominant i n l l u e n c e  of t h e  f ront-biased load  on t h e  t r a c t o r .  That i s ,  the  

f ron t -b ias  i n  loading is  s u f f i c i e n t l y  g r e a t  i n  t h e  92,000 l b s  (41.7 m tons )  

load c a s e  t h a t  i t  dominates the  o t h e r  r o l l - r e l a t e d  ir.fluences which d i s -  

t i n g u i s h  t h e  r o l l  s t a b i l i t y  l e v e l s  of the  f r o n t  and r e a r  v e h i c l e  u n i t s .  

4) F igure  30 a l s o  shows t h e  low l e v e l  of r o l l o v e r  threshold  vhich 

is obta ined i n  t h e  80,000 l b s  (36.3 rn tons )  g r o s s  weight cond i t ion ,  when 

t h e  c e n t e r  of g r a v i t y  of t h e  payload is  placed a t  t h e  h ighes t  l o c a t i o n  

which occurs i n  normal s e r v i c e .  The i n d i c a t e d  value  of 0.238 g ' s ,  f o r  

example, i n  t h e  case  of t h e  f ive-axle  t r a c t o r - s e m i t r a i l e r  d e r i v e s  from a 

payload c.g. h e i g h t  of 105 inches  (267 cm). This "highest  c.g.lf cond i t ion  

i s  included i n  the  f i g u r e  i n  o rder  t o  provide some r e l a t i v e  s c a l i n g  t o  

t h e  i n f l u e n c e s  d e r i v i n g  from gross  weight changes. 



F i r s t l y ,  t h e  0.283 g va lue  can be compared t o  the  b a s e l i n e  loading 

cond i t ion  invo lv ing  an 84-inch* (213-cm) v a l u e  f o r  payload c . g. h e i g h t ,  f o r  

which a r o l l o v e r  th resho ld  of 0.348 g ' s  i s  obta ined.  We s e e  t h a t  the  

i n d i c a t e d  reduc t ion  i n  r o l l o v e r  th resho ld  d e r i v i n g  from payload he igh t  i s  

r a t h e r  l a r g e  i n  comparison, s a y ,  t o  the  reduc t ion  d e r i v i n g  from a 10% 

i n c r e a s e  i n  g ross  v e h i c l e  weight (compare, f o r  example, t h e  .348 g v a l u e  

t o  t h e  ,316 g va lue  obta ined i n  t h e  c a s e  l abe led  12/38/38--88,000 l b s ) .  

Thus, whi le  g r o s s  weight i n c r e a s e s  a r e  seen t o  have a d e f i n i t e  and con- 

sis t e n t l y  degrading i n f l u e n c e  on r o l l o v e r  th resho ld ,  i t  is i n s t r u c t i v e  t o  

compare the  magnitude of t h e s e  in f luences  w i t h  t h e  r a t h e r  l a r g e  range of 

r o l l o v e r  th resho lds  occur r ing  i n  normal s e r v i c e  due t o  v a r i a t i o n s  i n  pay- 

load c.g. he igh t .  

Looking a t  t h e  d a t a  f o r  t h e  double,  t h e  reduc t ion  i n  t h e  r o l l o v e r  

th resho ld  of t h e  b a s e l i n e  conf igura t ion  due t o  t h e  105-inch c.g. he igh t  

cond i t ion  is  seen t o  be somewhat l e s s  than t h a t  observed wi th  t h e  f ive-axle  

t r a c t o r - s e m i t r a i l e r .  This reduc t ion  is ,  n e v e r t h e l e s s ,  s t i l l  r e l a t i v e l y  

l a r g e  i n  comparison t o  t h e  reduc t ion  i n  r o l l o v e r  th resho ld  d e r i v i n g  from 

t h e  10% i n c r e a s e  i n  g r o s s  v e h i c l e  weight ( f o r  comparison, c o n t r a s t  t h e  

b a s e l i n e  double wi th  t h e  case  l a b e l e d  10/19.5/19.5/19.5/19.5--88,000 l b s )  . 

I n t e r p r e t a t i o n  

Rollover threshold  was seen t o  be c o n s i s t e n t l y  degraded by i n c r e a s e s  

in g r o s s  weight.  The importance of t h e  observed in f luences  t o  t h e  ques t ion  

of s a f e t y  performance can, aga in ,  be examined wi th  t h e  a i d  of t h e  acc iden t  

d a t a  a n a l y s i s  which was o u t l i n e d  i n  Sec t ion  3.1.3. Shown i n  Figure  31 a r e  

t h e  r o l l o v e r  th resho ld  r e s u l t s  f o r  t h e  f ive-axle  t r a c t o r - s e m i t r a i l e r  

p l o t t e d  onto t h e  acc iden t  d a t a  curve d i scussed  e a r l i e r .  This f i g u r e  

i l l u s t r a t e s  t h a t  t h e  gross  weight changes which were considered have the  

p o t e n t i a l  f o r  in t roduc ing  dramat ic  changes i n  t h e  incidence of r o l l o v e r  

w i t h  t h i s  type of v e h i c l e .  A s  was discussed i n  Sec t ion  3.1.3, t h e  b a s i c  

curve,  de r ived  from BMCS acc iden t  d a t a ,  i s  so s t e e p  i n  t h e  0.3-0.4 g range 

4 Note t h a t  t h e  " b a s e l i n e  load ing  condi t ion"  involves  an 80-inch (203- 
cm) value  f o r  t h e  composite h e i g h t  of t h e  sprung mass of t ra i lers- - including 
t h e  t r a i l e r  body t a r e  mass and t h e  payload mass. For t h i s  cond i t ion ,  t h e  
c h a r a c t e r i s t i c  h e i g h t  of t h e  c e n t e r  of g r a v i t y  of the  payload,  i t s e l f ,  is 
approximately 84 inches  (213 cm). 
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which is  occupied by many ful ly- loaded v e h i c l e s  t h a t  even r e l a t i v e l y  

small v a r i a t i o n s  i n  r o l l o v e r  th resho ld  suggest  s u b s t a n t i a l  changes i n  

r o l l o v e r  acc iden t  involvement. We s e e ,  f o r  example, t h a t  the  change from 

t h e  pre-1974 gross  weight va lue  of 73,280 l b s  (33.2 m tons)  t o  t h e  80,000 

l b s  (36.3 m tons )  v a l u e  a f t e r  1974 implied a p o t e n t i a l  i n c r e a s e  of 441 i n  

t h e  r o l l o v e r  r a t e  of fully-loaded u n i t s .  Of course ,  t h i s  r e s u l t  a p p l i e s ,  

i n  a s t r i c t  sense ,  only t o  those  o p e r a t i o n s  involving payloads which 

approximate t h e  s p e c i a l  payload c a s e  employed i n  t h e s e  ana lyses .  Never- 

t h e l e s s ,  the  r e s u l t s  i n d i c a t e  t h a t  g ross  weight v a r i a t i o n s  a r e  powerfully 

capable of in f luenc ing  r o l l o v e r  a c c i d e n t  involvement. 

It  should a l s o  be  pointed o u t  t h a t  the  cases  of the  f ive -ax le  

t r a c t o r - s e m i t r a i l e r  having a g r o s s  v e h i c l e  weight of 92,000 l b s  (41.7 m 

tons )  represen t  an over loading of the  tandem suspensions  whose parameters 

were s e l e c t e d  t o  r e p r e s e n t  38,000 l b s  (17.2 m tons )  r a t i n g s .  It i s  u s e f u l  

to  note ,  however, t h a t  suspension s t i f f n e s s e s  represen ted  here  were, i f  

anything,  on t h e  h igher  end of t h e  l a r g e  range of s t i f f n e s s e s  found i n  the  

f i e l d ,  f o r  t h e  given v a l u e  of suspension load r a t i n g .  Thus, whi le  t h e  

92,000 l b s  (41.7 m tons)  g r o s s  weight imposes tandem loads  exceeding 38,000 

l b s  (17.2 m t o n s ) ,  t h e  s p e c i f i c  s p r i n g  s t i f f n e s s  va lues  used t o  r e p r e s e n t  

38,000-lb-rated suspensions  a r e  seen a s  over lapping t h e  range of va lues  

l i k e l y  t o  be found i n  suspensions  which a r e  s u i t a b l y  r a t e d  f o r  the  higher  

load.  

3.2.4 Xeamard XmpLification. The i n f l u e n c e  of g r o s s  weight 

v a r i a t i o n  on t h e  rearward a m p l i f i c a t i o n  exh ib i t ed  by mul t ip le -un i t  combina- 

t i o n s  was examined us ing t h e  convent ional  doubles conf igura . t ion.  The 

rearw.ard a m p l i f i c a t i o n  measure was de f ined  i n  s e c t i o n  2.2.2.5, and was 

app l ied  t o  r e s u l t s  obta ined i n  t h e  d i s c u s s i o n  of a x l e  load i n f l u e n c e s ,  i n  

Sec t ion  3.1.4. This  measure b a s i c a l l y  s c a l e s  t h e  s e v e r i t y  of t h e  r o l l o v e r  

t h r e a t  which p r e v a i l s  dur ing a r a p i d  obstacle-avoidance maneuver. Values 

near  1 .0  i n d i c a t e  t h a t  t h e  t h r e a t  i s  no d i f f e r e n t  than t h a t  which may 

p r e v a i l  under s teady- turn  cond i t ions .  Values g r e a t e r  than 1 .0  can be 

looked upon a s  implying a p r o p o r t i o n a t e l y  g r e a t e r  t h r e a t  of r o l l i n g  over 

the  l a s t  t r a i l e r  of t h e  v e h i c l e  combination a s  a r e s u l t  of the dynamic 

"ampli f ica t ion"  phenomenon. 



A s  w i l l  be shown below, the inf luence of gross vehic le  weight on 

rearward amplif icat ion is  qui te  low such t h a t  the r e s u l t s  serve merely to 

e s t ab l i sh  a  "negative finding." Of course,  there  were many other con- 

ceivable  i n t e rac t ions  between s i z e  and weight va r i ab l e s  and vehic le  

performance which were not examined i n  t h i s  study because they were 

hypothesized t o  be of negl ig ib le  importance. In  this pa r t i cu l a r  case,  

however, the inf luence was hypothesized t o  be low, but there was a  des i r e  

t h a t  i t  be quant if ied because of the l a rge  l e v e l  of i n t e r e s t  which e x i s t s ,  

general ly ,  i n  the proper t ies  of the conventional doubles configuration. 

Shown in Figure 32 a re  r e s u l t s  i l l u s t r a t i n g  the inf luence of gross weight 

on rearward amplif icat ion.  

Observations 

1 )  Increasing values of gross weight tend t o  increase the value 

of rearward amplif icat ion exhibi ted by a  conventional doubles configuration 

comprised of two 27-foot, single-axle t r a i l e r s .  

2 )  The extent  of t h i s  influence i s  r a the r  minor. X 10% increase 

in  gross weight, from 80,000 to 88,000 l b s  (36.3 to  39 .9  m tons) is seen 

t o  y ie ld  only a  1.5% increase i n  amplif icat ion r a t i o .  

In t e rp re t a t ion  

Although the conventional doubles configuration is  seen t o  exhib i t  

a  very subs t an t i a l  l e v e l  of rearward amplif icat ion a t  55 mph, the spec i f i c  

l e v e l  of gross  weight t o  which i t  i s  loaded i s  of l i t t l e  consequence. Of 

course, s ince the ro l lover  threshold of the vehic le  decl ines  s t rongly with 

increased gross weight (see preceding sec t ion ) ,  the po ten t i a l  fo r  ro l l i ng  

over the l a s t  t r a i l e r  i n  a  rapid obstacle-avoidance maneuver d e f i n i t e l y  

increases  as  gross weight increases.  I n  f a c t ,  s ince  t h i s  ve'hicle shows 

such a  strong amplif icat ion behavior, one might be incl ined to view a given 

reduction i n  the  ro l lover  threshold of the r e a r  t r a i l e r  of a double a s  

having more importance than i t  would in che case of the five-axle t r ac to r -  

s emi t r a i l e r  which exhib i t s  rearward amplif icat ion values near 1 .0.  



Figure 32. Influence of Gross Weight Variation on Rearward 
Amplification. 



3 . 3  Simple Variat ions i n  Payload Placement 

In  the previous sec t ion ,  the  inf luence of var ious gross weight limits 

was examined. With each increase  i n  gross weight above the  base l ine  value,  

the  height  of t he  center  of grav i ty  of t h e  payload was increased. The 

increase  i n  c. g. height  was determined on the bas i s  of an assumption t h a t  

a constant-density f r e i g h t  was involved such t h a t  a g rea t e r  payload weight 

meant a g rea t e r  payload height .  Accordingly, r e s u l t s  showing the inf luence 

of gross weight va r i a t i ons  a c t u a l l y  r e f l e c t  the combined inf luence of the 

weight l e v e l ,  i t s e l f ,  a s  wel l  a s  the height  of the payload c.g. which r i s e s  

when more load is added. 

Beyond t h i s  formal scheme of interconnect ing weight and payload 

height parameters, there  was an i n t e r e s t  i n  i l l u s t r a t i n g  the inf luences of 

payload placement, per s e ,  without an interdependence upon weight. Accord- 

ing ly ,  a s e t  of simulations was conducted t o  show, independently, the 

inf luence  of the  v e r t i c a l ,  l a t e r a l ,  and longi tudina l  placements of the 

payload. The cases  which were s tudied could be sa id  t o  c o n s t i t u t e  "simple 

variat ions ' '  i n  payload placement position. s ince  no o ther  parametric var ia-  

t i ons  were linked t o  the pos i t ion  parameters. Severtheless ,  these simple 

va r i a t i ons  were examined f o r  vehicles  having both 80,000-lb ( 3 6 . 3  m tons)  

and 88,000-lb (39.9 m tons)  values of gross veh ic l e  weight. In  order to 

bound the inves t iga t ion  of payload placement, only the  f ive-axle t rac tor -  

s emi t r a i l e r  and the  f ive-axle  conventional double were considered. 

Although the payload placement subjec t  does not stem d i r e c t l y  from 

a s i z e  and weight " i ssue ,"  per s e ,  r e s u l t s  showing the inf luence of payload 

pos i t ion  a r e  seen a s  having s igni f icance  t o  those concerned with s i z e  and 

weight pol icy making. Since payload placement va r i a t i ons  occur commonly i n  

day- to-day trucking operat ions,  one might surmise t h a t  any degradations i n  

cont ro l  q u a l i t i e s  which accrue due to s i t e  and weight changes may be 

exacerbated by the inf luences of payload placement. Fur ther ,  i t  i s  very 

poss ib le  t h a t  l i be ra l i zed  s i z e  and weight allowances may lead t o  c e r t a i n  

trucking prac t ices  which cause t y p i c a l  payload placements to chang-nd 

i n  a manner which cannot be an t i c ipa t ed  now. A l a t e r  review of the 



implicat ions of such changes may be aided by the da ta  documented here.  

.Use, those charged with grant ing  permits f o r  spec ia l ized  trucking opera- 

t i ons  may be in t e re s t ed  i n  the  r e s u l t s  because they a r e  concerned with 

the implicat ions of s p e c i f i c  payload arrangements on s t a b i l i t y  and con t ro l  

performance. 

3 .3.1 Variat ion of Payload C.G. Height. Payloads comprising 

packaged f r e igh t  a r e  t y p i c a l l y  stacked on the  loading f l o o r  of the vehic le  

such t h a t  they e s t a b l i s h  a  p a r t i c u l a r  height  of center  of g rav i ty  depending 

upon the  densi ty  and ove ra l l  stacked height  of the  f r e i g h t .  It i s  usefu l  

t o  descr ibe t h i s  "payload c. g  . height" parameter independently from the 

center  of g rav i ty  of the empty vehic le ,  i t s e l f ,  s i nce  payloads vary 

tremendously a s  an inherent  f e a t u r e  of the trucking en te rp r i s e .  Fur ther ,  

s ince  t r a c t o r s  and t r a i l e r s  a r e  r e l a t i v e l y  uniform, with regard t o  the 

loca t ion  of t h e i r  cen ters  of grav i ty  i n  t he  empty condit ion,  the ne t  height  

of the  composite (vehicle  p lus  payload) center  of g rav i ty  can be defined 

r a t h e r  c lose ly  by simply ident i fy ing  the  payload weight and the payload 

c.g. height.  

Shown i n  Figure 3 3 ,  f o r  example, we see  the  simple s t r a i g h t - l i n e  

r e l a t i onsh ip  between the  c.g. height  of the  payload and the  height  of the 

center  of g rav i ty  of the  composite mass comprised of the  van body of a  

45-foot (13.7-m) s e m i t r a i l e r  p lus  the payload. The vehic le  dynamicist 

would c a l l  t h i s  l a t t e r  va r i ab l e  the  height  of t he  composite "sprung massf' 

of t he  t r a i l e r  s ince  i t  descr ibes  t he  t o t a l  mass r e s t i n g  upon the  suspen- 

s ion  springs (and the  t r a c t o r  f i f t h  wheel). 

Simulations were conducted with va r i a t i ons  i n  payload c .g .  height 

over t he  range of 70 t o  110 inches (178 t o  279 cm). One can i n t e r p r e t  the 

p r a c t i c a l  s ign i f i cance  of t h i s  range by r e f e r r i n g  to Figure 34. Since the  

load f loo r  of the  t y p i c a l  t r a i l e r  is 52 t o  55 inches (132 to 140 cm) above 

the  ground, there  is obviously some minimum value  f o r  payload c.g. height .  

The f igu re  i l l u s t r a t e s  the  approximate height  t o  which homogeneous f r e i g h t  

must be loaded t o  achieve payload c .g .  heights  having the values shown. 

Of course,  ;nixed-density f r e i g h t  w i l l  have a  lower ne t  height  of the payload 

than shown, f o r  the same nominal o v e r a l l  height  to  the top of the  s t ack  of 



Assumes : 
- Trailer Body - 9C00 Ibs 
- Body C.G. Height - 60 inches 
- Payload Weight - 50C00 Ibs 

PAY LOAD CG. HEIGHT (inches) 

Figure 33. Relationship Between Payload C.G. Height and 
Composite (Sprung Mass) C.G. Height -Tractor 
with 45 f t .  Semitrailer. 





f r e igh t .  The 110-inch (279-cm) value is the upper extremity i n  payload c.g. 

heights  achievable on road v e h i c l e s - e x c e p t  f o r  odd cases  involving, say,  

fabr ica ted  machinery which may be pecul ia r ly  top-heavy. The maximum 

height  of payload c.g.  which is thought t o  be commonly achieved i n  the  

loading of van-type semi t r a i l e r s  is  approximately 105 inches (267  cm). 

The inf luence of payload c.g.  height on vehic le  performance has been 

character ized according to  stopping d is tance ,  yaw s t a b i l i t y ,  and r o l l  

s t a b i l i t y  proper t ies .  Neasures expressing the s e n s i t i v i t y  of these pro- 

p e r t i e s  to  payload c.g. height  a r e  presented below. 

3.3.1.1 Stopping dis tance.  The height of the payload center  of 

grav i ty  is of importance t o  braking behavior insofar  a s  the dynamic changes 

i n  ax l e  load which occur during braking depend upon this parameter. When 

the vehic le  is dece lera t ing ,  the load borne on the r e a r  ax le  decreases 

while load applied t o  the f r o n t  ax le  increases .  I f  a vehicle  i s  equipped 

with brakes which a r e  capable of producing l a rge  l e v e l s  of torque a t  the 

r e a r  ax le ,  with respect  t o  the rear-axle load,  one w i l l  t yp i ca l ly  f ind  tha t  

the lockup of r e a r  wheels w i l l  cons t i t u t e  the  common l i m i t a t i o n  on tha t  

veh ic l e ' s  stopping capabi l i ty .  For the case of an increase i n  the height 

of the  payload center  of grav i ty  on such a vehic le ,  the reduct ion i n  load 

on the r e a r  ax le  will be even g rea t e r  than i n  some base l ine  case such t h a t  

rear-wheel lockup w i l l  occur a t  an even lower l e v e l  of dece lera t ion .  

Accordingly, vehicles  having such braking systems of t h i s  type w i l l  show 

increasing stopping d is tances  with increases  i n  payload c.g.  height .  

For vehicles  incorporating " torque-limited" braking sys tens ,  a s  

mentioned i n  Section 3.1.1, changes i n  payload c.g. height may have l i t t l e  

or  no inf luence on stopping d is tance  performance. Clear ly,  i f  the  addi- 

t i o n a l  changes i n  dynamic ax le  load deriving from an increased height of 

the payload c .g.  do not  render the  r e a r  brakes capable of achieving wheel 

lockup, the change i n  c.g. height w i l l  not  have affected stopping dis tances.  

On the  o the r  hand, i f  an increased height of payload causes the r ea r  ax le  

t o  become s u f f i c i e n t l y  l i g h t l y  loaded t h a t  rear-wheel lockup i s  achieved, 

the r e s u l t  w i l l  be an increase i n  stopping dis tance.  



Shown i n  Figure 35 a r e  the  r e s u l t s  of simulations represent ing the  

inf luence of payload c.g. height on the  stopping d is tance  performance of 

t he  five-axle t rac tor -semi t ra i le r  and the  five-axle double. The da t a  

i l l u s t r a t e  condit ions covering both dry and s l ippery  road sur faces  f o r  both 

the 80,000- and 88,000-lb ( 3 6 . 3 -  and 39.9-m tons)  l e v e l s  of gross  vehic le  

weight. A s  discussed i n  Section 3.1.1, the simulated vehic les  incorporated 

brake systems which a r e  seen a s  represent ing t y p i c a l  p rac t i ce  i n  new vehic le  

design. That is,  these vehic les  incorporate  t r a i l e r  brakes which a r e  

r e l a t i v e l y  high i n  torque c a p a b i l i t y ,  given the  l e v e l s  of load which p reva i l  

a t  the  respec t ive  ax les  during braking. Thus, such vehic les  a r e  commonly 

l imi ted  i n  stopping d i s t ance  performance, per t he  c r i t e r i o n  used here,  by 

the incidence of wheel lockup a t  the t r a i l e r  a x l e ( s ) .  

Observations 

1) There is a 3 t o  6% increase  i n  stopping d i s t ance  f o r  the  

t r ac to r - semi t r a i l e r  a s  payload c.g.  height  increases  over t he  range which 

was examined. 

2 )  There is a 5 t o  11% increase  i n  the stopping d i s t ance  f o r  the  

doubles combination over the  examined range of payload c o g .  heights.  The 

double exh ib i t s  g rea t e r  s e n s i t i v i t y  t o  c .g .  height because, with i t s  

sho r t e r  t r a i l e r  wheelbases, it s u f f e r s  a g rea t e r  dynamic change i n  ax l e  

load with each incremental change i n  payload height .  Thus, f o r  t he  higher 

l e v e l s  of payload c.g. he ight ,  the  "overbraked" r e a r  ax l e  of the  second 

t r a i l e r  achieves lockup a t  a l e s s e r  value of dece lera t ion  than i s  a t t a ined ,  

before lockup, with the  f ive-axle  t rac tor -semi t ra i le r  . 
I n t e r p r e t a t i o n  

I t  is  poss ib le  t o  genera l ize ,  to some degree, upon the inf luence of 

an increased height  of the payload c .g.  on stopping d is tance  performance. 

That i s ,  i f  an increase  i n  t he  height of the payload has any e f f e c t  upon 

the stopping capab i l i t y  of vehic les ,  i t  w i l l  genera l ly  cause the stopping 

d is tance  t o  increase.  A s  t h e  r e s u l t s  show, the  degree of t h i s  inf luence 

w i l l  not be s a j o r  f o r  common types of commercial vehic les .  





A s  t he  wheelbase of the  veh ic l e  becomes sho r t e r ,  however, the  

degradation i n  braking capab i l i t y  w i l l  become g rea t e r .  In  the case of a  

s t r a i g h t  t ruck having a  very s h o r t  wheelbase, f o r  example, the inf luence 

of t he  height  of the  payload c.g. could c o n s t i t u t e  a  major determinant of 

t he  vehicle  ' s  emergency braking capab i l i t y  . Perhaps the g rea t e r  concern 

with high c.g. l oca t ions  on short-wheelbase t rucks  is tha t  the g rea t e r  

l ike l ihood of locking the  r e a r  wheels poses a  g rea t e r  t h r e a t  of the vehic le  

producing a  "spin-out" type of yaw i n s t a b i l i t y .  Such an i n s t a b i l i t y  quickly 

exposes the  vehic le  to t h e  l a r g e  "s ides l ip"  a t t i t u d e  which promotes r o l l -  

over. Since the  g rea t e r  c.g. height  a l s o  reduces the inherent  r o l l  s t a b i l i t y  

of the vehicle  (see Sect ion 3.3.1.3, below), t h e  elevated c.g.  condi t ion 

is  seen a s  e spec i a l ly  hazardous t o  the operat ion of short-wheelbase trucks. 

3.3.1.2 Yaw s t a b i l i t y .  Payload c.g. height  is a parameter which 

has t he  p o t e n t i a l  f o r  inf luencing the  steady-cornering response of t rucks 

and t r a c t o r s .  This p o t e n t i a l  stems from the pecul ia r  na ture  of the  

pneumatic t i r e  i n  response t o  changes i n  v e r t i c a l  load. The height  of the 

payload c.g.  determines the ex ten t  t o  which the loads ca r r i ed  by r i g h t -  

and l e f t - s ide  t i r e s  tend to  change whenever t he  veh ic l e  t r a v e l s  through a  

curve. The higher the  c .g , ,  the g rea t e r  w i l l  be the d i f f e r ence  between the 

loads car r ied  by the  t i r e s  on the  i n s i d e  of the  turn  ( t h a t  is, on the  s i d e  

of t he  veh ic l e  which is  c loses t  to  the  tu rn  center )  a s  opposed t o  the t i r e s  

on the  outs ide  of the turn.  Due t o  p e c u l i a r i t i e s  i n  t ruck suspension design,  

t h e  rear  t i r e s  on a  t ruck o r  t r a c t o r  genera l ly  bear "more than t h e i r  f a i r  

share" of t h i s  load change than do the  f r o n t  t i r e s  [14].  A s  a  r e s u l t ,  the 

r e a r  t i r e s  s u f f e r  a  ne t  l o s s  i n  t h e i r  a b i l i t y  t o  develop the  l a t e r a l  forces  

which assure a  s t a b l e  yaw response. Thus, i t  can be sa id  t h a t  an increase  

i n  payload c.g. height  has the p o t e n t i a l  f o r  degrading the  yaw s t a b i l i t y  

of heavy vehicles .  

I n  Figure 36, the  inf luence of payload c.g. height  on the understeer 

measure i s  i l l u s t r a t e d  f o r  cases involving t h e  five-axle t r ac to r - semi t r a i l e r  

and the  five-axle double. Results a r e  shown f o r  both the 80,000- and 

88,000-lb (36.3- and 39.941 tons)  gross  weight condit ions.  





Ob s erva t ions  

1 )  The r e s u l t s  f o r  both  the  t r a c t o r - s e m i t r a i l e r  and t h e  double 

show a d e c l i n i n g  unders tee r  l e v e l  wi th  i n c r e a s i n g  c.g.  h e i g h t .  These 

l i m i t e d  r e s u l t s  show an i n f l u e n c e  of payload c.g.  he igh t  on t h e  "quasi- 

u n d e r s t e e r  measure" ranging from -0.015 t o  -0.040 deg/g per i n c h  of pay- 

load  c.g.  h e i g h t ,  f o r  t h e  ful ly- loaded cond i t ion .  

2 )  Gross weight v a r i a t i o n s  do n o t  have a c o n s i s t e n t  in f luence  

upon the  s e n s i t i v i t y  of t h e  unders tee r  p roper ty  t o  changes in payload c .g .  

he igh t .  

I n t e r p r e t a t i o n  

A s  d i scussed  e a r l i e r ,  t h e  unders tee r  l e v e l  exh ib i t ed  by heavy t r u c k s  

i n  t h e  in te rmedia te  range of maneuver s e v e r i t y  (between, s a y ,  normal 

d r i v i n g  and t h e  l e v e l  needed f o r  r o l l o v e r )  is  r a t h e r  low, and tends  toward 

an u n s t a b l e  yaw response i n  c e r t a i n  cases .  C l e a r l y ,  t h e  i n f l u e n c e  of 

i n c r e a s e s  i n  payload c.g. he igh t  i s  t o  promote t h i s  tendency. Thus, i f  a 

change i n  s i z e  and weight al lowances causes  t h e  unders tee r  l e v e l  of 

typical ly- loaded v e h i c l e s  t o  degrade, t h e  c o n d i t i o n  w i l l  be f u r t h e r  

exacerbated by a n  i n c r e a s e  i n  payload c. g . he igh t  beyond t h e  " t y p i c a l "  

va lue .  

3.3.1.3 R o l l  s t a b i l i t y .  C l e a r l y ,  i n c r e a s e s  i n  c .g .  he igh t  impose 

a s t r o n g  nega t ive  i n f l u e n c e  upon t h e  r o l l  s t a b i l i t y  of commercial v e h i c l e s .  

This  i n f l u e n c e  d e r i v e s  from two mechanisms, a s  sketched i n  F igure  3 7 .  The 

f i r s t  involves  t h e  f a c t  t h a t  t h e  c e n t r i p e t a l  a c c e l e r a t i o n  a r i s i n g  dur ing  

corner ing  produces a r e a c t i o n  f o r c e  which "acts"  through t h e  c e n t e r  of 

g r a v i t y .  The higher  t h a t  t h e  c e n t e r  of g r a v i t y  i s  above t h e  ground, t h e  

g r e a t e r  is t h e  l e v e r  arm a v a i l a b l e  f o r  t h i s  r e a c t i o n  f o r c e  t o  produce a 

r o l l o v e r  torque,  o r  moment. 

Secondly, s i n c e  t h e  payload (and t r a i l e r  body) r e s t  on suspension 

s p r i n g s  and u l t i m a t e l y ,  tires a s  w e l l ,  t h e  a c t i o n  of t h i s  " r o l l o v e r  moment" 

is a b l e  t o  d e f l e c t  t h e  body l a t e r a l l y ,  r o l l i n g  i t  toward t h e  o u t s i d e  of t h e  

turn .  A s  t h e  r o l l  motion proceeds ,  the  c e n t e r  of g r a v i t y  of t h e  suspended 





body and payload becomes t r ans l a t ed  sideways, s ince  the r o t a t i o n  takes 

place about a r a the r  low " r o l l  center ."  The higher the center  of g rav i ty ,  

the grea te r  is t h i s  l a t e r a l  t r ans l a t ion ,  per un i t  of r o l l  angle.  Clear ly,  

a s  the l a t e r a l  t r ans l a t ion  of the center  of grav i ty  increases ,  the vehic le  

approaches a ro l love r  condition. Indeed, when the  "y" dimension i n  Figure 

37 becomes zero, t he  poin t  is reached a t  which ro l lover  motion w i l l  proceed, 

even without the c e n t r i p e t a l  acce lera t ion  of a turning maneuver. 

Shown i n  Figure 38 a r e  r e s u l t s  i l l u s t r a t i n g  the inf luence of payload 

c .  g. height on the ro l lover  threshold of the f ive-axle t rac tor -semi t ra i le r  

and the five-axle double. 

Observations 

1 )  We see  t h a t  the  obvious inf luence of t h i s  parameter produces 

profound numerical r e s u l t s  over t he  range of payload c.g.  height.  The 

s t rength  of the inf luence is nominally -0.01 g v s  per inch of payload c.g. 

height .  

2 )  The inf luence of the  gross  weight d i f fe rence  i s  (a )  r e l a t i v e l y  

small in  comparison t o  the  inf luence of payload c.g. height over the range 

and (b) not instrumental,  f o r  cases  of 80,000 and 88,000 l b s  ( 3 6 . 3  and 

39.9 m tons) GVW, i n  a l t e r i n g  the bas ic  s e n s i t i v i t y  to  changes i n  payload 

c .  g. height.  

3) Payload c.g. height  i s  not seen t o  influence the  small d i f f e r -  

ences in  ro l lover  threshold axhibi ted by the f ron t  and r e a r  t r a i l e r  u n i t s  

of the double. 

In t e rp re t a t ion  

Looking again a t  t he  r e s u l t s  of the accident  da t a  ana lys is  presented 

i n  Section 3.1.3, we can crudely l i n k  the  ro l lover  threshold r e s u l t s  to a 

pro jec t ion  of ro l love r  accident  involvement. Shown i n  Figure 39 is  an 

overlay of the ro l lover  threshold values obtained with the t rac tor -  
a 

semi t r a i l e r ,  a t  80,000 l b s  ( 3 6 . 3  m tons) gross weight, onto the cunre 

derived from ro l love r  accident da t a  involving five-axle t rac tor -semi t ra i le rs .  

The overlay suggests t ha t  the profound inf luence which payload c.g. height 
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has on a  veh ic l e ' s  ro l love r  threshold would cause changes i n  t h i s  parameter 

to have a  major e f f e c t  on ro l love r  accident involvement in  the f i e l d .  

The values of ro l love r  threshold obtained f o r  the 100- and 110-inch 

(254- and 279-cm) l e v e l s  of payload c.g. height  a r e  so low t h a t  they cause 

the  ro l love r  involvement percentage t o  f a l l  above the  top of the curve, a s  

plot ted.  For extreme cases such a s  t h i s ,  i n  which ro l love r  threshold values 

go below 0.30 g o r  so,  the  accident  da t a  a r e  seen a s  having l i t t l e  meaning. 

This view stems from the  r e a l i z a t i o n  t h a t  a s  ro l love r  threshold ge t s  very 

low, vehic les  most l i k e l y  begin t o  "produce" ro l love r  accidents  simply a s  

a  r e s u l t  of the low l e v e l  of s t a b i l i t y ,  i t s e l f ,  r a t h e r  than a s  a  

p r o b a b i l i s t i c  consequence of being exposed t o  t he  contingencies of highway 

t r ave l .  When t h i s  phenomenon begins t o  dominate the  mechanics of accident  

production, the  r a t i o i n g  of ro l love r s  t o  single-vehicle accidents  f a i l s  t o  

be meaningful because the  t o t a l  number of s ingle-vehicle  accidents  is r i s i n g .  

Notwithstanding these  observat ions,  i t  is ,  perhaps, usefu l  to 

consider t h a t  there  is c e r t a i n  t o  be some low value of t ruck  ro l love r  

threshold,  below which ro l love r  swamps al.1 other  types of accident  experi-  

ence. Such an hypothesis could be drawn from ext rapola t ing  the  BMCS da ta ;  

namely, t h a t  vehic les  having ro l love r  thresholds approaching 0.200 w i l l  

experience an exceedingly high ro l lover  r a t e  such t h a t  ro l lover  becomes 

the  dominant accident  type. It appears from the r e s u l t s  presented i n  

Figure 38 t h a t  a  conventional five-axle t r ac to r - semi t r a i l e r  having a  payload 

c.g. height  of 110 inches (279 cm) and a  gross  weight of 80,000 l b s  ( 3 6 . 3  

m tons) e s s e n t i a l l y  achieves t h i s  asymptotic condition. 

3 . 3 . 2  Variat ion i n  Latera l  Offset  of Payload C.G.  The behavior of 

the  five-axle t rac tor -semi t ra i le r  and the five-axle double was examined 

f o r  s e n s i t i v i t y  t o  a  l a t e r a l  o f f s e t  i n  the placement of the payload center  

of grav i ty .  Such cases  a r e  thought t o  occur i n  normal s e rv i ce  e i t h e r  a s  

a  r e s u l t  of (a)  improper placement of f r e i g h t  a t  the  loading dock, (b) the  

car r iage  of an inherent ly  asymmetric load,  o r  (c) t he  l a t e r a l  s 'hift ing of 

cargo a s  permitted by e i t h e r  f r e e  space i n  a cargo container o r  looseness 

i n  tie-down elements. The subjec t  was examined only from the viewpoint of 



a r i g i d ,  f ixed cargo. Thus, f o r  example, the dynamic s h i f t i n g  of so l id  

cargoes or  the sloshing of l i qu ids  was not considered. 

The two se lec ted  vehic le  types were considered f o r  cases of both 

80,000 l b s  (36.3 m tons) and 88,000 l b s  (39.9 m tons) gross weight. Com- 

pos i t e  c. g. heights represent ing the combined masses of the  t r a i l  e r  body 

and the payload were fixed a t  the basel ine value of 80 inches (203 cm). 

Within these cons t r a in t s ,  the l a t e r a l  pos i t ion  of the payload c,g. was 

varied from 0 t o  12 inches (30.5 cm) off of the t r a i l e r  cen ter l ine .  

The inf luence of a l a t e r a l  o f f s e t  i n  the c.g.  posi t ion was evaluated 

i n  terms of yaw s t a b i l i t y  and r o l l  s t a b i l i t y  a s  defined e a r l i e r .  Also, 

the inf luence of the o f f s e t  condition on the  synunetry of vehic le  response 

i n  an obstacle-avoidance s t ee r ing  maneuver was invest igated.  I n  both the 

yaw and r o l l  s t a b i l i t y  examinations, the  turn d i r ec t ion  was selected such 

t h a t  the  o f f s e t  aggravated s t a b i l i t y .  That is ,  the payload was o f f s e t  i n  

a l l  cases toward the outs ide of the turn.  

3.3.2.1 Yaw s t a b i l i t y .  When a vehic le  is loaded asymmetrically, 

from r i g h t  to  l e f t ,  there  e x i s t s  a s t a t i c  d i f f e r e n t i a l  i n  the loads borne 

by the  r igh t -  and l e f t - s ide  t i r e s .  A s  mentioned e a r l i e r ,  the  pneumatic 

t i r e  is  s e n s i t i v e  t o  load change i n  such a way t h a t  an equal up- and down- 

going change i n  load on the  t i r e s  mounted a t  opposite ends of an ax le  

r e s u l t s  i n  a ne t  l o s s  i n  the  a b i l i t y  of those t i r e s ,  taken co l l ec t ive ly ,  to  

generate the  l a t e r a l  forces  needed t o  negot iate  curves. I f  a veh ic l e ' s  

payload is o f f s e t  i n  such a way t h a t  the  change i n  t i r e  load due t o  

asymmetry adds to  the change deriving from cornering, the  "net loss"  i n  

l a t e r a l  force due to  the  o f f s e t  payload w i l l  add to the l o s s  a r i s i n g  simply 

from the  c o n e r i n g  process. Due to conventions i n  the design of f ron t  and 

rear  suspensions on trucks and t r a c t o r s ,  the rear-mounted t i r e s  w i l l  

experience the primary load changes as a d i r e c t  r e s u l t  of both the corner- 

ing process and the o f f s e t  payload. Since the r e a r  t i r e s  must be capable 

of producing s u i t a b l e  l e v e l s  of s ide  force,  r e l a t i v e  to  the s i d e  forces  

produced by f ron t  t i r e s ,  i n  order to  assure a yaw-stable response, any 

mechanism serving t o  reduce the  l a t e r a l  force  capab i l i t y  of rear  t i r e s  

tends to promote i n s t a b i l i t y .  An o f f s e t  payload w i l l  thus have a 



des t ab i l i z ing  e f f e c t  on yaw behavior whenever the o f f s e t  i s  toward the 

outs ide of the turn ,  thereby serving t o  increase the t o t a l  d i f fe rence  in  

loads borne by r igh t -  and l e f t - s ide  t i r e s .  

Shown i n  Figure 40 a r e  values of the understeer measure obtained 

f o r  cases of increasing l a t e r a l  o f f s e t  i n  the placement of payload. 

Observations 

1) The o f f s e t  payload tends to degrade the l eve l  of understeer 

which is exhibi ted.  

2 )  The inf luence of the payload o f f s e t  on the - r o l l  response of 

the veh ic l e  is  so profound, however, t h a t  the  ramp-steer type of maneuver 

used to eva lua te  t he  understeer measure begins t o  pose c e r t a i n  interpre-  

t a t i o n  d i f f i c u l t i e s  a t  t he  higher values of o f f s e t  fo r  the t rac tor -  

s emi t r a i l e r  vehicle .  In  p a r t i c u l a r ,  the simulated maneuver exh ib i t s  a 

d i s t i n c t l y  non-steady-state character  fo r  cases  i n  which the  payload o f f s e t  

has caused the veh ic l e ' s  ro l love r  threshold to  drop near the 0.25 g l eve l  

of l a t e r a l  acce lera t ion  a t  which the understeer measure, i t s e l f ,  i s  

evaluated. Accordingly, the understeer measures f o r  the t rac tor -semi t ra i le r  

a t  o f f s e t  values of 9 and 1 2  inches ( 2 3  and 30 cm) a r e  not shown s ince  

the o f f s e t  is leading to  an imminent ro l love r  i n  the v i c i n i t y  of 0.25 g ' s .  

3)  There is  no c l e a r  connection between the  10% va r i a t ion  in  gross  

weight l e v e l  and the s e n s i t i v i t y  of understeer behavior t o  payload off s e t .  

4 )  The d i f fe rences  i n  the response of the two vehic les  is 

apparently due t o  the  cont ras t  i n  suspension s t i f f n e s s e s  and the d i s t r i -  

but ion of load among the t r a c t o r  axles .  

In t e rp re t a t ion  

The obsented inf luences of l a t e r a l  off  s e t  on understeer a r e  very 

substantial ,  over the l a rge  range of o f f s e t  values examined. Xote, however, 

t h a t  the  r e s u l t s  which were presented cover the spec i f i c  case of corner- 

ing maneuvers i n  which the o f f s e t  of the payload is  towards the outs ide  of 

the turn.  Thus, while t h i s  turn d i r ec t ion  w i l l  ind ica te  a reduced l e v e l  of 

understeer,  the opposi te  d i r ec t ion  of turn w i l l  ind ica te  an increased l eve l .  

Accordingly, another problem posed by l a rge  l a t e r a l  o f f s e t s  i n  payload 
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placement may be the asymmetry of the  veh ic l e f  s cornering behavior, thus 

c a l l i n g  fo r  espec ia l ly  adaptable d r ive r  ac t ions  i n  order to  achieve 

s u i t a b l e  control .  Certain dynamic aspects  of the asymmetry question a r e  

discussed below, in Section 3 . 3 . 2 . 3 .  

3 . 3 . 2 . 2  Roll  s t a b i l i t y .  Clear ly,  any l a t e r a l  s h i f t  i n  the place- 

ment of the payload c.g. w i l l  tend t o  f a c i l i t a t e  t he  ro l lover  of the  vehicle  

i n  the d i r ec t ion  of the o f f s e t .  Looking a t  Figure 41, for  example, i t  can 

be e a s i l y  shown t h a t  the ro l lover  threshold of the vehicle  should decl ine 

approximately by the r a t i o  of the o f f s e t  to the "e f f ec t ive  half-track" 

dimension. For conventional vehic les  and, f o r  the l a r g e s t  value (12 inch-- 

4 3  cm) of o f f s e t  considered here,  t h i s  decl ine should approach 30% of the 

basel ine value of ro l lover  threshold . 
Shown i n  Figure 42 a r e  r e s u l t s  ind ica t ing  the influence of payload 

o f f s e t  on the ro l lover  threshold of the  two selected vehicle  types. 

Observations 

1) The ro l lover  threshold i s  focnd to  dec l ine  s t rongly  with 

increasing payload offset-although somewhat l e s s  than the r a t i o  of o f f s e t  

t o  half- t rack would ind ica te .  

2 )  No in t e rac t ion  i s  seen between the l eve l  of gross  weight and 

the inf luence of payload offset '  on ro l love r  threshold. 

3 )  Payload o f f s e t s  can ser ious ly  degrade r o l l  s t a b i l i t y  without 

inducing large,,  and obviously-no t i ceab le  r o l l  angles to  the vehic le  a t  

r e s t .  An o f f s e t  of 6 inches (15 cm), f o r  example, produces a s t a t i c  r o l l  

angle of approximately 1 . 2  degrees. 

In t e rp re t  a t  ion 

Since the "e f f ec t ive  half-track" dimension of comer c i a 1  vehic les  

is i n  the v i c i n i t y  of 4 0  inches (102 cm) , r e l a t i v e l y  small values of off s e t  

w i l l  cause a s ign i f i can t  reduction i n  r o l l  s t a b i l i t y .  This observation 

should be noted by those trucking operations which commonly deal  with 

t ransport ing e i t h e r  asymmetric ob jec ts  o r  f r e i g h t  which is packaged i n  
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Figure 41. Illustration of Payload Offset Relative to the 
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Figure 42. Influence of Payload Offset on Rollover Threshold 
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such a way t h a t  e i t h e r  dunnage o r  tie-downs a r e  required t o  secure  t h e  

load from s h i f t i n g  l a t e r a l l y  dur ing  t r a n s i t .  

Making t h e  connection,  a g a i n ,  wi th  t h e  d a t a  r e l a t i n g  r o l l o v e r  

th resho ld  t o  involvement i n  r o l l o v e r  a c c i d e n t s ,  one observes  t h a t  even a 

6-inch (15-cm) l a t e r a l  o f f s e t  i n  payload p o s i t i o n  would appear t o  t h r e a t e n  

a 40% g r e a t e r  l i k e l i h o o d  of r o l l i n g  over--in t h e  d i r e c t i o n  of t h e  o f f s e t .  

Of course,  i t  should a l s o  be acknowledged t h a t  t h e  o f f s e t  w i l l  improve r o l l  

s t a b i l i t y  i n  one d i r e c t i o n  and reduce i t  i n  t h e  o t h e r .  Thus, whi le  t h e r e  

i s  c e r t a i n  t o  be a s t r o n g  i n f l u e n c e  on r o l l o v e r  involvement r e g a r d l e s s  of 

t h e  r i g h t / l e f  t p o l a r i t y  of t h e  payload o f f s e t ,  t h e  a c t u a l  n e t  outcome on 

t h e  p r o b a b i l i t y  of r o l l o v e r  involvement depends upon t h e  shape of the  

a c c i d e n t  d a t a  curve r e l a t i n g  r o l l o v e r  th resho ld  t o  r o l l o v e r  involvement. 

The s t a t i c  r o l l  angle  which a t r a i l e r  would assume due t o  an o f f s e t  

payload may not  be r e a d i l y  n o t i c e a b l e .  Shown i n  F igure  43 is  a drawing, 

t o  s c a l e ,  of t h e  f r o n t  view of a t r a c t o r - s e m i t r a i l e r  wi th  t h e  1 . 2  degree  

t r a i l e r  r o l l  angle  which would accrue from a 6-inch (15-cm) o f f s e t  i n  a 

payload of f u l l  g ross  weight.  The ques t ion  is ,  could a d r i v e r  r e a d i l y  

d e t e c t ,  simply by v i s u a l  obse rva t ion ,  t h a t  h i s  v e h i c l e  had been asymmetri- 

c a l l y  loaded ( o r  had s u f f e r e d  a load  s h i f t  whi le  t r a v e l i n g ) ?  While t h e  

human eye  is known t o  be e s p e c i a l l y  a b l e  t o  d e t e c t  small d i s c r e p a n c i e s  i n  

r e l a t i v e  a n g l e ,  d e t e c t i o n  of t h e  cond i t ion  shown i n  t h e  f i g u r e  would appear ,  

a t  minimum, t o  c a l l  f o r  a d i s t i n c t  l e v e l  of a t t e n t i v e n e s s  on t h e  p a r t  of 

t h e  d r i v e r .  

While i t  i s  c l e a r l y  recognized t h a t  payload c.g.  h e i g h t  v a r i e s  over 

a broad range from t ruckload t o  t ruck load ,  t h e  e x t e n t  t o  which l a t e r a l  o f f -  

s e t s  i n  payload placement occur i n  norna l  s e r v i c e  is  unknown. 

3 . 3 . 2 . 3  A s y e t r y  of response t o  s t e e r i n g ,  L a t e r a l  o f f s e t  of t h e  

payload c.g. suggests  t h a t  t h e  yaw response t o  s t e e r i n g  may b e  d i f f e r e n t  

t o  t h e  l e f t  than t o  t h e  r i g h t .  While comments t o  t h i s  e f f e c t  were presented 

above, i n  r e l a t i o n  t o  t h e  unders tee r  m a t t e r ,  t h e r e  was s p e c i a l  i n t e r e s t  i n  

t h e  asymmetry of v e h i c l e  response f o r  t h e  c a s e  of  a r a p i d  lane-change 

maneuver. Simulat ion of such a maneuvering c o n d i t i o n  has produced r e s u l t s  

which address ,  q u a l i t a t i v e l y ,  t h e  c o n t r o l  i s s u e s  involved.  



Figure 43. Sketch of Tractor Sernitroiier with Trailer Listing 1.2' 
to Its Right Side (As Occurs with a Payload Offset 
'of 6 inches, with Full- Weight Load ) 



Shown i n  Figure  4 4  a r e  m u l t i p l e  records  of t h e  s t e e r i n g  wheel input  

app l ied  by a simulated d r i v e r  f o r  d i f f e r i n g  cond i t ions  of payload o f f s e t  

and f o r  a f ixed  g ross  weight va lue  of 80,000 l b s  ( 3 6 . 3  m t o n s ) .  The v e h i c l e  

re?resented i n  t h e s e  c a l c u l a t i o n s  is  a f ive-axle  convent ional  double.  These 

s i g n a l s  i n d i c a t e  t h e  form of s t e e r i n g  inpu t  which was needed t o  achieve a 

s p e c i f i c  maneuver involving a rapid  l a t e r a l  displacement of 12 f e e t  ( 3 . 6  m)  

a t  55 mph (88 km/h). Supplementing t h e  s t e e r i n g  inpu t  d a t a  a r e  r e s u l t s  

shown i n  Figures  4 5 ,  46, and 47 i l l u s t r a t i n g ,  f o r  v a r i o u s  o f f s e t  c a s e s ,  the  

r o l l  angle  of t h e  r e a r  t r a i l e r  i n  t h e  doubles combination throughout t h e  

maneuver, Together, these  r e s u l t s  provide i n s i g h t  i n t o  t h e  dynamic 

impl ica t ions  of t h e  payload o f f s e t  condi t ions .  

Ob se rva  t ions  

1) The s t e e r i n g  inpu t  d a t a  of Figure  44 show t h a t  r a t h e r  l i t t l e  

d i f f e r e n c e  i n  s t e e r i n g  a c t i o n  is  requ i red  i n  order  t o  achieve t h e  same 

lane-change t r a j e c t o r y  w i t h  d i f f e r i n g  l e v e l s  of payload o f f s e t ,  

2)  The r o l l  angle  records  shown i n  Figure  4 5  show t h a t ,  whi le  an 

i d e n t i c a l  lane-change maneuver was being conducted i n  each case ,  t h e r e  is  

a tremendous d i f f e r e n c e  i n  t h e  r o l l  ang le  response of t h e  r e a r  t r a i l e r  of 

t h e  doubles combination f o r  cases  of 0 and b i n c h  (15-cm) payload o f f s e t .  

The peak va lue  of r o l l  ang le  reached i n  the  second phase of t h e  maneuver 

is twice  as  l a r g e ,  i n  t h e  c a s e  of t h e  b i n c h  (15-cm) o f f s e t ,  a s  t h a t  

a t t a i n e d  i n  t h e  b a s e l i n e  case .  

3 )  The r o l l  a n g l e  records  shown i n  Figure  46 i l l u s t r a t e  t h a t  a 

l a r g e  range of peak va lues  of t r a i l e r  r o l l  a n g l e  a r e  a t t a i n e d  a s  a r e s u l t  

of t h e  inc reas ing  payload o f f s e t .  Although t h e  b a s e l i n e ,  ze ro-of f se t ,  case  

produces a moderate 4 degree  peak i n  r o l l  angle, t h e  12-inch (30-cm) va lue  

of o f f s e t  produces a temporari ly-unstable r o l l  response which causes  t h e  

v e h i c l e  t o  r o l l  through some 25 degrees  be fore  t h e  recovery phase of the  

s t e e r i n g  inpu t  b r ings  t h e  v e h i c l e  back down onto  i t s  t i r e s .  

4 )  Shown i n  Figure  47 is  an  i l l u s t r a t i o n  of t h e  r o l l  angle  

responses of t h e  r e a r  t r a i l e r  when the  payload o f f s e t s  a r e  employed on a 

doubles combination having a g r o s s  weight of 88,000 l b s  (39.9 m t o n s ) .  
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The f i g u r e  shows t h a t  t h e  increased g r o s s  weight l e v e l  provides  f o r  a  more 

d e s t a b i l i z e d  r o l l  response such t h a t  r o l l o v e r  occurs  i n  both  the  9- and 

12-inch (23- and 30-cm) o f f s e t  cases .  

5) Together, t h e  four  f i g u r e s  show t h a t  t h e  dynamic lane-change, 

o r  accident-avoidance behavior ,  f o r  a  doubles combination w i l l  be 

d ramat ica l ly  d e s t a b i l i z e d  when a  ful l -weight  payload is o f f s e t  by 6 inches  

o r  m o r e a n d  when t h e  o f f s e t  i s  i n  t h e  d i r e c t i o n  t h a t  promotes r o l l o v e r  i n  

t h e  second phase of t h e  maneuver. (This  "d i rec t ion"  c r i t e r i o n  i s  met, f o r  

example, when a  v e h i c l e  wi th  i t s  payload c .g .  o f f s e t  t o  t h e  l e f t  of t h e  

t r a i l e r  c e n t e r l i n e  a t t empts  a  r a p i d  maneuver from t h e  r i g h t  t o  the  l e f t  

l a n e  of t h e  highway.) 

I n t e r p r e t a t i o n  

The l a c k  of d i s t i n c t i o n  i n  t h e  s t e e r i n g  inpu ts  needed t o  n e g o t i a t e  

the  r a p i d  l a n e  change f o r  cases  of d i f f e r i n g  payload o f f s e t  ( F i g ,  44)  

sugges t s  t h a t  d r i v e r s  would not be taxed,  from a  s t e e r i n g  c o n t r o l  po in t  of 

view by t h e  presence of l a r g e  o f f s e t s .  Thus, i t  appears t h a t  the  v e h i c l e ' s  

yaw response t o  s t e e r i n g  inpu t  is r a t h e r  e f f e c t i v e l y  immune t o  payload o f f -  

s e t  over t h e  range of maneuvers which a r e  l i k e l y  t o  be encountered i n  

n o m l  d r i v i n g .  Of importance, then,  i s  t h e  p rospec t  t h a t  d r i v e r s  may 

remain unaware of the  presence of a  s e r i o u s  payload o f f s e t  s i n c e  t h e r e  

appears  t o  be no s i g n i f i c a n t  feedback mechanism i n  t h e  normal d r i v i n g  pro- 

c e s s  f o r  a l e r t i n g  t h e  d r i v e r  of t h e  s i t u a t i o n .  This s t a t e  of a f f a i r s  i s  

unfor tuna te  s i n c e  t h e  r o l l  s t a b i l i t y  l e v e l  d e t e r i o r a t e s  r a p i d l y  wi th  payload 

o f f s e t .  

The i n f l u e n c e  of payload o f f s e t  on the  s t a t i c  r o l l o v e r  threshold  was 

found, i n  Sect ion 3.3.2.2,  t o  be ve ry  s i g n i f i c a n t ,  wi th  t h e  6-inch (15-cn) 

o f f  s e t  v a l u e  r e s u l t i n g  i n  a  nominal 13% r e d u c t i o n  i n  t h e  r o l l o v e r  threshold  

of t h e  doubles combination. I n  t h e  r a p i d  lane-change maneuver c i t e d  above, 

t h e  in f luence  of t h e  b i n c h  (15-cm) o f f s e t  was seen t o  be d r a m a t i c a l l y  

magnified,  doubling the  peak va lue  of r o l l  ang le  wi th  r e s p e c t  t o  t h a t  

obta ined i n  t h e  zero o f f s e t  case .  Because of non l inear  sp r ing  s t i f f n e s s e s  

i n  t h e  suspensions of t h e s e  v e h i c l e s ,  however, the  doubling of peak r o l l  

ang le  does n o t  q u i t e  amount t o  an  e f f e c t i v e  halving i n  s t a b i l i t y  l e v e l .  



Nevertheless, there  s t i l l  appears t o  be a s t rong dynamic mechanism serving 

t o  magnify the inf luence of payload o f f s e t  on r o l l  s t a b i l i t y  i n  a rapid 

maneuver o f the  type examined. 

One scenario by which the  incidence of o f f s e t ,  o r  s h i f t e d ,  payloads 

might increase i n  the  U .  S . involves the apparent ly i nev i t ab l e  t r a n s i t i o n  i n  

the  t r a i l e r  f l e e t  from an  o v e r a l l  width of 96 inches (244 cm) to  102 

inches (259 cm). With an add i t i ona l  6 inches (15 cm) of l a t e r a l  dimension 

ava i l ab l e  on the i n s i d e  of van t r a i l e r s ,  t he re  may be a s u b s t a n t i a l  number 

of packaging and p a l l e t i z i n g  methods which had been s e t  up f o r  the 96-inch 

(244-cm) width and which w i l l  r equ i r e  e i t h e r  dunnage o r  tie-down treatments 

i n  order  t o  take up the  add i t i ona l  space. In  f a c t ,  while the t r a i l e r  popula- 

t i o n  is s t i l l  dominated by 96-inch (244-cm) veh ic l e s ,  there  w i l l  be no 

incent ive f o r  packaging and p a l l e t i z i n g  methods to convert to  a wider 

standard s ince  such conversion would render the f r e i g h t  package unwor7kable 

i n  t he  narrower t r a i l e r .  Thus, there  may be some increased p o t e n t i a l  f o r  

o f f s e t  load problems while t h i s  t r a n s i t i o n  period preva i l s  (say,  f o r  the 

next 10-20 years) .  Also, no te  t h a t  i f  a uniform-density payload i s  per- 

mit ted t o  r e s t  aga ins t  one wall  of a 102-inch (259-cm) t r a i l e r ,  leaving a 

6-inch (15-cm) gap a t  t he  o ther  wal l ,  a 3-inch (7.5-cm) payload o f f s e t  

r e s u l t s .  

Referring t o  Figure 47, one should not i n f e r  t h a t  the 88,000-lb 

(39.9-m ton) gross  weight condit ion leads  to  a dramatical ly  grea te r  

inf luence of payload o f f s e t  on ro l lover  i n  a dynamic maneuver. I t  is c l e a r  

from examining, i n  Figure 46, the  inf luence  of payload o f f s e t  on the  r o l l  

behavior of the  vehic le  loaded to  80,000 l b s  (36.3 m tons)  t h a t  the t r a i l e r  

r o l l  angle  was approaching the c r i t i c a l  10 degree value,  f o r  a payload of f -  

s e t  of 9 inches (23 cm). Thus, the observation t h a t  t he  9-inch (23-cm) 

o f f s e t  case  yielded a l a r g e  r o l l  excursion when the gross  weight was increased 

t o  88,000 l b s  (39.9 m tons) merely confirms t h a t  t h i s  case was marginally 

s t a b l e  a t  the base l ine  loading l eve l .  

3.3.3 P a r t i a l  Loading. A number of cases  involving changes i n  the 

longi tudina l  l oca t ion  of the payload c.g.  were covered within the examina- 

t ion  of ax l e  load va r i a t i ons ,  i n  Section 3.1. It was shown t h a t  changes i n  



t h e  load l e v e l s  allowed on e i t h e r  s i n g l e  o r  tandem a x l e s  in f luenced ,  t o  

some degree ,  braking,  yaw s t a b i l i t y ,  and t h e  rearward a m p l i f i c a t i o n  behavior 

of a r t i c u l a t e d  v e h i c l e s .  Another case  of i n t e r e s t  invo lves  t h e  p a r t i a l  

unloading of a v e h i c l e  a t  an in te rmedia te  d e s t i n a t i o n ,  such t h a t  a d i s t i n c t  

b i a s  i n  Load d i s t r i b u t i o n  occurs .  I n  t h e  con tex t  of s i z e  and weight 

i n t e r e s t s ,  t h i s  genera l  case  was s tud ied  f o r  two v a l u e s  of what we s h a l l  

c a l l  " i n i t i a l  g r o s s  v e h i c l e  weight." That is, t h e  p a r t i a l  unloading w i l l  be 

presumed t o  have occurred w i t h  v e h i c l e s  i n i t i a l l y  loaded t o  g ross  weight 

l e v e l s  of 80,000 and 88,000 l b s  ( 3 6 . 3  and 39.9 m t o n s ) ,  r e s p e c t i v e l y .  

A s  the  most genera l ly -app l icab le  s i t u a t i o n ,  i t  i s  f u r t h e r  presumed 

that t h e  p a r t i a l  unloading of van-type t r a i l e r s  invo lves  removal of f r e i g h t  

through t h e  r e a r  doors,  l e a v i n g  h a l f  of t h e  i n i t i a l  load i n t a c t  i n  t h e  f r o n t  

of t h e  t r a i l e r .  For t h e  case  of a f ive-axle  double ,  on ly  the  r e a r  t r a i l e r  

is considered t o  be h a l f  unloaded. Another t r a c t o r - s e m i t r a i l e r  case  which 

was considered involves  t h e  p a r t i a l  unloading of compartmented, bulk,  

tankers .  Since  a number of compartments may be p resen t  i n ,  say ,  a petroleum- 

l i q u i d s  t anker ,  a v a r i e t y  of unloading p o s s i b i l i t i e s  e x i s t .  

Since t h e  pa r t i a l -un load ing  p r a c t i c e  can on ly  r e s u l t  i n  l e s s  load 

being c a r r i e d  by t h e  t r a c t o r ,  t h e r e  i s  no concern f o r  t h e  in f luence  of such 

a change on t r a c t o r  yaw s t a b i l i t y  behavior .  F u r t h e r ,  wi th  t h e  t o t a l  payload 

reduced, t h e  r o l l  s t a b i l i t y  of t h e  v e h i c l e  can only  improve with r e s p e c t  

to t h e  fully-loaded b a s e l i n e  (except  f o r  some extreme cases  f o r  which the  

load ing  cond i t ions  a r e  thought t o  be of u n l i k e l y  a p p l i c a t i o n  t o  commerce). 

Thus, t h e  i n f l u e n c e  of p a r t i a l  unloading has been examined on ly  in regard 

t o  ( a )  t h e  s topping d i s t a n c e  performance of t r a c t o r - s e m i t r a i l e r s  and the  

convent ional  doubles conf igura t ion  and (b)  t h e  rearward a m p l i f i c a t i o n  

behavior of t h e  double. 

3.3.3.1 Stopping d i s t a n c e .  When t h e  payload i n  a combination 

v e h i c l e  is  loaded i n  such a way t h a t  the  t r a i l e r  a x l e s  become l e s s  heav i ly  

loaded, t h e  so-called "premature lockup" of t h e  t r a i l e r  wheels i s  more 

l i k e l y .  Thus, p a r t i a l  unloading which l eaves  t h e  r e a r  s e c t i o n  of t h e  t r a i l e r  

empty, whi le  t h e  f r o n t  is  f u l l ,  tends  t o  r e s u l t  i n  lockup of the t r a i l e r  

wheels a t  a lower l e v e l  of d e c e l e r a t i o n  than can be achieved without lockup 

i n  t h e  ful ly- loaded s t a t e .  Conversely, i f  t h e  forward compartments of a 



bulk tank s e m i t r a i l e r  a r e  emptied while  the r ea r  compartments remain f u l l ,  

the t r a c t o r  d r ive  ax les  become l i g h t l y  loaded such t h a t  premature lockup of 

those ax le s  may serve  t o  limit the  veh ic l e ' s  stopping capab i l i t y .  

Shown i n  Figure 48 a r e  resuf ts i l l u s t r a t i n g  the  inf luence of p a r t i a l l y -  

unloaded condit ions on stopping d i s t ance  performance. The f i g u r e  shows 

minimum stopping d is tances  obtained on both dry and s l i ppe ry  road surfaces 

fo r  p a r t i a l  unloading cases  which assumed i n i t i a l  gross  weight l e v e l s  of 

e i t h e r  80,000 or  88,000 l b s  ( 3 6 . 3  o r  39.9 m tons) .  Cases D f o r  the t r ac to r -  

s emi t r a i l e r  and B f o r  the double represent  the condit ion i n  which half of the 

payload has been removed from the  r e a r  of t he  t r a i l e r  (where only the  r e a r  

t r a i l e r  i s  involved i n  the  case of the  double).  Cases B and C of the 

t r a c t o r s e m i t r a i l e r  represent  a l t e r n a t i v e  half-unloaded condit ions of a bulk 

tank t r a i l e r .  

Observations 

1)  P a r t i a l  unloading is seen t o  cons i s t en t ly  degrade the  stopping 

capab i l i t y  of t he  vehic les  examined. 

2 )  The worst case,  from the  viewpoint of stopping d is tance  per- 

formance, involves the removal of f r e i g h t  from the r e a r  half  of t r a i l e r s .  

The lockup of the  t r a i l e r  r e a r  axles  under these  conditions occurs a t  such 

low l e v e l s  of braking input  t h a t  stopping d is tances  a r e  approximately 

doubled with respec t  t o  the  performance achievable i n  the  f  ully-loaded s t a t e .  

3 )  The emptying of the forward compartments of a  bulk tank semi- 

t r a i l e r  r e s u l t s  i n  such l i g h t  loading of the  t r a c t o r  d r ive  ax les  t ha t  stopping 

d is tance  is increased by some 35% over the  fully-loaded case.  

4 )  Symmetric ( i . e . ,  equal f r o n t  and r e a r )  p a r t i a l  unloading of 

tankers r e s u l t s  i n  a  s i g n i f i c a n t  increase  i n  stopping d is tance  over the 

base l ine  condit ion,  although the  increase  i s  considerably smaller than 

e i t h e r  the forward- o r  rearward-biased p a r t i a l  load cases .  

5 )  The 10% v a r i a t i o n  i n  gross weight which vas represented in  the 

simulated cases is seen t o  have a  neg l ig ib l e  inf luence  on the s e n s i t i v i t y  

of braking performance t o  p a r t i a l  unloading condit ions.  
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In t e rp re t a t ion  

The rear-unloaded cases of both vehic le  types a r e  seen to cause 

tremendous increases  i n  the  minimum stopping dis tance.  These r e s u l t s  speak 

not only t o  stopping d is tance  performance, however, but a l so  to  the grea te r  

l ikel ihood of i n i t i a t i n g  the so-called " t r a i l e r  swing" i n s t a b i l i t y  during 

braking. That is, the tendency toward locking the  r e a r  wheels on the 

partially-unloaded t r a i l e r  implies a  tendency toward inducing the  unstable 

t r a i l e r  yawing motion which causes the  t r a i l e r  to sweep a  la rge  path along 

the roadway, menacing o ther  t r a f f i c  and threatening a  ro l lover  i f  the 

d r ive r  should suddenly re lease  the brakes . The " t r a i l e r  swing" i n s t a b i l i t y  

does involve a  r a the r  slowly-growing a r t i c u l a t i o n  angle,  however, such tha t  

t he  d r ive r  may perceive its occurrence and take cor rec t ive  ac t ion  before 

the t r a i l e r  a r t i c u l a t i o n  angle grows to  a  menacing l eve l .  

I n  case C of the  t r ac to r - semi t r a i l e r ,  with the forward compartments 

of a  hypothet ical  tank semi t r a i l e r  emptied, the t r a c t o r  r e a r  ax les  become 

l i g h t l y  loaded and, thus,  e a s i l y  locked during braking. The lockup of 

t r a c t o r  rear  wheels not only limits stopping d is tance  capab i l i t y ,  but  a l so  

leads t o  the o ther  c l a s s i c  i n s t a b i l i t y  which a r t i c u l a t e d  vehic les  a r e  known 

t o  encounter during braking, namely, the "jackknife" response. A s  w i l l  be 

shown i n  Section 3.4.3.2, the jackknife  i n s t a b i l i t y  involves a  very rapid 

ro t a t ion  of the t r a c t o r  about i t s  f i f t h  wheel connection. Since the 

jackknife  response i s  seen a s  a  v i r t u a l l y  uncontrol lable  f o m  of i n s t a b i l i t y ,  

any partial-unloading p rac t i ce  which promotes jackknife should be 

espec ia l ly  avo id ed . 

3.3.3.2 Rearward amplif icat ion.  The p a r t i a l  unloading of the 

t r a i l e r s  of a  doubles combination has the po ten t i a l  f o r  d i s turb ing  rearward 

amplif icat ion behavior s ince  t h i s  p rac t i ce  e f f e c t s  a  subs t an t i a l  longi- 

tud ina l  s h i f t  i n  the payload mass center .  Analysis shows, fo r  example, 

tha t  the longi tudinal  loca t ion  of the t r a i l e r  center  of grav i ty  with respect  

to  the h i t ch  loca t ions  is  a  primary determinant of vehic le  behavior [ 8 ] .  

This i ssue  was invest igated f o r  the case of a  conventional doubles 

combination. A s  above, the p a r t i a l  unloading scheme involved removal of 

half  of the payload from the r e a r  t r a i l e r  i n  the combination. The 



s igni f icance  of t h i s  adjustment on reamard  amplif icat ion behavior was 

examined fo r  i n i t i a l  ( f u l l )  loading s t a t e s  involving gross weight l e v e l s  

of both 80,000 and 88,000 l b s  (36.3 and 39.9 m tons) .  The r e s u l t s  of these 

ca lcu la t ions  a r e  shown i n  Figure 49. 

Observations 

1 )  The partial-unloading condit ion is seen to  increase the over- 

a l l  peak l e v e l  of the  rearward amplif icat ion curve with respect  to the 

base l ine  leve ls .  

2)  The peaking i n  t h i s  funct ion occurs i n  a  considerably higher 

range of s t e e r  input frequency f o r  the partially-unloaded vehic le  than f o r  

t he  case of the base l ine  vehic le .  The increased-frequency s h i f t  i n  rear-  

ward amplif icat ion tends t o  put the  higher amplitudes out of the range of 

frequencies which a r e  thought t o  be achievable by typ ica l  dr ivers .  Thus, 

as  l i s t e d  i n  the numerical values shown, the partially-unloaded cases  

y i e ld  lower ne t  values f o r  the  amplif icat ion measure. 

3 )  Although r eamard  amplif icat ion increases  s l i g h t l y  with gross 

vehic le  weight, the  inf luence of a  partially-unloaded condition is  not 

adversely a l t e r ed  by an increase in  the weight l eve l .  

I n t ep re t a t ion  

The rightward s h i f t  i n  the  peak of the amplif icat ion curve tends 

t o  reduce the amplif icat ion l e v e l s  appearing i n  the  lower frequency regiine 

(and s p e c i f i c a l l y ,  below the  nominal "human l i m i t "  frequency of 3.14 

rad /sec) .  Thus, the p a r t i a l  loading cases can be assumed to  pose l e s s  

hazard than the  base l ine  case. 

3 .4  Influence of Length Variat ions 

Federal and s t a t e  cons t ra in ts  placed upon the lengths of vehicle  

elements and the ove ra l l  lengths of var ious types of combinations const i -  

t u t e  a  major f ac to r  in  the economics of truck t ranspor ta t ion .  The port ions 

of the  t rucking indus t ry  most a f fec ted  by length l imi t a t ions  a r e  those 
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which a r e  hauling r e l a t i v e l y  low-density f r e i g h t  and which a r e  thus 

typ ica l ly  loading the  vehic le  t o  i t s  f u l l  cubic capac i ty .  In  testimony 

presented t o  a U.S. Senate committee on t r anspor t a t ion  i n  1978, a sampling 

of the  f r e i g h t  b i l l s  of one hundred c a r r i e r s  was summarized to  show the  

mix of t ruck  loading configurat ions occurring over one week's time [17] .  

From over 100,000 t r a i l e r  loads surveyed, the following da t a  were reported:  

-26 percent  were dispatched with the vehic le  loaded t o  the  

maximum permissible  gross  weight 

-45 percent were dispatched with the  vehic le  loaded to maximum 

cubic capaci ty 

-29 percent were dispatched to  provide some type of spec i a l  

s e rv i ce  e n t a i l i n g  a non-full load. 

These da t a  underscore the major r o l e  played by the cubic capaci ty 

l i m i t a t i o n s  placed upon trucking. I f  the maximum height  is  taken to  be 

ra ther  f ixed  by br idge clearance considerat ions,  only the  width and length  

dimensions a r e  l e f t  f o r  poss ib le  modification to achieve increased cubic 

capaci ty,  Since length has,  h i s t o r i c a l l y ,  been the vehic le  parameter of 

g rea t e r  i n t e r e s t  to  the  "cube-conscious" s ec to r s  of the trucking indus t ry ,  

t h i s  study has attempted to  provide a f a i r l y  broad treatment of length- 

r e l a t ed  inf luences on performance. 

Although c e r t a i n  of the performance ca tegor ies  discussed below a r e  

i d e n t i c a l  t o  those presented i n  connection with loading i s sues  presented 

previously,  add i t i ona l  subjec ts  have a l s o  been r a i sed .  These performance 

ca tegor ies  were not  addressed i n  regard t o  loading i s sues  s ince  i t  was 

hypothesized t h a t  the  respec t ive  inf luences would be in s ign i f i can t .  Xot- 

withstanding t h i s  general approach, c e r t a i n  length-related subjec ts  were 

addressed here simply because, i n  the authors ' visw, they have been c i t ed  

e i t h e r  d i r e c t l y  o r  i n d i r e c t l y  i n  various forums concerned with regula t ing  

vehicle  length and thus deserve s p e c i f i c  a t t e n t i o n .  The quest ions of 

stopping d i s t ance ,  yaw s t a b i l i t y  i n  steady turns ,  and yaw response time 

a r e  t r ea t ed  below i n  keeping with t h i s  r a t i ona le .  



3.4.1 Stopping Distance.  The i n f l u e n c e  of t h e  l e n g t h  of v e h i c l e  

elements on s topping d i s t a n c e  performance invo lves  t h e  same mechanisms 

which were discussed e a r l i e r  i n  regard t o  t h e  in f luence  of t h e  height  of 

the  payload c .g .  ( s e e  Sec t ion  3.3.1.1). Namely, both parameters ,  t o g e t h e r ,  

c o n t r i b u t e  t o  determining t h e  dynamic changes i n  a x l e  load  which occur 

dur ing braking.  Conceptually,  one can e f f e c t  t h e  same change i n  braking 

c a p a b i l i t y  by making a given percentage decrease  in t h e  v e h i c l e ' s  composite 

c .g .  h e i g h t  o r  t h e  same percentage i n c r e a s e  i n  t h e  wheelbase of t h e  t r u c k  

o r  t r a i l e r  u n i t  i n  quest ion.  For example, halving t h e  c.g.  he igh t  of a 

s t r a i g h t  t ruck  w i l l  have t h e  same e f f e c t  a s  doubling the  wheelbase. hccord- 

i n g l y ,  we expect t o  f i n d  l e n g t h  i n f l u e n c e s  on s topping d i s t a n c e  which r e l a t e  

d i r e c t l y  t o  t h e  c. g. he igh t  r e s u l t s  presented e a r l i e r .  

Length v a r i a t i o n s  have been examined f o r  both  t r a c t o r - s e m i t r a i l e r  

and doubles conf igura t ions .  For t h e  t r a c t o r - s e m i t r a i l e r ,  both t h e  t r a c t o r  

wh,eelbase and t h e  t r a i l e r  l eng ths  have been v a r i e d ,  a s  shown i n  Figure  50. 

The doubles combination was represen ted  only  wi th  d i f fe r ing- leng th  t r a i l e r s .  

The f i g u r e  i l l u s t r a t e s  minimum stopping d i s t a n c e s  ach ievab le  from an i n i t i a l  

speed of 55 mph (88 km/h) on both  dry  and s l i p p e r y  road s u r f a c e s .  

Observations 

1 )  For v e h i c l e s  o u t f i t t e d  wi th  t h e  r e l a t i v e l y  high-torque braking 

c a p a c i t i e s  represen ted  i n  s imula t ions  i n  t h i s  s tudy ,  i n c r e a s e s  i n  t r a i l e r  

wheelbase tend t o  improve s topping c a p a b i l i t y .  The reason f o r  t h i s  

improvement is t h a t  t h e  longer  t r a i l e r  s u f f e r s  a smal le r  dynamic load change 

a t  its r e a r  a x l e ( s )  dur ing braking,  thus  making i t  p o s s i b l e  t o  achieve a 

h igher  l e v e l  of d e c e l e r a t i o n  b e f o r e  encounter ing lockup of t h e  r e a r  t r a i l e r  

wheels. 

2 )  Var ia t ion  i n  t r a c t o r  wheelbase has a n e g l i g i b l e  in f luence  on 

t h e  s topping performance of t h e  s imulated t r a c t o r - s e m i t r a i l e r s .  As long 

as t h e  l i m i t  cond i t ion  i s  determined by t h e  occurrence of lockup a t  t h e  

r e a r  t r a i l e r  a x l e ( s ) ,  t h e  d i s t r i b u t i o n  of load between t r a c t o r  a x l e s  dur ing 

braking (as  inf luenced by t r a c t o r  wheelbase) i s  of no consequence. Of 

course ,  t r a c t o r  wheelbase could ,  conceptual ly  , become s h o r t  enough t h a t  





lockup of the t r a c t o r  r ea r  ax les  would c o n s t i t u t e  the mechanism f o r  

l imi t ing  performance. The 12- and 18-foot (3.6- and 5.5-m) values of 

t r a c t o r  wheelbase which were se lec ted  here represent  the two most common 

ranges of wheelbase d is t inguish ing  the  shor t  cab-over-engine (COE) t r a c t o r s  

from the  long-nose conventional cab design. 

In t e rp re t a t ion  

Extensions i n  t r a i l e r  length  beyond the  values which a r e  commonly 

found i n  s i n g l e  and double t r a i l e r  configurat ions,  can be looked upon a s  

inconsequential  t o  stopping d is tance  capab i l i t y .  While t r a c t o r  wheelbase 

was a l so  shown t o  be of no s ign i f i cance  t o  stopping d is tance  performance, 

i t  w i l l  be shown i n  Section 3 . 4 . 3 . 2  t h a t  t r a c t o r  wheelbase has a  d i s t i n c t  

e f f e c t  upon the  dynamics wi th  which the jackknife  i n s t a b i l i t y  proceeds, 

upon locking up the t r a c t o r  r e a r  ax les .  

An i s s u e  which was not addressed here,  but which i s  a l so  known to 

have been of h i s t o r i c a l  concern regarding the braking of long combinations, 

involves t he  i s sue  of the transmission time of a i r  brake s igna l s .  That 

is ,  the  delay i n  the  a r r i v a l  of the brake ac tua t ion  s igna l  a t  rear-placed 

axles  tends to lengthen stopping d is tance  and to  pose c e r t a i n  problems 

concerning the a r t i c u l a t i o n  s t a b i l i t y  of the  combination vehic le .  The 

transmission time c h a r a c t e r i s t i c  is known to  be the pecul ia r  r e s u l t  of a  

number of design d e t a i l s  i n  the  a i r  brake system [28].  Although i t  is 

apparent t h a t  d i f fe rences  e x i s t  i n  the  transmission times achieved on 

various multiple-unit  t r a i n s ,  the delay mechanism i s  seen a s  r e l a t i n g  more 

t o  t h e  f i t t i n g s ,  valving, and tubing s i z e s  involved than to the length of 

the l i n e s ,  per se .  

3 . 4 . 2  Yaw S t a b i l i t y  i n  Steady Turns. As i n  examining previous 

i s sues ,  t he  quasi-understeer measure can be used a s  an ind ica tor  of the 

inf luence of length v a r i a t i o n  on the s t a t i c  yaw s t a b i l i t y  of t rucks o r  

t r a c t o r s .  The length  dimension which i s  per t inent  to t h i s  discussion i s  

t he  wheelbase of such vehicle  un i t s .  This subjec t  is included here 

although i t  has long been recognized wi th in  the vehic le  dynamics community 

t h a t  length has no d i r e c t  r e l a t i onsh ip  to  understeer  l eve l .  For some who 



may have an incomplete understanding of the d e f i n i t i o n  of understeer ,  

howwer, such a  conclusion may not be apparent.  Fur ther ,  i t  may seem, 

i n t u i t i v e l y ,  t h a t  t he  wheelbase of a  vehic le  is c e r t a i n l y  r e l a t ed  to the 

amount of turning response t h a t  one obtains  per un i t  of s t e e r  input .  (One 

e a s i l y  reckons, f o r  example, t ha t  a  l a rge  s t ee r ing  input i s  needed to  cause 

a  t ruck with a  very long wheelbase t o  negot iate  a  t i g h t  corner . )  I f  con- 

fus ion  does e x i s t  here,  i t  can be t raced to  the d i f fe rence  between the 

terms "s teer ing  gain" and "understeer." 

In order  to  c l a r i f y  these matters ,  then, l e t  us say tha t  s t ee r ing  

gain defines the  r a t e  of change of path radius with s teer ing  wheel angle,  

a t  a  f ixed value of speed, "Understeer," on the other  hand, simply def ines  

the va r i a t i on  i n  t h i s  gain l e v e l  a s  a  funct ion of l a t e r a l  acce lera t ion .  

That is ,  when the  vehic le  encounters an increasing seve r i ty  turn  condit ion,  

as described by an increasing l e v e l  of l a t e r a l  acce lera t ion ,  the s t ee r ing  

gain i s  seen t o  change according to the l e v e l  of understeer which i s  

present .  

It is qu i t e  s t raightforward to  show t h a t  the wheelbase of a  vehic le  

i s  a  d i r e c t  determinant of the s teer ing  gain property.  The understeer 

behavior, however, der ives  from a va r i e ty  of r a the r  sub t l e  d e t a i l s  concern- 

ing t i r e  proper t ies ,  c.g. pos i t ion ,  and s t ee r ing  and suspension charac- 

teristic-but not wheelbase. Thus, i f  we a r e  ul t imately concerned about 

understeer ,  from a sa fe ty  point of view, insofar  a s  l a rge  reductions in  

t h i s  property may threaten s t ee r ing  c o n t r o l l a b i l i t y  and promote an unstable 

yaw response a t  highway speeds, we can general ly  el iminate  the  wheelbase 

length as a parameter influencing these cont ro l  c h a r a c t e r i s t i c s .  

As  an i l l u s t r a t i o n  t h a t  wheelbase does not s ign i f i can t ly  inf luence 

understeer l eve l ,  the  r e s u l t s  shown i n  Figure 51 have been produced. These 

data  show t h a t  a la rge  range i n  the wheelbase of a  three-axle t ruck causes 

a  minimal adjustment i n  understeer l e v e l .  (Even the s l i g h t  e f f e c t  which 

does appear i n  the  f i g u r e  i s  not the d i r e c t  r e s u l t  of the wheelbase, per 

s e ,  but r a the r  der ives  from an in t e rac t ion  between the wheelbase parameter 

and the spread between the  tandem pa i r  of r e a r  ax les  [ 2 9 ] .  Although t h i s  

i n t e r ac t ion  is not s t r i c t l y  an understeer e f f e c t ,  the ca lcu la t ion  method 

was not ab l e  t o  ex t r ac t  it from the understeer measure.) Moreover, one 

can conclude tha t  changes i n  the wheelbase of trucks and t r a c t o r s ,  general ly ,  
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Figure 51. Influence of Wheelbase on Understeer for 3-Axle 
Truck, Fully Loaded. 



have an in s ign i f i can t  inf luence on understeer and on the po ten t i a l  fo r  

unstable yaw response during cornering. Of course,  the manufacturer of such 

vehicles  must assure t h a t  a reasonable l e v e l  of s t ee r ing  gain e x i s t s ,  

regardless  of the prevai l ing wheelbase, by i n s t a l l i n g  the proper s t ee r ing  

gearbox and connecting linkages. 

3.4.3 Yaw Response Dvnamics. As the  wheelbase of a truck o r  

t r a c t o r  increases ,  the i n e r t i a l  r e s i s t ance  to  yawing increases ,  tending 

to make f o r  more s luggish response to s t ee r ing .  On the other  hand, the 

t i r e s  become located a t  g rea t e r  dis tances from the center  of grav i ty  of the 

vehicle ,  thereby tending to improve responsiveness. Since the responsive- 

ness of a vehic le  i s  general ly  taken t o  be r e l a t ed  to  the ease of maintain- 

ing s teer ing  cont ro l  [21] ,  there  was an i n t e r e s t  here i n  i l l u s t r a t i n g  the  

ne t  inf luence of wheelbase var ia t ions  on the dynamic response of trucks 

and t r a c t o r s  t o  s t ee r ing  input .  

An addi t iona l  subject  concerning yaw dynamics involves the r ap id i ty  

with which a t r ac to r  jackknife condition proceeds, once the r e a r  wheels 

have been locked up during severe braking. In  t h i s  regard, the more rapid 

the response, the  more d i f f i c u l t  the d r i v e r ' s  control  task is presumed to 

be. Indeed, many truck d r ive r s  s t a t e  a preference f o r  longer wheelbase 

t r a c t o r s  p a r t i a l l y  on the grounds tha t  they bel ieve t h a t  jackknife can be 

more eas i ly  avoided i n  such vehicles .  Accordingly, addi t iona l  ca lcu la t ions  

were performed to c l a r i f y  the inf luence of t r ac to r  wheelbase on the 

"jackknife dynamics . I 1  

Presented below a r e  r e s u l t s  address.ing each of these issues.  

3.4.3.1 Responsiveness t o  s t ee r ing .  The most useful  response 

var iab le  fo r  character izing the dynamic yaw response t o  s teer ing  i s  the 

yaw r a t e  of the u n i t  i n  question. The yaw r a t e  va r i ab l e  simply expresses 

the r a t e  of ro t a t ion  of the vehicle  about i ts v e r t i c a l  ax is .  The yaw r a t e  

response of a three-axle t ruck and a three-axle t r a c t o r  (with tandem axle  

s emi t r a i l e r )  have been examined i n  regard t o  the influence of the wheelbase 

parameter. Shown i n  Figure 52 a r e  the yaw r a t e  responses, versus time, 

f o r  a three-axle truck loaded with a load d i s t r i b u t i o n  of 12/34 K-lbs 
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Figure 52. Influence o f  Wheelbase on the Transient Yaw Response 
of a 3- Axle Truck to an Abrupt Steer Input. 



(5.4/15.4 m tons) .  Five values of wheelbase a r e  shown. The r e s u l t s  depic t  

the t r ans i en t  and s teady-state  Sehavior r e su l t i ng  from the rapid input of 

a 60 degree s t ee r ing  wheel angle a t  55 mph (88 km/h) . 
Shown i n  Figures 53 and 54 a r e  the  yaw r a t e  responses of t rac tor -  

s emi t r a i l e r s  having d i f f e r ing  values of t r a c t o r  wheelbase and ove ra l l  

length of s emi t r a i l e r .  Figure 53 shows t r a c t o r  yaw r a t e s  f o r  f i v e  combina- 

t i ons  of t rac tor -semi t ra i le r  configurat ions.  Figure 54 shows the  yaw r a t e  

responses of both t r a c t o r  and semi t r a i l e r  f o r  cases i n  which a given t r a c t o r  

i s  coupled to  s emi t r a i l e r s  which vary i n  ove ra l l  length. 

Observations 

1) Although wheelbase has the obvious e f f e c t  on s t ee r ing  gain 

(as  evidenced by the decreasing yaw r a t e  l eve l ,  f o r  a f ixed s t e e r  input ,  

with increasing wheelbase of t ruck  o r  t r a c t o r )  , there  is  only a very small 

inf luence of wheelbase on the  r ap id i ty  of the t r ans i en t .  The "rapidi ty"  

c h a r a c t e r i s t i c  is conveniently quant if ied i n  terms of a so-called "yaw r a t e  

response time" measure. (This measure bas i ca l ly  quan t i f i e s  the  time needed 

to  reach 90% of the  s teady-state  value. If t h i s  response time were to ge t  

very long, s t ee r ing  cont ro l  would become d i f f i c u l t  to maintain. ) The yaw 

r a t e  time constants observed f o r  both the truck and t r a c t o r  a r e  seen t o  

increase by l e s s  than 0.05 seconds over the range of wheelbases invest igated.  

By way of comparison, the  mix of radial-ply t i r e s  on the s t ee r ing  ax le  and 

bias-ply t i r e s  on the r ea r  ax les ,  such as  mentioned previously, causes an 

increase of 0.20 seconds i n  the yaw r a t e  time constant of t yp ica l  t r a c t o r s .  

2 )  Variat ions i n  s emi t r a i l e r  length a r e  inconsequential  to  the 

dynamics of t r a c t o r  yaw response. Figure 53 shows, f o r  example, t h a t  

va r i a t i ons  i n  s emi t r a i l e r  length ranging from 2 1  to  5 5  f e e t  ( 6 . 4  t o  16.8 in) 

r e s u l t  i n  a negl ig ib le  change i n  the yaw r a t e  response of the t r a c t o r  whose 

wheelbase dimension i s  18 f ee t  ( 5 . 5  m ) .  I t  is  in t e re s t ing  to note ,  however, 

t h a t  the yaw r a t e  responses of t he  semi t r a i l e r s  vary widely with semi t r a i l e r  

length. I n  f a c t ,  these va r i a t i ons  a r e  closely r e l a t ed  to  the r e a r n r d  

amplif icat ion phenomena which are  discussed i n  Section 3 . 4 . 4 .  
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Figure 54. Influence of Trailer Length on the Transient Yaw Response 
on Both Tractor and Semiiroiler to an Abrupt Steer Input. 



In t e rp re t a t ion  

Variat ions i n  truck and t r a c t o r  wheelbase a r e  seen t o  have l i t t l e  

inf luence upon the r ap id i ty  of yaw response t o  s t ee r ing .  This r e s u l t  should 

be qua l i f ied  by saying t h a t  i t  appl ies  t o  cases  i n  which the vehic les  

employ geometric layouts  which a r e  t yp ica l  of t rucks and t r a c t o r s .  Clear ly,  

i t  is poss ib le  t o  make a long wheelbase t ruck which d i f f e r s  markedly in  yaw 

response proper t ies  from c e r t a i n  short-wheelbase t rucks having dramatical ly  

d i f f e r i n g  mass d i s t r i bu t ions .  For "normal" freight- t ransport ing vehic les ,  

however, the r e s u l t s  shown here  have broad genera l i ty .  

The i n s e n s i t i v i t y  of t r a c t o r  yaw behavior to t r a i l e r  length is a 

fo r tu i tous  r e s u l t  given t h a t  t r a c t o r s  a r e  ca l led  upon t o  tow semi t r a i l e r s  

having a broad range of lengths fo r  meeting the needs of var ious trucking 

missions. 

3 . 4 . 3 . 2  Influence of t r a c t o r  wheelbase on jackknife dynamics. When 

a t rac tor -semi t ra i le r  is  subjected t o  severe braking such t h a t  the wheels 

on the  t r a c t o r ' s  rear  ax l e  lock up, the  so-called "jackknife" i n s t a b i l i t y  

is  obtained. Since the  f ront  t i r e s  a r e  t yp ica l ly  underbraked, and thus 

s t i l l  r o l l i n g ,  they a r e  ab le  to produce l a rge  l e v e l s  of l a t e r a l  force  a s  

the  t r a c t o r  begins to  r o t a t e  out  of alignment with the semi t r a i l e r .  A 

rap id ly  increasing r o t a t i o n a l  r a t e  ensues, unless  the d r ive r  r e a c t s  t o  the  

s i t u a t i o n  by re leas ing  the  brakes.  The d r ive r  may a l so  opt to  apply 

cor rec t ive  s t ee r ing ,  but  the jackknife  mode of motion i s  so highly unstable  

t h a t  the  prospect of manual s t a b i l i z a t i o n  is remote. 

It  is  hypothesized t h a t  the t r a c t o r ' s  yaw response a t  the onset of 

the jackknife i n s t a b i l i t y  is c r u c i a l  t o  the d r i v e r ' s  a b i l i t y  to r e a c t  and 

to regain control .  Two measures were defined i n  Section 2 . 2 . 2 . 2  f o r  

charac te r iz ing  the t r a c t o r  response a t  the onset of jackknife.  Both 

measures a r e  derived from a maneuvering condit ion i n  which the  vehic le  is  

f i r s t  s teered in to  a moderate, steady turn ,  and then the brakes a r e  applied 

so a s  to cause lockup of the  t r a c t o r ' s  r ea r  wheels. The f i r s t  measure 

descr ibes  the time which elapses while the yaw r a t e  diverges from an i n i t i a l  

threshold of 1.05 times the i n i t i a l  steady turn value to  2 . 0  times t h a t  



value. This measure bas i ca l ly  i nd ica t e s  the time needed f o r  the  yaw r a t e  

t o  double i n  value. It cons t i t u t e s  a measure of the r e l a t i v e  amount of 

time which the dr iver  has i n  which t o  r eac t  t o  an impending jackknife.  

A second measure def ines  the r a t e  of a r t i c u l a t i o n  preva i l ing  while 

the a r t i c u l a t i o n  angle goes from 2.0 t o  3.0 times its i n i t i a l  steady-turn 

value. In  o ther  words, the  measure descr ibes  how rapid ly  the  jackknife 

r o t a t i o n  i s  proceeding a s h o r t  time a f t e r  t he  i n s t a b i l i t y  has begun. 

Clear ly,  the l a r g e r  values of t h i s  measure imply t h a t  the  jackknife rota-  

t i on  w i l l  be more d i f f i c u l t  t o  a r r e s t ,  once the d r ive r  has reacted to the  

e m  rgency . 
These measures have been employed t o  examine the inf luence of t r a c t o r  

wheelbase on the jackknife response. Calculations have been done repre- 

sen t ing  a f  ive-axle t rac tor -semi t ra i le r  i n  the empty condition. The e q t y  

s t a t e  was se lec ted  s i n c e  accident  da t a  show t h a t  approximately 3 / 4  of a l l  

jackknife  accidents  occur with unloaded, o r  very l i g h t l y  loaded, vehic les  

[ 1 4 ] .  Shown i n  Figures 55 and 56  a r e  the doubling time and a r t i c u l a t i o n  

r a t e  measures a s  influenced by t r a c t o r  wheelbase. 

Observations 

1 )  The time required to nominally double the  t r a c t o r  yaw r a t e  a t  

t he  onset  of jackknife  is  favorably improved by increased t r a c t o r  wheelbase. 

However, s i g n i f i c a n t  bene f i t s  were only seen f o r  the  case  of stopping on a 

dry surface.  Over the range of wheelbases l i k e l y  to  be found on three-axle 

t r a c t o r s  i n  the U.S., namely, 12 t o  20 f e e t  ( 3 . 7  t o  6 . 1  m), the doubling 

time increases  by 25%. 

2) On both low- and high-fr ic t ion sur faces ,  the a r t i c u l a t i o n  r a t e  

of the  jackknifing motion is seen to  reduce with increasing wheelbase. The 

a r t i c u l a t i o n  r a t e  measure is  seen t o  decl ine by some 30% over the examined 

range of wheelbases. 

I n t e r p r e t a t i o n  

By the s t a t e d  hypothesis,  one would conclude t h a t  longer t r a c t o r  

wheelbases w i l l  enhance the  d r i v e r ' s  a b i l i t y  t o  a r r e s t  jackknife motion. 

This f inding tends t o  confirm what appears to  be a broadly-perceived 
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observation on the p a r t  of the professional  t ruck dr ivers .  Thus, changes 

i n  vehic le  s i z e  cons t r a in t s  which permit the use of t r a c t o r s  with longer 

wheelbases a r e  seen as  tending t o  reduce the th rea t  of jackknife accidents .  

The s igni f icance  of t h i s  re la t ionship  to  the probabi l i ty  of jackknife 

accident involvement, however, i s  unknown. 

3.4.4 Rearward Amplification. Perhaps the  most s i g n i f i c a n t  t ruck 

research f indings r e l a t i ng  a  length parameter to  an apparently safety- 

r e l a t ed  performance property concern the rearward amplif icat ion of multiple- 

u n i t  t r a in s .  Certain fundamentals of the rearward ampl i f ica t ion  phenomenon 

render length parameters the primary determinants of performance [8] . Thus, 

the length  i s sue ,  as  i t  per ta ins  t o  the wheelbases of trucks and t r a i l e r s ,  

the loca t ion  of p i n t l e  h i tches ,  and the lengths of do l ly  drawbars has been 

addressed i n  t h i s  study f o r  a l l  of the  types of multiple-unit  combinations 

which appear i n  s i g n i f i c a n t  numbers i n  t he  U . S .  

Shown i n  Figure 57 a r e  the  rearward amplif icat ion r a t i o s  calculated 

fo r  each of seven categories  of combination vehic les .  In  each category, 

a  "baseline1' configurat ion i s  iden t i f i ed .  This configurat ion i s  seen a s  

represent ing the most popular version among vehicles  cur ren t ly  found i n  

t h a t  category. ( O f  course, the "popular" configurations simply r e f l e c t  

the designs which a r e  d i c t a t ed  by the ex i s t i ng  s i z e  and weight cons t r a in t s . )  

Cases A and B represent  e s s e n t i a l l y  one s t y l e  of vehic le  combination, 

namely, the " t ruck / fu l l  t r a i l e r "  configurat ion,  but they incorporate  d i f f e r -  

ent  schemes f o r  r e l a t i n g  the  respec t ive  lengths of the t ruck,  do l ly  drawbar, 

and t r a i l e r .  I n  Case A, the dol ly  drawbar length was f ixed a t  the p r a c t i c a l  

minimum value of 6 f e e t  (1.8 m). Thus, va r i a t i ons  i n  the length of e i t h e r  

the  truck o r  t r a i l e r  i n  Case A a l so  involve va r i a t i ons  i n  the ove ra l l  

vehic le  length. Case B ( i n  which the vehic le  configurat ions a r e  more repre- 

senta  t i v e  of those operated i n  the  western s t a t e s  where truck/ t r a i l e r  

combinations a r e  popular) assumes an ove ra l l  length cons t ra in t  of 65 

f e e t  (19.8 m). I n  these cases ,  the length of the dol ly  drawbar va r i e s  over 

a  r a the r  wide range i n  order t o  accommodate va r i a t i ons  i n  the length of 

the t ruck o r  t r a i l e r .  I n  both Cases 9 and B ,  a  s e t  of conventions were 

adopted to r e l a t e  the t ruck  wheelbase dimension t o  other  length parameters 

which f i x  the length of the t ruck ' s  load bed and, thus,  the loca t ion  of the 

p i n t l e  hook. 





I n  Cases C through G ,  t h e  l e n g t h s  of t h e  t r a c t o r  wheelbases were 

f ixed  t o  r e f l e c t  what i s  seen a s  f a i r l y  r e p r e s e n t a t i v e  equipment. It is  

p e r t i n e n t  t o  n o t e ,  however, t h a t  t r a c t o r  wheelbase has r a t h e r  l i t t l e  

in f luence  on t h e  determinat ion of t h e  rearward a m p l i f i c a t i o n  behavior of 

t h e  combinations shown. A l l  of t h e  f u l l  t r a i l e r s  employ convent ional  d o l l y  

des igns ,  wi th  t h e  t y p i c a l  p i n t l e  hook connection t o  t h e  r e a r  of t h e  pre- 

ceding u n i t .  The "B-train" conf igura t ion ,  however, comprises a t r a c t o r -  

s e m i t r a i l e r - s e m i t r a i l e r  combination and does not  employ a d o l l y  between t h e  

f i r s t  and second t r a i l e r .  Aside from the  d i s t i n c t i o n  concerning t h e  means 

f o r  l o c a t i n g  the  f o u r t h  a x l e ,  t h e  B-train has been modeled t o  correspond 

i n  a l l  weight and l e n g t h  dimensions t o  r e s p e c t i v e  cases  of t h e  "s ingle-axle  

double" (Case E). For example, t h e  B-train w i t h  27-foot (8.2-m) t r a i l e r s  

is i d e n t i c a l  t o  t h e  s ingle-axle  ( o r  "conventional")  double having 27-foot 

t r a i l e r s  i n  every r e s p e c t  b u t  t h e  coupl ing mechanism. The B-t ra in  cases  

have been included here  p r i m a r i l y  f o r  t h e i r  academic i n t e r e s t ,  s i n c e  they 

a r e  found only i n  ve ry  smal l  numbers i n  t h e  U.S. Vehicles of t h i s  type 

have broad acceptance i n  Canada, however, and on t h e  b a s i s  of t h e i r  pe r fo r -  

mance t h e r e  a r e  seen a s  being p o t e n t i a l l y  a t t r a c t i v e  f o r  wider use  i n  t h i s  

country.  

The category l abe led  "s ingle-axle  doubles," Case E,  inc ludes  t h e  

twin 27-foot (8.2-m) t r a i l e r  combination which has been i n c r e a s i n g l y  

p reva len t  ac ross  t h e  U . S ,  and which is  s p e c i f i c a l l y  allowed i n  a l l  s t a t e s  

s i n c e  t h e  preemptive f e d e r a l  l e g i s l a t i o n  e f f e c t i v e  i n  1983. The r e s u l t s  

shown f o r  t h i s  v e h i c l e  a l s o  apply t o  a popular  ve rs ion  i n  which t h e  a c t u a l  

l e n g t h  of t h e  t r a i l e r  van bodies  i s  28 f e e t  (8.5 m ) ,  bu t  which incorpora tes  

the  same nominal t r a i l e r  wheelbases. 

Note a l s o  t h a t  t h e  "quadruples" combination, included a s  a v a r i a n t  

on t h e  t r i p l e  wi th  27-foot t r a i l e r s ,  is included in t h e  s tudy only  on 

academic grounds, s i n c e  i t  i s  n o t  permit ted  w i t h i n  any j u r i s d i c t i o n .  

Observations 

1 )  a m p l i f i c a t i o n  r a t i o  genera l ly  goes up wi th  number of a r t i c u l a -  

t i o n  po in t s  and goes down a s  e i t h e r  d o l l y  tongue l e n g t h  o r  t r a i l e r  l eng th  

inc reases .  



2) The l eng th  of t h e  t r u c k  i n  a  t r u c k / f u l l  t r a i l e r  combination is 

a  s t r o n g  determinant of a m p l i f i c a t i o n  r a t i o .  Inc reas ing  t ruck  l e n g t h  causes  

a m p l i f i c a t i o n  r a t i o  t o  i n c r e a s e  p r i m a r i l y  because t h e  p i n t l e  h i t c h  becomes 

l o c a t e d  f u r t h e r  from t h e  t r u c k  c.g. and thus  undergoes more severe  l a t e r a l  

movements dur ing r a p i d  maneuvers [ 8 ] .  The exaggerated l a t e r a l  sovement 

a t  t h e  p i n t l e  h i t c h  l e a d s  t o  t h e  g r e a t e r  motions of t h e  t r a i l e r  which 

r e g i s t e r  a s  h igher  va lues  of a m p l i f i c a t i o n  r a t i o .  (Note t h a t  t h i s  in f luence  

of t ruck  l e n g t h  c o n s t i t u t e s  t h e  only case  i n  which an i n c r e a s e  i n  t h e  l eng th  

of a  u n i t  causes  an  i n c r e a s e  i n  a m p l i f i c a t i o n  r a t i o . )  

3 )  The cases  (C) of t h e  so-cal led  "Rocky Mountain ~ o u b l e "  a r e  seen 

t o  y i e l d  r e l a t i v e l y  low va lues  of rearward a m p l i f i c a t i o n  due t o  t h e  long 

t r a i l e r s  t y p i c a l l y  employed a s  t h e  f i r s t , ,  tandem-axled, u n i t  i n  t h e  com- 

b ina t ion .  I n t e r e s t i n g l y ,  when t h e  s h o r t e r  u n i t  is put f i r s t ,  a s  i n  the  

c a s e  l i s t e d  wi th  t h e  l e n g t h  va lues  12/27/45,  the  a m p l i f i c a t i o n  is higher  

than i n  the  normal conf igura t ion  ( v i z . ,  12/45/27) .  ( I t  should be noted 

t h a t  i n  t h e  12/27/45 case ,  t h e  requ i red  d o l l y  incorpora tes  a  tandem a x l e  

i n  o r d e r  t o  c a r r y  t h e  higher  load a t  t h e  lead end of t h e  long t r a i l e r .  The 

t r a c t o r  then c a r r i e s  t h e  l i g h t e r  load imposed by t h e  s h o r t ,  s ingle-axle  

s e m i t r a i l e r .  This  conf igura t ion ,  w i t h  t h e  s h o r t e r  t r a i l e r  placed f i r s t ,  i s  

included f o r  academic i n t e r e s t  and is nor known t o  have been suggested f o r  

a c t u a l  use . )  

4 )  The so-cal led  "Turnpike Double," Case D ,  provides  t h e  lowest  

va lues  of a m p l i f i c a t i o n  among a l l  of t h e  "high-cube" combinations. Again, 

t h e  long wheelbases incorporated i n  both t r a i l e r s  account f o r  a  minimum 

of ampl i f ied  motion a t  t h e  r e a r  u n i t .  

5) The b a s e l i n e  ve rs ion  of t h e  "s ingle-axle  double," wi th  two 

27-foot (5.2-m) t r a i l e r s ,  produces an  a m p l i f i c a t i o n  r a t i o  of 2.0 by this 

scheme of  measurement. This  r e l a t i v e l y  high va lue  of a m p l i f i c a t i o n  r a t i o  

d i s t i n g u i s h e s  t h i s  v e h i c l e  among conf igura t ions  which o p e r a t e  n a t i o n a l l y  

i n  i n t e r s t a t e  t r a n s p o r t a t i o n .  

6 )  The a m p l i f i c a t i o n  of a  mul t ip le-uni t  t r a i n  d e r i v e s  from the  

product of a  s e r i e s  of i n d i v i d u a l  a m p l i f i c a t i o n  f a c t o r s  introduced b y  each 

of t h e  elements i n  t h e  t r a i n .  Each of these  f a c t o r s  is  detsrmined by a  



number of vehic le  parameters, but pr imari ly  by length parameters. The 

value of 3 . 5  obtained a s  the  ove ra l l  amplif icat ion r a t i o  f o r  the basel ine 

t r i p l e ,  fo r  example, can be broken down in to  the following contr ibut ions:  

h p l i f  i c a t i o n  introduced from: 

t r a c t o r  c,g.  t o  s emi t r a i l e r  c  .g. 1.148 

semi t r a i l e r  c.g. to  f i r s t  p i n t l e  
hook 1.382 - 

1st p i n t l e  hook t o  c.g. of 1st 
f u l l  t r a i l e r  1.256 - 

1st t r a i l e r  c.g. t o  2nd p i n t l e  
hook 1.402 

2nd p i n t l e  hook t o  c.g. of 2nd 
f u l l  t r a i l e r  1.256 

The ove ra l l  amplif icat ion r a t i o  is  obtained a s  the produce of the above 

f ac to r s .  (See Volume 111 f o r  a  complete l i s t i n g  of these f a c t o r s  f o r  each 

of the  vehicles  i n  Figure 57.)  

7 )  Recognizing t h a t  t he  f ac to r s  l i s t e d  above iden t i fy  individual  

elements of  the  vehicle  t r a i n ,  one can e a s i l y  see how the rearward amplifi-  

ca t ion  l e v e l  accumulates with t h e  addi t ion  of f u l l  t r a i l e r s .  The l a s t  

two f a c t o r s  l i s t e d  f o r  t he  case of the  27-foot (8.2-m) t r a i l e r  above, i n  

f a c t ,  def ine a mu l t ip l i e r  which d is t inguishes  the t r i p l e  from a  double 

comprised of the same length t r a i l e r s .  Listed below a r e  such "mult ipl iers"  

f o r  each of the  lengths of single-axle t r a i l e r s  considered. 

Length 
Feet (Meters) 

Mu1 t i p l i c a  t i o n  
Factor 



Thus, each of the  amplif icat ion r a t i o s  shown fo r  the  differ ing-length 

t r i p l e s  represent  the product of the appropriate  f a c t o r ,  above, times the 

value of amplif icat ion r a t i o  obtained fo r  the  corresponding double. Like- 

wise, the remarkable value of 6 . 2  shown i n  Figure 57 f o r  the amplif icat ion 

r a t i o  of the quadruple combination derives from the product of the above 

mul t ip l ie r  for  the  27-foot (8.2-m) t r a i l e r ,  squared, times the 2.0  value 

shown f o r  the  amplif icat ion of the base l ine  single-axle double. 

8) The amplif icat ion behavior of the B-train i s  seen to  be narkedly 

l e s s  than t h a t  exhibi ted by the m r e  conventional "single-axle doubles" 

having corresponding values of t r a i l e r  length. Clear ly,  the advantage 

derives simply from the el iminat ion of an a r t i c u l a t i o n  point .  I n  addi t ion  

to  the improved r e s i s t ance  t o  ro l lover  implied by the reduced amplif icat ion 

r a t i o e s ,  another ro l l - s t ab i l i z ing  benef i t  of the  B-train construct ion has 

been reported to der ive  from the ro l l - r i g id  coupling of the  two t r a i l e r s  

(151. This benef i t  der ives  from the f a c t  t h a t ,  during a  rapid evasive 

maneuver such as produces la rge  amplif icat ions,  the  f i r s t  and second 

t r a i l e r s  experience t h e i r  peak l eve l s  of l a t e r a l  acce lera t ion  a t  d i f f e r e n t  

times. That i s ,  there  e x i s t s  a subs t an t i a l  d i f fe rence  in  the phase of 

the two l a t e r a l  acce lera t ion  conditions.  The r e s u l t  is t h a t  the  r e a r  

t r a i l e r  i s  "able" t o  contr ibute  r o l l  support t o  the f i r s t  t r a i l e r  a t  the 

time when the  f i r s t  t r a i l e r  needs i t  most and, conversely, the f i r s t  

t r a i l e r  provides r o l l  support f o r  the second a t  the occasion of i t s  c r i t i c a l  

Teak acce lera t ion  condition. Such a  mutual support mechanism does not 

preva i l  i n  vehicles  hitched with conventional dolly-and-pintle-hitch hard- 

ware s ince  no " r o l l  support" can be passed from one t r a i l e r  to the next.  

Clear ly,  the  length of the vehicle  elements and the number of 

a r t i c u l a t i o n  points  i n  a  combination provide the primary influence upon 

rearward amplif icat ion behavior. I n  f a c t ,  a s  long a s  vehicles  a r e  con- 

s idered to  be loaded i n  a  more o r  l e s s  uniform fashion,  from f ron t  t o  r ea r ,  

the d i s t i nc t ions  i n  amplif icat ion r a t i o  from one vehic le  configuration to 

another w i l l  be determined simply by the length and a r t i c u l a t i o n  f a c t o r s .  



Having found t h a t  a l a r g e  range i n  amplif icat ion l e v e l s  e x i s t s  

across  the spectrum of base l ine  vehic les ,  not to  mention the inf luences of 

length va r i a t i ons ,  the key i n t e r p r e t a t i o n  problem concerns the connection 

between amplif icat ion l e v e l  and the  l ikel ihood of involvement i n  ro l lover  

accidents .  Here, the  pro jec t ion  of an accident  connection cannot be guided 

by a broadly-based co r re l a t ion  such as was presented i n  the context of the 

simple ro l love r  of t rac tor -semi t ra i le rs .  In  f a c t ,  there  i s  some evidence 

tha t  vehic les  with very high values of amplif icat ion r a t i o  have been 

admitted onto specially-designated routes ,  with spec i a l  maintenance and 

driver-select ion agreements, and have reported good safe ty  records [18].  

Thus, i t  cannot be sa id ,  ca t egor i ca l ly ,  t h a t  vehicles  with high l eve l s  of 

amplif icat ion r a t i o  w i l l  necessar i ly  exhib i t  an undue number of ro l love r s  

i n  ac tua l  s e rv i ce ,  

One should not  general ize,  however, on the s igni f icance  of a vehic le ' s  

amplif icat ion behavior by reference t o  controlled-permit scenarios  i n  which 

the regula t ing  au thor i ty  has "compensated," so t o  speak, f o r  a high l e v e l  

of amplif icat ion r a t i o  by implementing a very r e s t r i c t i v e  s e t  of operating 

cons t ra in ts .  As was mentioned in Section 2.2, l imited accident da ta  do 

e x i s t  showing t h a t  t r u c k l f u l l  t r a i l e r s  and doubles having subs t an t i a l  l e v e l s  

of amplif icat ion r a t i o  have, indeed, suffered apparently-high r a t e s  of 

ro l lover  of t h e i r  rearmost t r a i l e r s  [2 ,3 ,4] .  These cases pe r t a in  to  t ruck/  

f u l l  t r a i l e r s  i n  bulk tanker configurat ions i n  Cal i forn ia ,  double tanker 

configurations i n  Michigan, and conventional single-axle doubles, with 27- 

foo t  (8.2-m) van t r a i l e r s ,  i n  s e rv i ce  across  much of the  nat ion.  

In  addi t ion  t o  accident  da ta  showing a high incidence of rear  t r a i l e r  

ro l love r s ,  there  a r e  s t a t i s t i c a l l y  meaningful accident  da t a  showing tha t  

the  conventional single-axle double has exhibited a very high t o t a l  r a t e  of 

ro l lover  involvement, per vehic le  mile, compared to  t rac tor -semi t ra i le rs  

[ 4 ] .  While these da t a  do not support a quan t i t a t i ve  co r r e l a t ion  of ampli- 

f i c a t i o n  r a t i o  with ro l lover  r a t e ,  they e s t ab l i sh  t h a t  a strong connection 

e x i s t s  . 
h p r a c t i c a l  aspect  of the  s a f e t y  problem posed by the presence of 

a rearward amplif icat ion tendency concerns the pa r t i cu l a r  nature of the 

th rea t  imposed by the  type of ro l lover  which r e s u l t s .  On the bas is  of 



the Cal i forn ia  [ 3 ]  and Michigan [2]  tanker experience (and believed to be 

supported by the accident  experience of common c a r r i e r s  operating conven- 

t i o n a l  single-axle doubles),  the r e a r - t r a i l e r  ro l lover  event occurs pre- 

dominantly a s  a single-vehicle accident .  That is, no other  vehic les  a r e  

t yp ica l ly  s t ruck.  Further ,  the t ruck d r i v e r ,  himself,  i s  not physical ly  

threatened by the  r e a r - t r a i l e r  ro l love r  inc ident .  Thus, such accidents  

a r e  pr imari ly  property-damage inc idents ,  except fo r  the cases i n  which 

hazardous comodi t i e s ,  such a s  a r e  car r ied  i n  bulk tanks, may become re- 

leased through the ro l lover  impact. Such hazardous commodity problems were 

the focus of the c i t e d  Cal i forn ia  and Xichigan tanker concerns. 

.;Uthough i t  appears t h a t  most of the  accident  over-involvement, with 

non-hazardous payloads, would be confined to  property-damage accidents ,  i t  

should be recognized t h a t  other  accident scenarios  can a l so  develop i n  

which vehic le  occupants or pedestr ians may be i n  jeopardy. 

Moreover, the rearward amplif icat ion behavior of multiple-unit  

vehic le  t r a i n s  i s  seen a s  a pecul iar  def iciency which i s  sa fe ty- re la ted .  

The problem i s  lessened by adopting configurations which involve t r a i l e r s  

tha t  a r e  as  long a s  otherwise prac t icable  (see,  a l s o ,  o f f t racking  r e s u l t s  

which a r e  presented i n  the next  s ec t ion ) .  Addit ional ly,  B-style configura- 

t i ons  o f f e r  subs t an t i a l  reductions i n  amplif icat ion compared to  conventional 

do lly-equipped vehic les  [2,15] . Fina l ly ,  fu tu re  improvements i n  amplif i- 

ca t ion  behavior may be obtained through the development of other  a l t e r n a t i v e  

schemes f o r  hi tching t r a i l e r s  [19,20].  

3 .4 .5  Low-Speed Offtracking, The low-speed of f t racking  of commer- 

c i a l  vehic les  i s  not genera l ly  included on a l i s t  of safety-related 

proper t ies .  Although i t  is  c e r t a i n  t h a t  many property-damage incidents  

(and presumably even pedestr ian involvements) occur due to the l a t e r a l  

encroachment of t r a i l e r s  during in t e r sec t ion  maneuvers and the l i k e ,  the 

zero-speed context of t h i s  performance measure r u l e s  out impacts a t  

appreciable  energy leve ls .  Nevertheless,  the subject  of low-speed of f -  

t racking does involve the mechanical behavior of the vehic le  and is an 

important considerat ion i n  pol icy making concerning vehic le  length and 

a r t i c u l a t i o n  fea tures .  Thus, ca lcu la t ions  have been made i n  t h i s  study to 



i l l u s t r a t e  the inf luence of length  on the low-speed of f t racking  character-  

i s t i c  of t he  se lec ted  s e t  of multiple-unit  vehic les .  

The measure employed here descr ibes  the  width of the path which is 

swept by each vehic le  combination a s  i t  negot ia tes  a right-angle turn  in  

which the  outs ide f ron t  t i r e  on the  t r a c t o r  t racks  a reference c i r c u l a r  

a r c  of 35-foot (10.7-m) radius between the  entry and e x i t  tangents .  The 

swept-path width i s  defined a s  t he  maximum outside width measured across  

the inner- and outermost t i r e s  on the  vehicle .  Shown i n  Figure 58 a r e  the 

swept-path da t a  obtained f o r  various values of length of the elements of 

the  combination. 

Observations 

1) It is  seen t h a t  the magnitude of t he  swept path increases  with 

length ( o r  wheelbase) of t rucks ,  t r a c t o r s ,  and t r a i l e r s .  This nominal 

increase is approximately proport ional  to  the  square roo t  of the wheel- 

bases of the u n i t s  involved [30]. That is, the  off t racking r e s u l t  can be 

shown t o  r e s u l t  from the sum of t he  of f t racking  cont r ibu t ions  of the 

cons t i tuent  p a r t s  of the  vehicle .  The inf luence of z change i n  the length 

of any cons t i tuent  pa r t  (say, a t r a i l e r ,  f o r  example) is  approximately 

proport ional  to the square root  of the  wheelbase of t h a t  pa r t .  The rear-  

ward overhang of p i n t l e  h i t c h  loca t ions ,  however, has an inverse e f f e c t  on 

of f t racking  and t h i s  e f f e c t  i s ,  again, r e l a t ed  t o  the square root  of the 

overhang d is tance  involved. 

2) The general trends r e l a t i n g  un i t  length t o  swept path do not 

appear to  apply to  the r e s u l t  of the  t r u c k / f u l l  t r a i l e r  having the "65- 

foot (19.8-m) designation." Since the ove ra l l  length of t h i s  vehicle  has 

been held f ixed,  however, an increase i n  the length of the t ruck o r  t r a i l e r  

w i l l  r e s u l t  in a decrease i n  the length  of the drawbar. Thus, i n  a number 

of cases we see  the swept path reducing with increasing length of t r a i l e r  

s ince  t h i s  increase i s  r e s u l t i n g  i n  a more favorable  reduct ion i n  the 

drawbar length. The ne t  balance between the "savings" i n  swept path gained 

by shortening the drawbar versus the "cost" incurred by lengthening the  

t r a i l e r  determines the  e f f e c t  on the swept path of t h i s  vehic le  configura- 

t ion. 
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Figure 58. lnf luence of Length Parameters on Lowspeed Of f t racking (Swept Path) 



3)  Among the  so-called "baseline" vehic les ,  the one combination 

which s tands out  is the twin 4 5 f 0 0 t  (13.7-m) turnpike double. Of course,  

the s p e c i a l  o f f t racking  problem with t h i s  veh ic l e  is d e a l t  wi th ,  i n  r e a l  

p rac t i ce ,  by confining i t s  use t o  c e r t a i n  l imited-access highways. To 

provide l o g i s t i c a l  support f o r  these  operat ions,  marshalling yards have 

been constructed adjacent  t o  the  access ramps so t h a t  t he  double can be 

broken down i n t o  two s ing le  un i t s  f o r  carrying t h e  f r e i g h t  over other road 

systems. 

I n t e r p r e t a t i o n  

Since low-speed of f t racking  is  not  seen a s  presenting a s i g n i f i c a n t  

s a f e t y  problem, the i n t e r p r e t a t i o n  of these r e s u l t s  must be made simply 

i n  the context of t he  s u i t a b i l i t y  of the road system f o r  the vehic les  

which w i l l  use i t .  

3.4.6 High-speed Offtrackinq. When a r t i c u l a t e d  veh ic l e s  t r a v e l  

around curves a t  2 speed, the t r a i l i n g  elements a r t i c u l a t e  so tha t  t h e i r  

t i r e s  t rack  inboard of the paths of t he  t i r e s  on the  towing u n i t .  A s  

speed increases ,  and s p e c i f i c a l l y  a s  l a t e r a l  acce lera t ion  increases ,  the  

t i r e s  on the  t r a i l i n g  u n i t s  begin t o  t r a v e l  along paths  which nore c lo se ly  

approach the paths of the towing veh ic l e ' s  t i r e s .  A t  a s u f f i c i e n t  speed, 

and la teral .  acce lera t ion ,  the  t r a i l i n g  t i r e s  begin to  t r ack  outboard of 

the  paths of the  towing veh ic l e ' s  t i r e s .  The d i f fe rence  i n  r ad ius  between 

the  path subtended by the  outboard t i r e  on the  s t ee r ing  a x l e  of the  tow 

veh ic l e  and the  path subtended by the  most outboard t r a i l e r  t i r e  is defined 

a s  the  high-speed of f t racking  dimension. 

Shown i n  Figure 59 is  a p l o t  of the high-speed of f t racking  measure 

versus the  wheelbase of an ind iv idua l  t r a i l i n g  un i t .  These da t a  represent  

th ree  values of t u rn  radius f o r  a s teady speed of 55 mph (88 km/h) and 

f o r  a se lec ted  s e t  of t i r e  proper t ies  represent ing a t y p i c a l  radial-ply 

t ruck  t i r e .  Given the 55 mph (88 km/h) speed, these  da t a  per ta in  t o  turn  

r a d i i  which represent  the  intermediate-to-severe range of cornering 

maneuvers f o r  a loaded t ruck,  with the 600-foot (183-m) rad ius  value 

approaching the ro l love r  condition. Using these da t a  f o r  ind iv idua l  



Figure 59. Relationship Between Wheelbase and High Speed Off trac king for Differing Path Radii 



t r a i l i n g  u n i t s ,  the se lec ted  s e t  of mult iply-ar t iculated vehic les  has been 

examined to  i l l u s t r a t e  the high-speed of f t racking  achieved a t  a  600-foot 

(183-m) rad ius ,  with assembled combinations. Shown i n  Figure 60 a r e  the  

ca lcu la ted  values of high-speed o f f t r ack ing  f o r  var ious values of the 

length of t he  ind iv idua l  u n i t s .  (Please note  t h a t  Figure 59 incorporates  

wheelbase a s  the  length var iab le ,  while Figure 60 d is t inguishes  among 

vehicles  pr imari ly  by t o t a l  length dimensions. ) 

Observations 

1 )  Since the maximm values of high-speed of f t racking  a r e  

achieved with vehic le  u n i t s  having wheelbases i n  the v i c i n i t y  of 23 f e e t  

(7.0 m)  , a s  s h a m  in Figure 59, the combinations exhib i t ing  the l a r g e s t  

t o t a l  o f f t racking  a r e  those having the most t r a i l i n g  u n i t s  i n  t h a t  range 

of wheelbase. Thus, the conventional t r i p l e  and quadruple exhib i t  re la -  

t i v e l y  high values of high-speed of f t racking  while the conventional t r ac to r -  

s emi t r a i l e r ,  with 45-foot (13.7-m) t r a i l e r  length,  shows a  r e l a t i v e l y  low 

value. 

2 )  Recognizing t h a t  the bas ic  curve f o r  individual  vehic les ,  

Figure 59, shows high-speed of f t racking  passing through zero f o r  wheelbases 

exceeding 45 f e e t  (13.7 m ) ,  i t  i s  notable  t h a t  the lowest value shown f o r  

any vehic le  combination i n  Figure 60 i s  obtained with the t r a c t o r  and 

55-foot (16.8-m) semi t r a i l e r .  I n t e re s t ing ly ,  t h i s  vehic le  reg is te red  one 

of the very h ighes t  values of @-speed of f t racking ,  shown e a r l i e r  i n  

Figure 58. 

3) While the r e s u l t s  shown i n  Figures 59 and 60 der ive  from the 

case of t yp ica l  radial-ply t i r e s ,  the high-speed of f t racking  performance 

achieved when bias-ply t i r e s  a r e  i n s t a l l e d  is  considerably poorer. Vehicles 

equipped with typ ica l  bias-ply t i r e s  w i l l  exhib i t  high-speed of f t racking  

values on the order of 70% grea te r  than the  r e s u l t s  shown. 

In t e rp re t a t ion  

The high-speed of f t racking  phenomenon requi res  t ha t  a  subs t an t i a l  

l e v e l  of l a t e r a l  acce lera t ion  b e  present before a  ne t  outboard path i s  

achieved a t  the t r a i l e r  t i r e s .  Thus, t h i s  c h a r a c t e r i s t i c  i s  only of 



Figure 60. lnf luence of Length Parameters on High Speed Off tracking 



s i g n i f i c a n c e  f o r  r a t h e r  severe  tu rn ing  c o n d i t i o n s ,  such a s  may occur when a 

v e h i c l e  n e g o t i a t e s  a freeway e x i t  ramp a t  an excess ive  speed.  One t h r e a t  

posed by outboard o f f t r a c k i n g  is  t h a t  t h e  t r a i l e r  t i r e s  may impact a curb 

due t o  t h e i r  outboard pa th  such t h a t  a s t r o n g  r o l l o v e r  s t imulus  is  imparted 

t o  t h e  veh ic le .  Another p o s s i b i l i t y  i s  t h a t  t h e  r e a r  t r a i l e r  may s t r i k e  a 

g u a r d r a i l  o r  another  v e h i c l e .  

It is important t o  n o t i c e ,  however, t h a t  even f o r  t h e  r a t h e r  extreme 

maneuver represen ted  here ,  t h e  outboard dimension i s  g e n e r a l l y  a r e l a t i v e l y  

small f r a c t i o n  of t h e  l a n e  width.  Thus, i t  would appear t h a t  high-speed 

o f f  t r a c k i n g  would have l i t t l e  s a f e t y  s i g n i f i c a n c e  i n  most c i rcumstances .  

Of course,  i f  t h e r e  is  a r i s k  of t h e  t r a i l e r  t i r e s  s t r i k i n g  a curb,  t h e  

outboard o f f t r a c k i n g  behavior may dec ide  t h e  i s s u e  of " r o l l o v e r  o r  

no tl-introducing a ve ry  g r e a t  s a f e t y  s i g n i f i c a n c e  i n  a p a r t i c u l a r  s i t u a t i o n .  

For the  case  of bias-ply t i r e s ,  a s  mentioned i n  observa t ion  ( 3 ) ,  above, 

the  o f f t r a c k i n g  dimensions a r e  considerably  more s u b s t a n t i a l  and c e r t a i n l y  

imply a more s i g n i f i c a n t  s a f e t y  hazard.  

Types of Mult ip le-Trai ler  Combinations 

I n  previous s e c t i o n s  of t h i s  r e p o r t ,  v a r i o u s  types  of mul t ip le-uni t  

t r u c k  combinations have been considered as s u b j e c t s  f o r  s tudying t h e  

in f luence  of i n d i v i d u a l  s i z e  and weight v a r i a b l e s .  I n  many j u r i s d i c t i o n s ,  

however, a major s u b j e c t  of controversy simply concerns t h e  i s s u e  of 

whether t o  a l low c e r t a i n  s p e c i f i c  types of mul t ip le -un i t  t r a i n s  on t h e  

highway. For example, c e r t a i n  of t h e  t o l l  highways a l low a s p e c i f i c  

" tu rnp ike  double" which couples two 45-£00 t (13.7-m) t r a i l e r s  having tandem 

a x l e s ,  and o t h e r s  do not .  Likewise, some western  s t a t e s  permit t h e  opera- 

t i o n  of  t h e  t r i p l e s  combination which couples t h r e e  27-foot (8.2-m) t r a i l e r s  

having s i n g l e  a x l e s ,  b u t  most s t a t e s  do no t .  It is  the  purpose of this 

s e c t i o n  t o  assemble i n  one p l a c e  t h e  f ind ings  concerning the  s t a b i l i t y  and 

c o n t r o l  p r o p e r t i e s  or' t h e s e  "conventional" o r  most popular conf igura t ions  

of t h e  m u l t i p l e - t r a i l e r  combinations used i n  t h e  U.S. The d a t a  which w i l l  

be presented can, i n  g e n e r a l ,  be found elsewhere i n  t h e  report-in s e c t i o n s  

dea l ing  wi th  i n d i v i d u a l  s i z e  and weight in f luences .  The p r o p e r t i e s  of 

i n t e r e s t  he re  a r e  only  those  which a r e  p e c u l i a r l y  determined by the  b a s i c  

type of v e h i c l e  conf igura t ions  which a r e  presented.  



3.5.1 Braking Performance. There appears t o  be very l i t t l e  bas i s  

f o r  expecting a  s i g n i f i c a n t  d i f fe rence  in  the stopping-distance performance 

of various types of combinations. This conclusion does not imply t h a t  

d i f fe rences  i n  the  stopping d is tances  of individual  vehic le  specimens 

might not be observed ( f o r  example, s ee  Volume I1 of t h i s  study and 

references [I61 and [31] ) ,  but r a the r  t ha t  such d i f fe rences  will der ive  

more l i k e l y  from random va r i a t ions  i n  brake behavior than from the d i s t i nc -  

t i o n s  i n  basic  vehic le  configuration. 

Three primary fea tures  d i s t i ngu i sh  the common mul t ip le - t ra i le r  

combinations from one another.  These fea tures  a r e  (a) gross weight, ( b )  

the lengths of individual  t r a i l e r s ,  and (c) number of t r a i l e r s  i n  the 

combination. With regard t o  item ( a ) ,  i t  was shown i n  Section 3.2.1 t h a t  

gross  weight is an in s ign i f i can t  determinant of vehic le  stopping d is tance ,  

i f  the vehic le  ' s brake sys tern was o r ig ina l ly  designed to  provide the torque 

l eve l s  needed f o r  t he  loads being car r ied .  Regarding item (b) , it was 

shown i n  Section 3.4.1 t ha t  va r i a t i ons  i n  t r a i l e r  length could have a  mild 

inf luence on stopping-distance performance, with the shor te r  t r a i l e r s  

suf fer ing  grea te r  amounts of load t r ans fe r  such t h a t  stopping d is tances  

were increased. Regarding item ( c ) ,  t h i s  study has not s p e c i f i c a l l y  

addressed the number of t r a i l e r s  i n  a  combination, per s e ,  a s  a  braking i ssue ,  

but t h i s  f ea tu re  is not seen a s  relevant  to  stopping-distance performance 

except insofar  a s  the number of t r a i l e r s  i s  l i k e l y  t o  influence the value 

of t he  transmission time needed t o  propagate the a i r  s igna l  to  the rear -  

most t r a i l e r .  This study has not produced da ta  which speak to t h i s  l a t t e r  

source of po ten t i a l  d i f fe rence  i n  stopping-distance performance. 

Notwithstanding differences i n  stopping d is tance  measured, i n  t h i s  

and o the r  s tud ie s ,  with individual  samples of d i f f e r i n g  types of vehicles  

i t  i s  the authorsf  view t h a t  d i f f e r ing  vehicle  types cannot be meaning- 

f u l l y  dis t inguished by t h e i r  bas ic  stopping-distance capab i l i t y .  On the 

o ther  hand, i t  is  ce r t a in ly  t r u e  t h a t  vehicles  with more a rz i cu la t ion  

j o i n t s  present a  grea te r  s e t  of possible  motion i n s t a b i l i t i e s  i n  event of 

wheel lockup. There appears t o  be no means of quantifying the s igni f icance  

of t h i s  l a t t e r  c h a r a c t e r i s t i c ,  however, except t o  consider tha t  fewer 

a r t i c u l a t i o n s  i s  probably b e t t e r .  



3 . 5 . 2  Yaw S t a b i l i t y .  Dis t inc t ions  i n  the various types of multiple- 

t r a i l e r  combinations a r e  seen a s  having v i r t u a l l y  no s igni f icance  to  the 

yaw s t a b i l i t y  i ssue  (which has been presented,  here in ,  a s  e s s e n t i a l l y  a 

problem involving the  t r a c t o r ' s  understeer l e v e l ) .  That i s ,  the  d i f f e r -  

ences ex i s t i ng  i n  t h e  various types of combination vehic les  do not include 

va r i a t i ons  i n  the parameters which a r e  known to  detennine the  understeer  

c h a r a c t e r i s t i c .  Thus, t he  "type of combination" can be dismissed a s  an 

i s sue  bearing upon t r a c t o r  yaw s t a b i l i t y .  

3 . 5 . 3  The Dynamics of Tractor  Yaw Response to  Steer ing.  It was 

shown i n  Sect ion 3 . 4 . 3  t h a t  the  length  of an at tached t r a i l e r  has an 

i n s i g n i f i c a n t  inf luence upon the dynamic response of a t r a c t o r  to  s t ee r ing  

input.  Since multiple-unit  t r a i n s  simply involve the  coupling of var ious  

add i t i ona l  t r a i l e r s  onto the  r e a r  of a conventional s e m i t r a i l e r ,  there  i s  

no means by which the  s p e c i f i c  configurat ion of a mu l t i - t r a i l e r  combina- 

t i o n  can modify the  dynamics of the t r a c t o r ' s  yaw response. 

One poss ib le  exception t o  t h i s  r u l e  is  the  B-train type of combina- 

t ion .  Since t h i s  type of veh ic l e  provides a r i g i d  coupling between 

successive t r a i l e r s ,  each t r a i l e r  has some p o t e n t i a l  f o r  inf luencing the 

behavior of t he  preceding u n i t .  Research reported in  Reference [b5], 

however, revea ls  v i r t u a l l y  no d i f fe rence  i n  t r a c t o r  response measured a t  

hig'hway speeds between cases  involving a simple t r ac to r - semi t r a i l e r  

configurat ion and a B-train. It is believed t h a t  t h i s  r e s u l t  has broad 

genera l i ty  fo r  B-trains having no more than two closely-spaced ax le s  a t  the 

r e a r  of the  f i r s t  s emi t r a i l e r .  

3 . 5 . 4  High-Speed Offtracking. There is a d e f i n i t e  r e l a t i onsh ip  

betveen the  high-speed off t racking character  i s t i c  and the type of multlple- 

t r a i l e r  configuration. Shown i n  Figure 61 i s  an i l l u s t r a t i o n  of the high- 

speed of f t racking  measure f o r  a se lec ted  s e t  of common mul t ip l e - t r a i l e r  

cont'igurations. This measure, defined e a r l i e r  i n  Sect ion 2 . 2 . 2 , 4 ,  descr ibes  

the  extent  t o  which the rearmost t r a i l e r  ax l e  t racks  outboard of the 

t r a c t o r  ' s path i n  a s p e c i f i c  cornering maneuver a t  55 mph (88 h / h )  . The 

f igu re  ranks the vehic les  shown, from top t o  bottom, according to  the 





i n d i c a t e d  va lues  of high-speed o f f t r a c k i n g .  According t o  t h e  proposed 

i n t e r p r e t a t i o n  f o r  t h i s  measure of performance, t h e  " b e t t e r "  v e h i c l e s  

e x h i b i t  t h e  lowest  va lues  of high-speed o f f t r a c k i n g .  

As was expla ined i n  S e c t i o n  3.4.7,  t h e  h i g h e s t  v a l u e s  of high-speed 

o f f t r a c k i n g  a r e  ob ta ined ,  f o r  v e h i c l e s  equipped w i t h  r a d i a l  t i r e s ,  when 

t h e  t r a i l e r  wheelbase is  around 23 f e e t  (7 .3  m ) .  Thus, we s e e  t h a t  some 

of t h e  longer  combinations,  l i k e  t h e  tu rnp ike  double ,  do b e t t e r  than  

s h o r t e r  combinations which employ shor te r - l eng th  t r a i l e r s ,  such a s  t h e  

convent ional  s ing le -ax le  double. The t r i p l e  does t h e  poores t  of a l l  

because i t  incorpora tes  t h e  g r e a t e s t  number o f  t h e  r e l a t i v e l y  s h o r t  

t r a i l e r s .  

A s  s t a t e d  i n  S e c t i o n  3.4.7,  t h e  s i g n i f i c a n c e  of t h e  high-speed 

o f f t r a c k i n g  c h a r a c t e r i s t i c  t o  t r a f f i c  a c c i d e n t  product ion i s  unknown. One 

can on ly  say  t h a t  t h e r e  is  no b e n e f i t  gained from t h e  outboard o f f t r a c k i n g  

motion of t r a i l e r s  i n  curves.  S ince  t h e  outboard p a t h  impl ies  t h a t  a curb,  

g u a r d r a i l ,  o r  roads ide  o b j e c t  might be s t r u c k  by t h e  rearmost  t r a i l e r  dur ing 

an  in te rmedia te - sever i ty  corner ing  maneuver, however, g r e a t e r  v a l u e s  a r e  

d e f i n i t e l y  seen a s  d e t r i m e n t a l .  It should a l s o  be noted t h a t  t h e  o f f -  

t r a c k i n g  dimensions l i s t e d  w i l l  be increased by approximately 70% when 

bias-ply t i res a r e  used i n  p l a c e  of t h e  r a d i a l s  considered here .  

3.5.5 Low-Speed Off t rack ing .  I n  S e c t i o n  3.4.6, a swept-path measure 

was employed t o  show t h e  i n f l u e n c e  o f  t r a c t o r  and t r a i l e r  l e n g t h  parameters  

on l o w s p e e d  o f f t r a c k i n g  behavior.  Th i s  measure d e s c r i b e s  t h e  maximum 

width  p r o j e c t e d  by t h e  v e h i c l e  a s  i t  n e g o t i a t e s  a 90-degree i n t e r s e c t i o n  

a t  near-zero speed. While t h e  l o r s p e e d  o f f t r a c k i n g  phenomenon is  no t  

n e c e s s a r i l y  seen a s  a s a f e t y  i s s u e ,  i t  does c o n s t i t u t e  a m a t t e r  of p r a c t i -  

c a l  concern i n  s i z e  and weight policy-making. F u r t h e r ,  i t  is  a c h a r a c t e r -  

i s t i c  which s h a r p l y  d i s c r i m i n a t e s  one type of m u l t i p l e - t r a i l e r  combination 

from ano ther  . 
Shown i n  F igure  62 is an  i l l u s t r a t i o n  of t h e  swept-path v a l u e s  

ob ta ined  f o r  each of t h e  s e l e c t e d  types  of v e h i c l e  combinations.  Again, the  

v e h i c l e s  a r e  ranked from top t o  bottom according t o  t h e  r e l a t i v e  "qua l i ty"  
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of t h e i r  wept-path behavior. The s ign i f i cance  of these  da ta ,  of course, 

a r e  tha t  some vehic le  combinations can reasonably negot ia te  a given road 

system, given the geometric cons t r a in t s  ex i s t i ng  a t  i n t e r sec t ions  and 

access  poin ts  of the  roadway, and o thers  cannot. 

3.5.6 Rearward Amplification. I n  addi t ion  t o  the  low- and high- 

speed off  t racWng c h a r a c t e r i s t i c s ,  the rearward amplif icat ion behavior is 

known to sharply d i s t i ngu i sh  one type of mu l t ip l e - t r a i l e r  combination from 

another.  This property has been discussed e a r l i e r  i n  the r epo r t  i n  terms 

of a measure termed the "amplif icat ion r a t i o . "  Values of t h i s  measure 

presented previously were derived using two d i f f e r i n g  simulation methods 

which considered the  veh ic l e ' s  response t o  a steady o s c i l l a t i o n  a t  the 

s t ee r ing  wheel. While t h i s  type of s t ee r ing  input was not proposed a s  a 

r e a l i s t i c  condi t ion which a d r ive r  might apply, i t  has long been recognized 

a s  useful  f o r  this type of ana lys is  (see,  f o r  example, [2 ,  8 ,  19, and 321). 

In  f a c t ,  the veh ic l e ' s  response t o  a s teady o s c i l l a t o r y  s teer ing  input i s  

of i n t e r e s t  p rec ise ly  because it revea ls  modes of motion which could be 

exci ted by any of a broad v a r i e t y  of r e a l i s t i c  inputs .  

I n  the course of t h i s  s tudy,  however, another ana lys i s  was conducted 

s p e c i f i c a l l y  f o r  t he  purpose of comparing the  ampl i f ica t ion  behavior of 

d i f f e r i n g  types of mu l t ip l e - t r a i l e r  combinations i n  response t o  one 

r e a l i s t i c  s e t  of input conditions.  This port ion of the work has been pre- 

sented to  the Society of Automotive Engineers i n  the form of a technica l  

paper which i s  c i t e d  a s  Reference [ 3 3 ] .  This ana lys is  produced a type of 

amplif icat ion measure which was i d e n t i c a l  i n  concept t o  tha t  produced by 

the  o ther  ana lys is  m e t h o d s l a t i o i n g  the maximum l a t e r a l  acce lera t ion  

experienced a t  t he  rearmost t r a i l e r  t o  t ha t  acce lera t ion  l e v e l  which was 

experienced a t  the  t r a c t o r .  The maneuvering condition, however, involved 

s t ee r ing  the  vehic le  to  j u s t  miss an obs tac le  i n  t he  roadway, a s  diagrammed 

i n  Figure 63.  I n  t h i s  maneuver, there  i s  nominally only one cycle of s teer -  

ing input applied r a t h e r  than a continuous s e r i e s  of s t ee r ing  cycles .  A s  

i n  the o ther  analyses ,  the maneuvering speed was 55 mph (88 lan/h) . 
It i s  usefu l  t o  consider the con t r a s t  i n  t he  rearward amplif icat ion 

behavior of the various vehic le  combinations using the  r e s u l t s  from each 





of t h e s e  analyses .  Shown i n  Figure  64 i s  a n  approximate ranking of the  

s e l e c t e d  combinations according t o  t h e  va lues  of a m p l i f i c a t i o n  r a t i o  

obta ined us ing t h e  t h r e e  d i f f e r e n t  c a l c u l a t i o n  methods. The t r i a n g l e  and 

c i r c l e  markers i n d i c a t e  r e s u l t s  obta ined from ana lyses  i n  which s teady  

s t e e r i n g  o s c i l l a t i o n s  were app l ied .  These a r e  termed "frequency response" 

r e s u l t s .  The square  markers i n d i c a t e  r e s u l t s  from t h e  obstacle-avoidance 

maneuver. 

I t  is  suggested t h a t  t h e  r e s u l t s  from the  t h r e e  methods d i f f e r  from 

one another  f o r  c e r t a i n  reasons  which may be of i n t e r e s t  t o  those  seeking 

to  understand t h e  mechanics of t h e  v e h i c l e s '  responses .  I n  c a s e s  i n  which 

l a r g e  d i f f e r e n c e s  e x i s t  among t h e  t h r e e  r e s u l t s  f o r  a g iven v e h i c l e ,  t h e r e  

appears t o  be  a d i s t i n c t  s e n s i t i v i t y  of t h e  v e h i c l e ' s  response t o  t h e  

t r a n s i e n t  c h a r a c t e r  of t h e  obstacle-avoidance maneuver. These d i s t i n c t i o n s  

i n  response a r e  discussed i n  some d e t a i l  in  Reference [ 3 3 ] .  The person 

concerned wi th  o v e r a l l  s a f e t y  impl ica t ions  of t h e s e  d a t a  is  simply 

advised t o  consider  t h e  whole range of va lues  which a r e  exh ib i t ed  f o r  each 

v e h i c l e  and t o  compare r e s p e c t i v e  v e h i c l e s  on t h a t  b a s i s .  ( I t  should be 

noted,  however, t h a t  one d a t a  p o i n t  i s  miss ing i n  the  s e t s  f o r  t h e  B-train 

and t h e  t r i p l e  s i n c e  (a)  t h e  " s impl i f i ed  a n a l y s i s "  nethod was unable  t o  

r e p r e s e n t  t h e  B-train conf igura t ion  and (b) t h e  "complete l i n e a r  a n a l y s i s "  

d id  not  have t h e  capac i ty  t o  handle  t h e  e x t r a  v e h i c l e  elements i n  t h e  

t r i p l e s  combination. ) 

To supplement these  r e s u l t s ,  t h e  a m p l i f i c a t i o n  behavior c a l c u l a t e d  

i n  t h e  obstacle-avoidance maneuver has a l s o  been desc r ibed  i n  terms of 

another  very s imple  measure. This  measure i n d i c a t e s  t h e  width of the  

o b s t a c l e  ( i n  f e e t )  which can be s u c c e s s f u l l y  "avoided" a t  55 mph (88 km/h) 

without approaching r o l l o v e r  a t  the  rearmost t r a i l e r  of t h e  combination. 

This width dimension appears  i n  t h e  diagram of Figure  63. To determine t h e  

"approaching ro l lover"  cond i t ion ,  t h e  s imula t ion  runs  were s e t  up t o  f i n d  

t h a t  o b s t a c l e  width  wnich, when s u c c e s s f u l l y  s t e e r e d  around, caused t h e  

r e a m s t  t r a i l e r  t o  achieve a peak l a t e r a l  a c c e l e r a t i o n  l e v e l  of 0.3 g's- 

a va lue  which i s  w i t h i n  approximately 15% of the  l e v e l  needed f o r  r o l l -  

over.  Fur the r ,  t h e  maneuver was cons t ra ined  such t h a t  t h e  "dr ive r"  was 

presumed t o  begin h i s  s t e e r i n g  a c t i v i t y  wi th  only 2.0 seconds of t r a v e l  

time a v a i l a b l e ,  a t  55 mph (88 km/h), p r i o r  t o  reaching the  o b s t a c l e .  



REARWARD AMPLI FICATION 

Figure 64. Influence of Combination Type on Rearward Amplification Using 
3 Methods of Analysis. 



For vehic les  exhib i t ing  low l eve l s  of ampl i f ica t ion  a t  t h e i r  r e a r  

t r a i l e r s ,  a  r e l a t i v e l y  wide obs tac le  can be successfu l ly  cleared without 

approaching a  ro l love r  condition. Vehicles exhib i t ing  l a rge  l e v e l s  of 

ampl i f ica t ion  cause t h e i r  r ea r  t r a i l e r s  t o  approach ro l love r  even when a  

r e l a t i v e l y  small  value of l a t e r a l  displacement is i n i t i a t s d  a t  the t r a c t o r .  

Shown i n  Figure 65 is a ranking of the  se l ec t ed  veh ic l e  types according 

to  the  width of obs tac le  t h a t  each can c l ea r  i n  the  2.0-second maneuver, 

a t  5 5  mph (88 lan/h), before reaching a  0.3 g l e v e l  of l a t e r a l  accelera-  

t i o n  a t  the rear t r a i l e r .  The f i g u r e  provides a  r a t h e r  graphic d isp lay  of 

the con t r a s t s  amng the  vehic les .  

While t he  obstacle-avoidance maneuver i s  seen a s  r e a l i s t i c ,  the 

reader  should recognize t h a t  it does represent  an emergency type of condi- 

t i o n  and would be ca l l ed  f o r  only r a r e l y  on the highway. Thus, t o  i n t e r p r e t  

the  r e s u l t s  i n  Figure 65 by saying t h a t  the  B-train, f o r  example, with 

i ts  &foot  (1.2-m) measure, is only "half a s  safe"  a s  the  five-axle t r a c t o r -  

s e n i t r a i l e r ,  with i ts  &foot (2.4-m) value f o r  obs tac le  width, would be 

completely unfounded. Nevertheless, these r e s u l t s  a r e  seen as  reveal ing 

a c e r t a i n  c h a r a c t e r i s t i c  which i s  inherent ly  present ,  t o  the degree shown, 

i n  the design configurat ions of the  respec t ive  vehic les .  To the degree 

t h a t  maneuvers involving s t ee r ing  a c t i v i t y  i n  the higher frequency range 

occur i n  the a c t u a l  se rv ice  of these vehic les  on the road, these r e s u l t s  

suggest t h a t  d i s t i n c t  d i f fe rences  i n  the  incidence of r e a r - t r a i l e r  ro l lover  

w i l l  be found. 

3.6 Vehicle Width 

The l imi t a t ions  on the  maximum outs ide  width of c o m e r c i a l  vehic les  

serves t o  limit the  width of the load bed on t ruck and t r a i l e r s  which, in 

turn ,  d i r e c t l y  a f f e c t s  the volume of the payload space. Thus, vehic le  

width immediately impacts upon the product iv i ty  of u n i t s  t ranspor t ing  low- 

dens i ty  f r e igh t .  Accordingly, one can be s u r e  t h a t  a  l a rge  port ion of the  

t rucking industry w i l l  u t i l i z e  any l i b e r a l i z a t i o n  i n  width allowance by a t  

l e a s t  assuring t h a t  the bed o r  box width on newly-purchased equipment is a t  

the new allowance value. But to allow a c e r t a i n  maximum width i s  not 





necessar i ly  t o  requi re  t h a t  the  width allowance be u t i l i z e d  i n  a manner 

most conducive to  s t a b i l i t y  and con t ro l  q u a l i t i e s .  

A case i n  point  concerns the an t i c ipa t ed  t r a n s i t i o n  of the American 

trucking industry following the f ede ra l  l e g i s l a t i o n  e f f e c t i v e  i n  1983 

preempting s t a t e  cons t r i c t i ons  on maximum width so a s  t o  allow a 102-inch 

(259-cm) width. Considering a t r ac to r - semi t r a i l e r ,  f o r  example, a truck- 

ing f l e e t  could s e l e c t  vehic les  having any of the  following design f ea tu re s  

i n  combination: 

-width of t r a i l e r  load bed, 96 or  102 inches (244  o r  259 cm) 

-width across  outs ide  of t r a i l e r  t i r e s ,  96 o r  102 inches 
( 244  o r  259 cm) 

-spread between spring cen te r s  on t r a i l e r ,  38 or  44 inches 
(97 or  112 cm) 

-width across  outs ide  of t r a c t o r  t i r e s ,  96 o r  102 inches 
( 244  o r  259 cm) 

-width between r e a r  spr ing  centers  on t r a c t o r ,  38 or 44 inches 
(97 o r  112 cm) 

While the  width of the load bed has only a r a t h e r  remote connection to the  

s t a b i l i t y  and con t ro l  proper t ies  of vehic les ,  a s  w i l l  be shown, the width 

preva i l ing  across  t he  outs ide  of the  t i r e s  cons t i t u t e s  a very important 

parameter. Of l e s s e r ,  but not i n s i g n i f i c a n t ,  importance is the  l a t e r a l  

spread between the spr ing  centers  which determines the suspension's nominal 

r e s i s t ance  t o  the r o l l  motion of the load bed. These respec t ive  width 

parameters a r e  i l l u s t r a t e d  i n  Figure 66. (Note t h a t  t h e  "spring spacing" 

parameter pe r t a in s  to  conventional leaf-spring suspensions and has no 

meaning i n  connection with,  say ,  a i r  suspensions, o r  other  suspension 

types which do not depend upon any p a r t i c u l a r  width-like dimension i n  

es tab l i sh ing  t h e i r  a b i l i t y  t o  " r e s i s t  r o l l  motion of the load bed.") 

Since the  t r a c t o r  and t r a i l e r  a r e  purchased i n  completely separa te  

t ransac t ions ,  i t  is  poss ib le  that trucking f l e e t s  would spec i fy  the width 

parameters of the t r a c t o r  r a the r  d i f f e r e n t l y  than they would the  t r a i l e r  

parameters. Nevertheless,  t he  width across  the  t r a c t o r  t i r e s ,  a s  wel l  as  

the spread between spr ing  cen te r s ,  a l so  represent  parameters of importance 

to  s t a b i l i t y  and cont ro l  behavior. 
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Figure 66. Sketch of Trailer or Truck Showing Width Parameters 



Simulations were conducted i n  t h i s  study t o  evaluate the  inf luence 

of a number of combinations of the above width parameters on the yaw and 

r o l l  s t a b i l i t y  proper t ies  of se lec ted  vehic les .  Most of t he  cases were 

configured to  address the prospect of a t r a n s i t i o n  from a width allowance 

of 96 inches (144 cm) t o  102 inches (259 cm). The cases represent  s i tua-  

t i ons  i n  which the load bed, only, the load bed and t r a i l e r  t i r e s ,  and the 

load bed, t i r e s ,  and springs a r e  spread t o  the maximum widths achievable 

within the  outs ide  cons t ra in t  of 102 inches (259 cm). I n  each of these 

cases ,  the t r a i l e r  is considered to be coupled t o  a t r a c t o r  having width 

parameters corresponding t o  e i t h e r  the  96- o r  102-inch (244- o r  259-cm) 

outs ide  dimension. Please note  t h a t  t r a c t o r  spr ings and t i r e s  were placed, 

together ,  a t  e i t h e r  t h e i r  wide o r  narrower loca t ions  and were not var ied 

separa te ly  here. 

3.6.1 Yaw S t a b i l i t y .  The inf luence of width va r i a t i ons  on yaw 

s t a b i l i t y  was examined f o r  the  case of a five-axle t rac tor -semi t ra i le r .  

The vehicle  was considered i n  cases involving gross combination weights of 

both 80,000 and 88,000 l b s  (36.3 and 39.9 m tons) .  It was hypothesized 

t h a t  increases  i n  the width measured across  the outs ide of the t i r e s  would 

improve yaw s t a b i l i t y  (by means of increasing the understeer l e v e l  obtained 

a t  higher leve ls  of l a t e r a l  acce lera t ion) .  This r e s u l t  was expected due to  

the f a c t  tha t  a smaller change i n  loads experienced by l e f t -  and r igh t -s ide  

t i r e s  during cornering would p reva i l ,  f o r  a given l e v e l  of l a t e r a l  accel- 

e r a t ion ,  when the  t i r e  t rack  width was increased. Since, as discussed 

e a r l i e r ,  i t  is t h i s  load change o r  "load t ransfer"  which gives r i s e  to  the 

charac te r i s  t i c  l o s s  i n  the underst eer  of t rucks i n  moderate s eve r i ty  

maneuvers, increases  in  width can be expected t o  y ie ld  a l e s s e r  amount of 

t h i s  " loss .  " 

Shown i n  Figure 67 a r e  the r e s u l t s  of ca lcu la t ions  showing the under- 

s t e e r  measure (evaluated a t  0.25 g ' s  l a t e r a l  acce lera t ion)  f o r  each of 11 

cases of width va r i a t i on .  





Observation 

-Over t h e  cases  shown, t h e r e  is very l i t t l e  i n f l u e n c e  of width on 

the  unders tee r  measure. The unders tee r  measure does d e c l i n e  s l i g h t l y  f o r  

t h e  narrowest of t h e  t i re  placement widths ,  bu t  the  in f luence  of width is 

seen t o  b e  notably  smal le r  than t h e  i n f l u e n c e  of t h e  g ross  weight v a r i a t i o n  

which i s  shown. 

I n t e r p r e t a t i o n  

Since width  changes a r e  seen  t o  have no s i g n i f i c a n t  i n f l u e n c e  on the  

unders tee r  measure, over  t h e  range of va lues  a t  i s s u e  wi th  contemporary 

v e h i c l e s ,  one can conclude t h a t  d i f f e r e n c e s  i n  t h e  means f o r  implementing 

a l i b e r a l i z e d  width  allowance a r e  l i k e l y  t o  be of no consequence to  yaw 

s t a b i l i t y  cons idera t ions .  

3 . 6 . 2  R o l l  S t a b i l i t y .  C lea r ly ,  t h e  width of t h e  t i r e  placement 

c o n s t i t u t e s  a f  i r s t - o r d e r  determinant of v e h i c l e  r o l  l s t a b i l i t y .  For a 

given a x l e  load ,  t h e  c o n t r i b u t i o n  of t h a t  a x l e  t o  t h e  o v e r a l l  r o l l  s t a b i l i t y  

of t h e  v e h i c l e  is  d i r e c t l y  p r o p o r t i o n a l  t o  the  width  of t h e  t i r e  placement. 

Since t h e  l a t e r a l  spread between s p r i n g  c e n t e r s  only i n f l u e n c e s  t h e  amount 

of t h e  t o t a l  r e s i s t a n c e  t o  body r o l l  which is generated a t  the  a x l e  i n  

ques t ion ,  t h e  n e t  e f f e c t  of t h i s  parameter cannot be genera l i zed ,  and 

depends upon o t h e r  c h a r a c t e r i s t i c s  of t h e  veh ic le .  It is  f u r t h e r  known 

t h a t  t h e  r e l a t i v e  d i s t r i b u t i o n  of r o l l  s t i f f n e s s  and width parameters 

between a t r a c t o r  and s e m i t r a i l e r  w i l l  have a s i g n i f i c a n t  i n f l u e n c e  on 

t o t a l  r o l l  s t a b i l i t y  [ 2 2 ] .  

X l a r g e  number of cases  were examined i n  o rder  t o  d e f i n e  t h e  

in f luence  of the  va r ious  width parameters on t h e  r o l l o v e r  threshold  measure. 

Cases were i d e n t i f i e d  f o r  a three-axle s t r a i g h t  t ruck ,  a f ive -ax le  t r a c t o r -  

s e m i t r a i l e r ,  and f o r  a five-axle convent ional  double. I n  g e n e r a l ,  these  

cases  involved t h e  assumption of a median-density f r e i g h t ,  a s  i n  much of 

t h e  b a s e l i n e  cond i t ions  discussed throughout t h i s  r e p o r t .  This assumption 

provided f o r  a composite c.g.  he igh t  of 80 inches  (203 cm) and r e p r e s e n t s  

t h e  case  of a gross-weight-limited load.  When t h i s  load cond i t ion  is t o  be  



app l ied  to  a v e h i c l e  whose load bed has an o u t s i d e  width exceeding t h e  

b a s e l i n e  va lue  of 96 inches  (244 cm), t h e  same volume of f r e i g h t  i s  then 

thought t o  be s i t u a t e d  a t  a somewhat lower c .g .  he igh t .  Thus, i n  t h i s  

s c e n a r i o ,  t h e  in f luence  of a widened bed i s  t o  - lower t h e  cen te r  of g r a v i t y  

of t h e  payload. 

I n  a few cases  of t h e  t r a c t o r - s e m i t r a i l e r  combination, an a l t e r n a t i v e  

loading scenar io  was a l s o  examined i n  o rder  t o  eva lua te  t h e  in f luence  of 

a widened load bed on cube-full  t r a i l e r  loads .  I n  this s c e n a r i o ,  t h e  

b a s e l i n e  v e h i c l e  is  def ined a s  being 96 inches  (24L  cm) wide and loaded 

wi th  a m a t e r i a l  which f i l l s  t h e  cub ic  c a p a c i t y  of t h e  t r a i l e r ,  but which 

l eaves  t h e  t o t a l  v e h i c l e  weight s l i g h t l y  below t h e  maximum permiss ib le  

g ross  weight l e v e l .  With a widened load bed, then,  more of the  same type 

of f r e i g h t  can be added such t h a t  a g r e a t e r  payload weight is  obtained.  

The c e n t e r  of g r a v i t y  of t h i s  new payload is s t i l l  loca ted  a t  the  o r i g i n a l  

va lue  of he igh t  s i n c e  on ly  t h e  width dimension has been changed. However, 

t h e  composite c.g. height  r i s e s  s l i g h t l y  s i n c e  t h e  payload mass c o n s t i t u t e s  

a l a r g e r  f r a c t i o n  of t h e  t o t a l  and thus  se rves  t o  b i a s  t h e  composite c .g .  

p o s i t i o n  upward. 

Shown i n  Figure  68 a r e  t h e  r o l l o v e r  th resho ld  va lues  f o r  each of 

t h e  cases  of width v a r i a t i o n .  For cases  involving t h e  doubles combination, 

v a r i a t i o n s  of width  parameters a t  the  t r a i l e r  a x l e s  a r e  accompanied by 

adjustments a t  t h e  d o l l y  a x l e  a s  w e l l .  

I n  o rder  t o  f a c i l i t a t e  obse rva t ions  p e r t a i n i n g  t o  t h e  cases  involving 

a change i n  o v e r a l l  width from 96 t o  102 inches  (244 t o  259 cm), t h e  

a p p l i c a b l e  d a t a  from t h e  t r a c t o r - s e m i t r a i l e r  and doubles c o n f i g u r a t i o n s  

have been compiled t o  produce Table I. This t a b l e  l is ts  t h e  percentage 

improvements i n  t h e  r o l l o v e r  th resho ld ,  wi th  r e s p e c t  t o  t h e  performance of 

t h e  96-inch (244-cm) b a s e l i n e  case ,  which accrue due t o :  

a )  inc reas ing  t h e  width a c r o s s  a l l  t r a i l e r  t i r e s  from 96 

to  102 inches  (244 t o  259 cm) 

b) t h e  combination of (a), above, p l u s  t h e  widening of t h e  

t r a i l e r  s p r i n g  spacing dimension from 38 t o  44 inches 

(97 t o  112 cm) 
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c )  adopt ing 102-inch-wide (259-cm) t r a c t o r s  (which have been 

designed t o  p l a c e  bo th  t i r e s  and s p r i n g  c e n t e r s  a t  t h e  

maximum width dimensions) 

d )  t h e  sum of a l l  of t h e  above width improvements on both  

t r a c t o r  and t r a i l e r ( s )  . 

Observat ions  

1 )  Extension of t h e  t r a i l e r  bed width ,  a l o n e ,  wi thout  any widening 

of t i r e  o r  suspension spac ing ,  can have a smal l  p o s i t i v e  o r  nega t ive  

i n f l u e n c e  upon r o l l o v e r  t h r e s h o l d ,  depending upon the  load ing  s c e n a r i o .  

This  obse rva t ion  can be drawn from t h e  t r a c t o r - s e m i t r a i l e r  e a s e s  i n  which 

t h e  width  of t h e  load bed is increased from 96 t o  102 inches  (244 to  259 cm). 

I n  t h e  c a s e  of t h e  median-density f r e i g h t ,  f o r  which t h e  c.g. h e i g h t  drops  

s l i g h t l y  when a wider load bed i s  cons idered ,  t h e  r o l l o v e r  th resho ld  

improves by approximately 3%. For t h e  converse c a s e  of a l i g h t e r - d e n s i t y  

f r e i g h t  which is  loaded t o  t h e  cubic  c a p a c i t y  of t h e  t r a i l e r ,  t h e  i n c r e a s e  

i n  payload weight which is made p o s s i b l e  by a wider load space reduces  

t h e  r o l l o v e r  th resho ld  by approximately 2.5%. 

2) When bo th  t h e  t r a i l e r ' s  load bed and i ts  t i r e s  a r e  placed t o  

a t t a i n  a n  o u t s i d e  dimension of 102 inches  (259 cm), t h e  r o l l o v e r  th resho ld  

improves by 4 t o  122, depending upon v e h i c l e  c o n f i g u r a t i o n  and loading 

scenar io .  The lower y i e l d  of 4 %  accrues  i n  t h e  c a s e  of t h e  t r a c t o r -  

s e m i t r a i l e r  wi th  t h e  " f u l l  cube" load ing  s c e n a r i o .  Since  t n e  payload c.  g. 

he igh t  i n  t h i s  c a s e  is  approximately 105 inches  (267 cm), the  r o l l o v e r  

th resho ld  is determined p r i m a r i l y  by t h e  l a r g e  amount of r o l l  motion which 

is occur r ing  on t h e  suspension s p r i n g s .  Thus, ex tens ion  i n  t h e  width a c r o s s  

t h e  t r a i l e r  t i r e s  is  of l e s s e r  va lue .  

The 12% improvement was seen i n  t h e  c a s e  of t h e  f u l l  t r a i l e r  of t h e  

doubles c o n f i g u r a t i o n ,  wi th  t h e  "median-density f r e i g h t "  s c e n a r i o .  The 

l a r g e  payoff ,  here ,  i s  due t o  the  f a c t  t h a t  bo th  ends of t h e  f u l l  t r a i l e r  

become supported on wider- t rack a x l e s - o n e  a t  t h e  d o l l y  and one a t  t h e  r e a r  

of t h e  t r a i l e r .  C l e a r l y ,  t h i s  arrangement y i e l d s  a much g r e a t e r  improvement 

i n  r o l l o v e r  th resho ld  than accrues  from widening on ly  t h e  s e m i t r a i l e r  



a x l e ( s )  of a t r a c t o r s e m i t r a i l e r  combination. I f  one considered a f u l l  

t r a i l e r  employing a 96-inch-wide (244-cm) d o l l y ,  toge ther  w i t h  a 102-inch 

(259-cm) a x l e  a t  t h e  r e a r  of t h e  t r a i l e r ,  the  r o l l o v e r  th resho ld  would be 

improved by only  about h a l f  of t h e  12% va lue .  

3 )  I n c r e a s i n g  t h e  s p r i n g  spacing on t r a i l e r  a x l e s  which have 

a l ready  been widened t o  provide t h e  102-inch (259-cm) width  a c r o s s  t h e  

t i r e s  p rov ides  an  a d d i t i o n a l  0 t o  4-1/22 improvement i n  r o l l o v e r  th resho ld .  

The 0% improvements a r e  seen wi th  t r a c t o r - s e m i t r a i l e r  i n  cases  involving 

t h e  "median-density f r e i g h t "  s c e n a r i o .  To e x p l a i n  t h e  mat te r  simply,  

i n c r e a s i n g  t h e  r o l l  s t i f f n e s s  a t  the  t r a i l e r  a x l e ( s )  by widening t h e  s p r i n g  

spacing f a i l s  t o  improve t h e  r o l l o v e r  t h r e s h o l d  because t h e  c h a r a c t e r i s -  

t i ca l ly - low r o l l  s t i f f n e s s  of the  t r a c t o r  suspensions  is  c o n t r o l l i n g  t h e  

r e s u l t .  (For a complete d i s c u s s i o n  of these  mechanisms, s e e  Reference 
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X 4-1/2% improvement i n  r o l l o v e r  th resho ld  was s e e n  wi th  the  f u l l  t r a i l e r  

of t h e  doubles  conf igura t ion .  Again, t h e  c a l c u l a t i o n s  assumed t h a t  both  

t h e  d o l l y  and t r a i l e r  a x l e s  were o u t f i t t e d  w i t h  wider-spaced s p r i n g s .  

S ince  f u l l  t r a i l e r s  a r e  supported by " t r a i l e r - l i k e  suspensions" a t  both  

e x t r e m i t i e s ,  such v e h i c l e s  enjoy "balanced" r e s t r a i n t  of t h e i r  r o l l i n g  

motions. Thus, s i n c e  t h e r e  e x i s t s  no p e c u l i a r l y  " sof t "  suspensions  a s  in 

t h e  case  of t r a c t o r - s e m i t r a i l e r s ,  increased s p r i n g  spacing produces a major 

improvement i n  t h e  r o l l o v e r  th resho ld  of f u l l  t r a i l e r s .  

4 )  T r a c t o r s  which a r e  widened t o  t h e  102-inch (259-cm) dimension 

provide an a d d i t i o n a l  8 t o  10% improvement i n  t h e  r o l l  s t a b i l i t y  of t r a c t o r -  

s e m i t r a i l e r s .  This improvement d e r i v e s  from the  sum of t h e  t i r e -  and 

spring-placement mechanisms. Both of  t h e s e  mechanisms tend t o  l e s s e n  a 

c h a r a c t e r i s t i c  "problem" i n  achieving good r o l l  s t a b i l i t y  wi th  t r a c t o r -  

semit ra i lers-namely,  t h a t  t h e  t r a c t o r  suspensions  a r e  t y p i c a l l y  " s o f t e r ,  " 
i n  r o l l ,  than is the  t r a i l e r  suspension.  Note, of course ,  t h a t  the  r o l l  

s t a b i l i t y  of t h e  t r a c t o r - s e m i t r a i l e r  has  no means of in f luenc ing  t h e  

s t a b i l i t y  l e v e l  of a f u l l  t r a i l e r  i n  a doubles combination. 

5 )  The implementation of t h e  maximum width  allowance by a p p r o p r i a t e  

placement o f  t i r e s  and s p r i n g s  on both t r a c t o r s  and t r a i l e r s  provides  t o t a l  



improvements i n  ro l lover  threshold amounting to  15 to  20%, depending upon 

vehicle  configurat ion and loading scenario.  

6) Increases  i n  vehic le  width beyond the  102-inch (259-cm) dimen- 

s ion  continue t o  o f f e r  very subs t an t i a l  improvements i n  r o l l  s t a b i l i t y .  

In t e rp re t a t ion  

It is c l e a r  t h a t  increases  i n  the width a t  which t i r e s  and springs 

a r e  placed c o n s t i t u t e  one of the most powerful means of improving the 

ro l love r  r e s i s t ance  of heavy vehic les .  The implicat ions of the above 

r e s u l t s  t o  the i s sue  of ro l love r  accident  involvement a r e  tremendous, given 

the evidence which is ava i l ab l e  l inking the  r o l l  s t a b i l i t y  of vehic les  t o  

ro l lover  accident involvement. In  p a r t i c u l a r ,  Figure 69 shows the improve- 

ments i n  percent ro l lovers  per single-vehicle accident  (SVA) accruing from 

the widening of t r a i l e r  and t r a c t o r  running gear from 96 t o  102 inches 

(244 to 259 cm). 

The f igu re  suggests t h a t  the incidence of ro l love r s  with t rac tor -  

s emi t r a i l e r s  operating wi th in  the "aedian-f r e igh t "  load scenario could be 

reduced by some 35% by adopting t r a c t o r s  and semi t r a i l e r s  which a r e  f u l l y  

widened t o  u t i l i z e  a 102-inch (259-cm) width allowance. (Please note  t h a t  

the "35%" f igu re  is obtained by obseming t h a t  the " ro l lover /SV~" measure 

drops from the basel ine value of 47% t o  30%, thus incurr ing a ne t  35% drop 

from the rollover/SVA value of the  base l ine  case. This 35% reduct ion is  

then seen a s  ind ica t ing  the approximate l e v e l  of reduct ion i n  the t o t a l  r a t e  

a t  which ro l lovers  a r e  produced per vehic le  mile.  A s  mentioned previously, 

ro l love r  da t a  derived from single-vehicle accidents  a r e  usefu l  f o r  approxi- 

mating t o t a l  ro l lover  involvement s ince  some 80% of truck ro l love r s  occur 

a s  single-vehicle events [15] . ) 
When only the semi t r a i l e r  is  " f u l l y  widened" ( t h a t  is, with wider 

t i r e  placement and spring spacing) ,  the reduct ion in  ro l love r  accident  r a t e  

f o r  t h i s  vehic le  category is predicted t o  be on the  order  of 20%. 

In the context of these p o t e n t i a l  s a fe ty  improvements, l e t  us con- 

s i d e r  the implications of c e r t a i n  of t he  "shortcut"  neans of u t i l i z i n g  a 

l i be ra l i zed  width allowance. The simulation r e s u l t s  snowed tha t  widening 
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t h e  load bed a lone ,  wi thout  a l s o  widening t h e  t i r e  t r a c k  and s p r i n g  spread 

dimensions, in t roduces  a  small and somewhat mixed e f f e c t  upon r o l l  s t a b i l i t y .  

I n  genera l ,  t h e  a c t i o n  of widening t h e  bed, a lone ,  can be looked upon simply 

a s  a  "missed oppor tuni ty"  t o  d r a m a t i c a l l y  upgrade a  v e h i c l e ' s  r o l l  s t a b i l i t y .  

Accordingly,  whenever width  r e g u l a t i o n s  a r e  being l i b e r a l i z e d ,  i t  would 

appear  t h a t  t h e  approach which most b e n e f i t s  t r a f f i c  s a f e t y  is t o  r e q u i r e  

t h a t  t h e  inc reased  width  a t  t h e  load  bed be accompanied by a p p r o p r i a t e l y  

widened t i r e  and s p r i n g  placements.  Such changes a r e  understood t o  be 

r e l a t i v e l y  inexpensive ,  a l though  s u f f i c i e n t  r e l u c t a n c e  f o r  purchasing 

widened a x l e  hardware has e x i s t e d  i n  Canadian t ruck ing  o p e r a t i o n s  t h a t  an 

es t imated  90% of the  v e h i c l e s  having 102-inch (259-cm) load beds incorpora te  

on ly  96-inch-wide (244-cm) t i r e  placements [23] .  

Xotwithstanding t h e  l a r g e  b e n e f i t  which widened t r a c t o r s  c o n t r i b u t e  

t o  t h e  r o l l  s t a b i l i t y  of t r a c t o r - s e m i t r a i l e r  combinations,  i t  is recognized 

t h a t  sxtending t r a c t o r  width invo lves  a  much more c o s t l y  development pro- 

c e s s  than is  implied by widening t r a i l e r s  o r  d o l l i e s .  Presumably, wider 

t r a c t o r s  would become a v a i l a b l e  i f  a  market developed fol lowing a  l i b e r a l -  

i z e d  width  allowance. Those concerned w i t h  maximizing s a f e t y  a r e  w e l l  

advised t o  promote such development. I n  t h e  meantime, i t  should be noted 

t h a t  t h e r e  a r e  no known d e t r i m e n t a l  e f f e c t s  of coupl ing t r a i l e r s  having one 

width dimension t o  t r a c t o r s  having a  narrower width.  

The s i n g l e  most b e n e f i c i a l  a p p l i c a t i o n  of an  inc reased  width allow- 

ance i s  i n  t h e  c a s e  of f u l l  t r a i l e r s .  It was seen i n  the  r e s u l t s  shown 

above t h a t  t h e  r o l l o v e r  th resho ld  of t h e  f u l l  t r a i l e r  of a  convent ional  

doubles c o n f i g u r a t i o n  i n c t e a s e s  by 1 6 , 5 %  when the  d o l l y  and t r a i l e r  a x l e  

hardware ( t i r e s  and s p r i n g s )  i s  widened from 96 t o  102 inches  (244 t o  259 

cm). Since ,  a s  mentioned i n  S e c t i o n  3.4.4,  convent ional  doubles  exper ience 

t h e  m a j o r i t y  of t h e i r  r o l l o v e r  i n c i d e n t s  a s  r e a r - t r a i l e r - o n l y  r o l l o v e r s ,  

t h e  p rospec t  f o r  making l a r g e  inprovemerits i n  the  r o l l  s t a b i l i t y  of f u l l  

t r a i l e r s  seems e s p e c i a l l y  important  t o  s a f e t y .  When one c o n s i d e r s  t h a t  t h e  

i n c l u s i o n  o f  t h e  wider a x l e  hardware i n  t h e  c o n s t r u c t i o n  of new d o l l i e s  

and t r a i l e r s  is r a t h e r  s t r a i g h t f o r w a r d  ( e s p e c i a l l y  i n  comparison t o  t h e  

widening of t r a c t o r s ) ,  t h e  scenar io  by which a  102-inch (259-cm) width  

allowance would l e a d  t o  much-improved r o l l  s t a b i l i t y  f o r  f u l l  t r a i l e r s  seems 

p a r t i c u l a r l y  achievable .  No acc iden t  d a t a  a r e  a v a i l a b l e  which speak 



d i r e c t l y  t o  t h e  r e l a t i o n s h i p  between t h e  r o l l o v e r  th resho ld  of f u l l  t r a i l e r s  

and t h e i r  r o l l o v e r  acc iden t  involvement. Never theless ,  t h e r e  is good reason 

t o  suspec t  t h a t  t h e  r o l l o v e r  involvement of t h e s e  v e h i c l e s  would be s e n s i t i v e  

t o  the  r o l l o v e r  th resho ld  proper ty  i n  approximately t h e  same fash ion  a s  

found f o r  t r a c t o r - s e m i t r a i l e r s .  I f  t h i s  were s o ,  we could expect t h a t  t h e  

observed reduc t ion  i n  t h e  r o l l o v e r  threshold  of convent ional  (27-28-foot, 

8.2-8.5-m) f u l l  t r a i l e r s  would s e r v e  t o  markedly reduce the  r o l l o v e r  involve- 

ment of doubles haul ing ful l -weight ,  median-density loads .  

As a  f i n a l  p o i n t ,  i t  should be noted t h a t  an extension i n  t h e  allow- 

a b l e  v e h i c l e  width is l i k e l y  t o  be followed by a cons iderab le  t r a n s i t i o n  

per iod i n  which both  t h e  o l d ,  narrower t r a i l e r s  a s  w e l l  a s  the new, wider 

t r a i l e r s  w i l l  be i n  s e r v i c e  toge ther .  The reader  is  r e f e r r e d  t o  t h e  end 

of  Sec t ion  3.3.2.3 f o r  a  d i s c u s s i o n  of t h e  p o s s i b l e  impl ica t ions  of this 

t r a n s i t i o n  on t h e  l i k e l i h o o d  of l a t e r a l  o f f s e t s  i n  payload c .g .  and thus  

t h e  l i k e l i h o o d  of inadvertently-degraded l e v e l s  of r o l l  s t a b i l i t y .  

Bridge Fornula Considerat ions  

The c u r r e n t  Bridge Formula B i s  employed a s  one of t h e  c o n s t r a i n t s  

on the  loading of v e h i c l e s  which use  the  f e d e r a l  highway system i n  t h e  U.S. 

The formula was def ined i n  Sec t ion  2.1.6. The l i m i t a t i o n  which t h i s  formula 

p laces  on t h e  g ross  v e h i c l e  weights of v a r i o u s  combinations has  been 

evaluated and is  presented i n  Figures  70a and 70b. These d a t a  were calcu-  

l a t e d  f o r  t h e  purpose of i l l u s t r a t i n g  t h e  g r o s s  weight l e v e l s  which could 

be achieved i f  t h e  b r idge  formula, a lone ,  served a s  t h e  c o n s t r a i n t  on the  

g ross  weight. The reader  w i l l  no te  t h a t  t h e  f i g u r e  covers  e s s e n t i a l l y  a l l  

of t h e  v e h i c l e  conf igura t ions  which were covered i n  Sec t ion  3 . 4  i n  which 

l e n g t h  v a r i a t i o n s  were considered.  

h l e n  one looks  c l o s e l y  a t  the  b r idge  fo rnu la  and t h e  e f f e c t s  which 

i t  has on v e h i c l e  des ign,  he sees  t h a t  a l l  of t h e  parameters of the  v e h i c l e  

which d e t e r n i n e  where a x l e s  a r e  placed in f luence  t h e  load allowance. I n  

d e r i v i n g  a  means f o r  c a l c u l a t i n g  b r idge  formula al lowances f o r  t h e  con- 

f i g u r a t i o n s  shown i n  Figure  70, f o r  example, i t  was necessary  t o  e s t a b l i s h  

conventions f o r  such dimensions a s  p i n t l e  overhang d i s t a n c e s ,  c lea rance  

between success ive  t r a i l e r s ,  t h e  "bumper- to-back-of-cab (BBC) , " and f r o n t  

a x l e  "setback" dimensions of t r a c t o r s ,  and t h e  l i k e .  That is ,  the  s p e c i f i c  
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va lues  used f o r  such dimensions d i r e c t l y  a f f e c t  t h e  placement of a x l e s ,  and 

thus t h e  load l e v e l s  allowed by t h e  b r idge  f o m u l a .  The important th ing  

which t h e  s i z e  and weight po l i cy  maker can l e a r n  from t h i s  obse rva t ion  is 

t h a t  a d e c i s i o n  t o  permit  t h e  use of a b r idge  formula a s  t h e  s o l e  c o n s t r a i n t  

on v e h i c l e  g ross  weight is l i k e l y  t o  i n i t i a t e  a per iod of remarkable 

c r e a t i v i t y  i n  t h e  des ign of motor t r u c k  combinations. This outcome would 

seem i n e v i t a b l e  s i n c e  such a g r e a t  number of des ign parameters a r e  of 

p o t e n t i a l  importance i n  t h e  determinat ion of t h e  maximum load which t h e  

br idge formula would allow. 

It  is n o t  w i t h i n  t h e  o b j e c t i v e s  of t h i s  s tudy ,  however, t o  consider  

t h e  p o s s i b l e  f u t u r e  adjustments i n  v e h i c l e  des ign  which might develop a s  

a r e s u l t  of changes i n  s i z e  and weight c o n s t r a i n t s .  Rather ,  i t  has been 

our  purpose only  t o  cons ider  t h e  impl ica t ions  of changes i n  s i z e  and weight 

c o n s t r a i n t  on t h e  dynamic s t a b i l i t y  and c o n t r o l  p r o p e r t i e s  of today ' s  

t rucks .  Thus, our  ques t ion  i n  t h i s  s e c t i o n  of the  r e p o r t  i s  simply "what 

e f f e c t  would a bridge-formula-only c o n s t r a i n t  on g r o s s  v e h i c l e  weight have 

on the  dynamic behavior  of today ' s  veh ic les?"  (where " today 's  veh ic les"  

a r e  p r i m a r i l y  covered by t h e  "basel ine"  c a s e s  i n  F igure  70 ) .  We can make 

c e r t a i n  cursory observa t ions  on the  s u b j e c t ,  upon inspec t ing  Figure  70.  

Observations 

1) Common conf igura t ions  of f ive -ax le  t r a c t o r - s e m i t r a i l e r s  (cases  

C - 1  through C-4) a r e  u l t i m a t e l y  l i m i t e d  i n  load by t h e  s h o r t  spacing of t h e  

tandm a x l e s  and by an  a r b i t r a r i l y - c h o s e n  l i m i t  of 12,000 l b s  (5.4 m tons )  

on t h e  t r a c t o r  s t e e r i n g  ax le .  Thus, f o r  example, inc reas ing  t h e  t r a i l e r  

bed l eng th  beyond 45 f e e t  (13.7 m) would no t  s e r v e  t o  i n c r e a s e  t h e  g r o s s  

load  a s  cons t ra ined  by t h e  b r idge  formula. Thus, i f  t h e  b r idge  f o r n u l a  

c o n s t i t u t e d  t h e  only c o n s t r a i n t  on g ross  v e h i c l e  weight,  i t  is  c e r t a i n l y  

p o s s i b l e  t h a t  opera to rs  might begin t o  c a r r y  l a r g e r  loads  on the  t r a c t o r  

s t e e r i n g  ax le .  Such a change would have t h e  fol lowing e f f e c t s  on s t a b i l i t y  

and c o n t r o l  behavior:  



a )  The unders tee r  l e v e l  would improve due t o  t h e  more 

forward load d i s t r i b u t i o n  on t h e  t r a c t o r  (approxi- 

mately i n  t h e  same propor t ion  a s  i t  was seen t o  

degrade,  i n  S e c t i o n  3 .1 ,  wi th  t h e  more rearward- 

b i a s i n g  of load on t h e  t r a c t o r ) .  

b) The r o l l  s t a b i l i t y  l e v e l  would degrade due t o  t h e  

more forward load  d i s t r i b u t i o n  on t h e  t r a c t o r  (aga in ,  

i n  approximately t h e  same propor t ion  a s  i t  was seen 

t o  improve due t o  rearward b i a s i n g  of t r a c t o r  load 

i n  Sec t ion  3 .1 ) .  

c )  The g r e a t e r  g r o s s  weight would s e r v e  t o  f u r t h e r  

degrade r o l l  s t a b i l i t y  i n s o f a r  a s  t h e  t y p i c a l  h e i g h t  

of t h e  composite c e n t e r  of g r a v i t y  of t h e  payload 

and t r a i l e r  would be g r e a t e r .  See Sec t ion  3 . 2  f o r  

t h e  i n f l u e n c e  of g r o s s  weight changes, per  s e .  

Addi t iona l ly ,  i t  is conceivable  t h a t  o p e r a t o r s  might a t tempt  t o  

i n c r e a s e  t h e  spread between tandem a x l e s  so a s  t o  extend t h e  load l e v e l s  

al lowed on those  a x l e s .  I n  g e n e r a l ,  t h e  i n f l u e n c e s  of such changes, i n s o f a r  

a s  they p r i m a r i l y  a f f e c t  on ly  t h e  g r o s s  weight l e v e l  c a r r i e d ,  w i l l  be t h e  

same a s  t h e  d i r e c t  i n f l u e n c e s  of inc reased  g r o s s  weight presented i n  

S e c t i o n  3 . 2 .  

2 )  .A s i g n i f i c a n t  i n c r e a s e  i n  the  a l lowable  g r o s s  v e h i c l e  weight 

of t h e  convent ional  s ing le -ax le  double (with 27-foot -- 8.2-rn -- t r a i l e r s )  

would be allowed by t h e  b r idge  formula,  simply by inc reas ing  the  l o a d s  

c a r r i e d  by e x i s t i n g  v e h i c l e s  on a x l e s  a f t  of t h e  s t e e r i n g  a x l e .  A s  was 

shown in Sec t ion  3 . 2 ,  i n c r e a s e s  i n  g r o s s  weight on t h i s  v e h i c l e  w i l l  r e s u l t  

i n  degraded l e v e l s  of both  unders tee r  and r o l l  s t a b i l i t y .  

3) Cases number 6 and 7 of t h e  Rocky Nountain Double combination 

show s i g n i f i c a n t l y  d i f f e r e n t  g ross  weight a l lowances ,  a l though t h e  o v e r a l l  

l e n g t h  is  t h e  same. This  r e s u l t  i s  due t o  t h e  f a c t  t h a t ,  wi th  t h e  45-foot 

(13.7-m) t r a i l e r  pos i t ioned  a t  t h e  r e a r  of t h e  t r a i n ,  a  tandem-axle d o l l y  

is employed i n s t e a d  of t h e  s ing le -ax le  d o l l y .  The a d d i t i o n a l  a x l e  which 

is i n c o q o r a t e d  i n  t h i s  c o n f i g u r a t i o n  y i e l d s  a g r e a t e r  g r o s s  v e h i c l e  weight 

allowance by t h e  b r i d g e  formula.  A s  s t a t e d  i n  Sec t ion  3 . 4 ,  however, t h i s  

p a r t i c u l a r  ar rangcqent  of t r a i l e r s  i s  no t  'known t o  have been used i n  s e r v i c e .  



4 )  The tu rnp ike  doubles incorpora t ing  two 45-foot (13.2-m) t r a i l e r s  

is l i m i t e d  by t h e  b r i d g e  formula t o  a g r o s s  v e h i c l e  weight of 127,483 l b s  

(57.8 m tons ) .  This va lue  is e s s e n t i a l l y  i d e n t i c a l  t o  the  127,400 l b  

(57.8 m tons )  va lue  which is t h e  allowed g r o s s  weight f o r  these  combinations 

on most of t h e  t o l l  highways on which they opera te .  

Moreover, a p r o j e c t i o n  of t h e  f i k e l y  in f luence  of a bridge-f ormula- 

only  c o n s t r a i n t  on g ross  v e h i c l e  weight can be summarized by two observa t ions ,  

namely : 

a )  The i n c r e a s e s  i n  g ross  weight,  themselves,  which would 

r e s u l t ,  would a f f e c t  v e h i c l e  s t a b i l i t y  and c o n t r o l  

e s s e n t i a l l y  i n  t h e  va r ious  ways shown i n  Sec t ion  

3 .2 ,  and, 

b) The p o s s i b i l i t i e s  f o r  a l t e r a t i o n  i n  t h e  way load i s  

d i s t r i b u t e d  among a x l e s ,  o r  t h e  dimensions a t  which 

a x l e s  a r e  placed,  seem count less .  Although many 

such p o s s i b i l i t i e s  may w e l l  s e r v e  t o  degrade some 

s t a b i l i t y  o r  c o n t r o l  p roper ty ,  s p e c u l a t i o n  on these  

p o s s i b l e  changes is beyond t h e  scope of t h i s  s tudy.  



CHAPTER 4 

CONCLUSIONS AND RECO?IMENDATIONS 

This study has shown the manner and ex ten t  to  which changes i n  t ruck 

s i z e  and weight can inf luence the s t a b i l i t y  and cont ro l  proper t ies  of heavy 

vehic les .  The primary conclusion of the work is tha t  there  a r e ,  indeed, 

very s t rong  degradations i n  these proper t ies  which can occur due to  c e r t a i n  

prospect ive changes. There a r e  a l so  c e r t a i n  o the r  changes i n  s i z e  and 

weight allowance which, i f  properly implemented by the t rucking indus t ry ,  

could very s i g n i f i c a n t l y  improve s t a b i l i t y  and con t ro l  c h a r a c t e r i s t i c s .  

Although the  various inf luences of s i z e  and weight va r i ab l e s  reported 

herein a r e  too numerous t o  l i s t  i n  these concluding remarks, Table 2 

has been constructed t o  provide an overview. This t a b l e  gives a crude 

sca l ing  of the "importance" of each s i z e  and weight va r i ab l e  i n  t e rns  of 

i t s  poss ib le  inf luence on each of a l i s t  of s t a b i l i t y  and cont ro l  proper t ies .  

The t ab l e  i s  proposed as  an a id  to  ident i fy ing  the performance ca tegor ies  

which a r e  l i k e l y  to  be dis turbed by "reasonable" changes i n  the respec t ive  

s i z e  and weight var iab les .  For most cases ,  the e n t r i e s  i n  the t a b l e  

showing non-negligible l e v e l s  of importance a r e  based upon e i t h e r  the 

r e s u l t s  presented i n  t h i s  repor t  o r  the accompanying discussions concerning 

the  s t a t e  of knowledge. 

The performance categories  which have been most f i r n l y  r e l a t ed  t o  

accident involvement a r e  (a)  the  r o l l  s t a b i l i t y  exhibi ted by a l l  types of 

vehic les  and (b) the  rearward ampl i f ica t ion  behavior of mult iple-uni t  

vehicle  combinations. I t  i s  i n s t r u c t i v e  t o  note t h a t  the  e n t r i e s  i n  

Table 2 f o r  these two performance categories  include a number of " l ' s , "  

ind ica t ing  t h a t  there  a r e  oppor tuni t ies  f o r  a "strong" inf luence among the  

examined s i z e  and weight var ia t ions .  Given t h e  apparent connections with 

accident da ta ,  then, we might deduce t h a t  t he re  a r e  "reasonable" va r i a t i ons  

i n  v i r t u a l l y  a l l  s i z e  and weight areas  which have the p o t e n t i a l  f o r  a 

s t rong inf luence  on the sa fe ty  record. As mentioned above, some of these 

inf luences a r e  negative and some a r e  pos i t i ve .  





The inves t iga t ions  conducted here have, i n  general ,  sought to  deter- 

mine the inf luence of s i z e  and weight va r i a t i ons  on the behavior of 

vehic les  such a s  a r e  cur ren t ly  i n  serv ice .  This approach has been d i r e c t l y  

applied i n  a l l  of the  cases i n  which load changes were considered. That 

is ,  increased loads were considered in terms of t h e i r  influence on the  

performance of "today's trucks." This scheme a l so  guided the ana lys is  of 

vehicles  so t h a t  components were always considered t o  be of contemporary 

design. Where performance is seen to  degrade under the inf luence of a s i z e  

o r  weight change, however, i t  should not  be assumed t h a t  fu tu re  designs 

w i l l  be ab le  t o  n u l l i f y  the  degradation. For example, i t  would be un- 

reasonable t o  presume t h a t  fu tu re  trucks being designed f o r  and operated a t  

a higher gross weight would be ab le  to  achieve the same l e v e l  of r o l l  

s t a b i l i t y  a s  was achieved by previous trucks operating a t  a lower gross 

weight. I t  should be recognized t h a t  an increased gross weight allowance, 

o r  any o ther  changes i n  s i z e  and weight which cause the payload c.g. to r i s e  

(without compensatory increases  i n  vehic le  width) w i l l  very l i k e l y  cause 

r o l l  s t a b i l i t y  to  dec l ine ,  regardless  of the design e f f o r t s  of the vehic le  

manufacturer and an enlightened s e t  of spec i f i ca t ions  on the pa r t  of the 

purchaser. 

Another aspect of the ove ra l l  s a f e ty  implicat ions of a c e r t a i n  change 

i n  s i z e  and weight laws involves the i ssue  of vehic le  exposure. In t h i s  

context ,  the term "exposure" r e f e r s  to the t o t a l  number of vehicle-miles 

of t ruck t ranspor ta t ion  which a r e  needed, given the  carrying capaci ty of 

vehic les  meeting the s i z e  and weight cons t r a in t s .  When e i t h e r  the weight 

o r  volume of the typ ica l  t ruck payload r i s e s ,  because of a change i n  s i z e  

and weight cons t r a in t s ,  the  t o t a l  number of vehicle-miles of t ranspor ta t ion  

needed t o  meet the commercial demand is reduced. Since i t  i s  axiomatic 

tha t  involvement of trucks i n  accidents  w i l l  decrease with a reduction i n  

zxposure ( a l l  o ther  f a c t o r s  being held cons tan t ) ,  l i b e r a l i z a t i o n  i n  s i z e  

and weight cons t ra in ts  has the po ten t i a l  f o r  proport ionate  reductions i n  

t r a f f i c  accidents ,  assuming t h a t  bigger o r  more heavily-loaded t rucks show 

s t a b i l i t y  and cont ro l  proper t ies ,  a s  well  a s  other  s a fe ty  f ea tu re s ,  which 

equal or exceed those seen i n  conventional vehicles .  Accordingly, one way 

in  which one could follow-up on the f indings presented i n  this repor t  is 

t o  pose the following question: "If a s i z e  and weight increase causes 



s t a b i l i t y  and cont ro l  q u a l i t i e s  t o  dec l ine ,  how does the  expected l o s s  

i n  s a fe ty  qua l i t y  compare with the improvement i n  s a fe ty  which w i l l  come 

about due t o  t he  reduced exposure?" It  remains f o r  fu tu re  research to 

attempt t o  i l l u s t r a t e  the answers t o  such questions.  

Recommends t ions 

Certain recommendations can be made which dea l  with r a the r  current  

s i z e  and weight controversies  ex is t ing  i n  the U.S. Other recommendations 

a r e  directed a t  pecul ia r  segments of the trucking industry and the groups 

which regulate  i t .  

Concerning the  t r a n s i t i o n  to  102-inch (259-cm) width, we recommend 

tha t :  

1 )  T ra i l e r s  which a r e  widened to  102 inches (259 cm) a t  the load 

bed a l so  incorporate t i r e  and spring spacing dimensions which f u l l y  u t i l i z e  

the grea te r  width allowance. The p rac t i ce  of widening only the load bed 

can introduce a minor reduction i n  s t a b i l i t y  and cont ro l  qua l i t y ,  but ,  more 

importantly,  f a i l s  to a t t a i n  the very subs t an t i a l  improvement i n  behalf of 

trucking safe ty  which accrues from the wider spacing of t i r e s  and springs.  

2) Operators of doubles combinations, espec ia l ly  the conventional 

single-axle double incorporating 27- or 28-f oo t (8.2- or  8.5-m) t r a i l e r s ,  

make a spec i a l  e f f o r t  to  adopt the t i r e  and spring spacings which a r e  made 

gossible  by the  102-inch (259-cm) width allowance. An espec ia l ly  large 

improvement i n  the r o l l  s t a b i l i t y  of the f u l l  t r a i l e r  i n  such combinations 

is seen t o  accrue from the widening of both the dol ly  and t r a i l e r  ax le  

d imens ions. 

3 )  Steps be taken a t  the e a r l i e s t  p rac t i ca l  time to make t r a c t o r s  

ava i lab le  having t i r e  and spring spacings which f u l l y  u t i l i z e  the new width 

allowance. Since the t r a c t o r  cons t i t u t e s  the "sof t  end" of the t rac tor -  

s emi t r a i l e r  combination, from a r o l l  s t a b i l i t y  point of view, achievement 

of the grea te r  degree of improvement i n  s t a b i l i t y  which i s  possible  with 

the  102-inch (259-cm) width allowance requi res  t h a t  the t r a c t o r  be b u i l t  to 

the maximum width. Recognizing t h a t  some 60% of t ruck d r ive r  f a t a l i t i e s  

a r e  the r e s u l t  of truck ro l lovers ,  the wider t r a c t o r  should be promoted by 

a l l  those who have a spec ia l  concern f o r  the sa fe ty  of the truck dr iver .  



4 )  Those who w i l l  be  s e l e c t i n g  t h e  road systems upon which 102- 

inch  (259-cm) t r u c k s  w i l l  be pe rmi t t ed  should recognize  t h a t  undue r e s t r i c -  

t i o n s  regard ing  t h e  mat te r  of access  w i l l  c u r t a i l  t h e  purchase  of t h e  

wider v e h i c l e s  f o r  usage on t h e  "permitted" road systems, a s  w e l l .  The 

b e n e f i t s  which a r e  thought t o  accrue by l i m i t i n g  the  access  al lowed t o  

wider t r u c k s  should be weighed a g a i n s t  t h e  p e n a l t y  t h a t  t h e  r e s t  of t h e  

t r a f f i c  system w i l l  b e a r  by con t inu ing  i t s  exposure t o  l o w e r - s t a b i l i t y  

v e h i c l e s .  

Concerning t h e  p rospec t  f o r  us ing t h e  b r idge  formula a s  t h e  on ly  

c o n s t r a i n t  on g ross  v e h i c l e  weight ,  we recommend t h a t :  

1) This change b e  recognized a s  in t roduc ing  a  new e r a  i n  t h e  

des ign  of commercial v e h i c l e s .  I f  such a  p o l i c y  were adopted around t h e  

country ,  such t h a t  t h e r e  was broad commercial a t t r a c t i v e n e s s  f o r  redes ign ing  

v e h i c l e s  t o  maximally u t i l i z e  t h e  new al lowances ,  a  hos t  of new conf igura-  

t i o n s  would l i k e l y  appear  on t h e  scene.  A t  t h a t  j u n c t u r e ,  t h e r e  would be 

a  l a r g e  s e t  of ques t ions  t o  ask concerning t h e  s t a b i l i t y  and c o n t r o l  pro- 

p e r t i e s  of t h e s e  new c o n f i g u r a t i o n s .  Also,  t h e r e  should be concern t h a t  

changes i n  t h e  p r a c t i c e s  by which e x i s t i n g  v e h i c l e s  become loaded under 

t h i s  s c e n a r i o  might j eopard ize  s t a b i l i t y  and c o n t r o l  performance. 

2) A s tudy  be undertaken t o  exp lore  t h e  p o s s i b l e  i m p l i c a t i o n s  of 

such a  change on v e h i c l e  des ign  and on o p e r a t i n g  p r a c t i c e s .  The r e s u l t s  

of t h i s  examination would s e r v e  t o  i d e n t i f y  v e h i c l e  c o n f i g u r a t i o n s  which 

could be eva lua ted  f o r  t h e i r  r e s u l t i n g  s t a b i l i t y  and c o n t r o l  c h a r a c t e r i s t i c s .  

Concerning t h e  p rospec t  f o r  broader  usage of mul t ip le -un i t  v e h i c l e  

combinations i n  t h e  U.S . ,  w e  recommend t h a t :  

1 )  The rearward a m p l i f i c a t i o n  behavior  which d i s t i n g u i s h e s  between 

t h e  va r ious  types  of such v e h i c l e s  be recognized a s  an important s a f e t y  

mat te r  by those  r e s p o n s i b l e  f o r  formulat ing new l e g i s l a t i o n  o r  r e g u l a t i o n .  

Those who formulate  p o l i c y  on such mat te r s  need t o  no te ,  f o r  example, t h a t  

t h e r e  is a  profound d i f f e r e n c e  between t h e  a m p l i f i c a t i o n  performance o f ,  

s a y ,  a  " t r i p l e s "  combination and a  "Rocky Hountain double ," a s  de f ined  

here  i n .  



2)  Similar ly,  t h a t  the B-train s t y l e  of t r a i l e r  coupling be 

recognized by both policy,makers and the American trucking industry a s  a  

configurat ion of fer ing  unusually g rea t  advantages f o r  s t a b i l i t y  and 

control .  This configurat ion i s  properly designated a s  a  "tractor-semi- 

t ra i le r - semi t ra i le r"  combination. 

3)  Research be conducted to  develop a l t e r n a t i v e  means of hi tching 

f u l l  t r a i l e r s .  This type of research should not be seen simply as  a  hard- 

ware development endeavor, but r a the r  a s  an occasion to expand the under- 

standing of the  rearward amplif icat ion i s sue  and to  i den t i fy  the conceptual 

means by which it can be circumvented. I f ,  f o r  example, some ju r i sd i c t ion  

sought i n  the  fu tu re  to  allow a c e r t a h  multiple-unit  combination, but 

only on the s t i p u l a t i o n  tha t  some low l e v e l  of amplif icat ion not be exceeded, 

a  considerable amount of "groundworkts would have to be l a i d .  Recognizing 

t h a t  multiple-unit  combinations o f f e r  a  g rea t  advantage i n  increased pro- 

duc t iv i ty  and a reduction i n  accident exposure, there is ample cause fo r  

exploring the means to improve on the amplif icat ion problem so tha t  

acceptable vehic le  configurations can be defined and meaningful regulat ions 

implemented. 

It is a l s o  recommended t h a t  the  f indings presented here be used to  

help sharpen the  s e n s i t i v i t y  of the trucking industry to  s t a b i l i t y  and 

cont ro l  issues.  I n  pa r t i cu l a r ,  the following suggestions a r e  offered:  

I )  Given the c r i t i c a l  importance of the loca t ion  of the 

payload c.g. height on r o l l  s t a b i l i t y ,  we recommend tha t :  

a) d r ive r s  pay spec i a l  a t t e n t i o n  a s  to  how the 

truck o r  t r a i l e r  has been loaded 

b) dr ivers  be educated to know how to  dea l  with 

conditions of reduced r o l l  s t a b i l i t y  

c )  s teps  be taken, wherever possible ,  t o  adopt 

loading prac t ices  and vehic le  designs which 

reduce payload c. g  . height .  

2 )  Given the  importance of la teral ly-of  f s e t  payload condit ions,  

we recommend tha t :  



a)  d r i v e r s  pay s p e c i a l  a t t e n t i o n  t o  whether t h e  t r a i l e r  

i s  l i s t i n g  t o  one s i d e  o r  t h e  o t h e r  before  they 

begin  a  t r i p  

b)  those  who load t rucks  be  i n s t r u c t e d  t o  employ 

dunnage t o  block t h e  load  whenever s i g n i f i c a n t  

gaps e x i s t  which would permit  t h e  load t o  s h i f t  

l a t e r a l l y .  Th i s  p r a c t i c e  w i l l  become e s p e c i a l l y  

important  when f r e i g h t  which was p a l l e t i z e d  f o r  

9 6 i n c h  (244-cm) t r a i l e r s  i s  loaded i n t o  102-inch 

(259-an) t r a i l e r s .  

3 )  Recognizing t h e  s p e c i a l  and s u b t l e  problem posed by t h e  

rearward a m p l i f i c a t i o n  of mul t ip le -un i t  combinations,  we 

recommend t h a t  : 

a )  d r i v e r s  be  educated so  t h a t  they understand t h e  

phenomenon and i ts  r i s k s  and so  t h a t  they a r e  

cau t ious  t o  avoid t h e  s t e e r i n g  cond i t ions  which 

e x c i t e  i t  

b) t h e  i n d u s t r y  promote t h e  development o f ,  and when 

a p p r o p r i a t e  begin t o  s p e c i f y ,  a l t e r n a t i v e  h i t c h i n g  

systems which w i l l  minimize t h e  rearward ampl i f ica-  

t i o n  problem. 

4 )  The t ruck ing  i n d u s t r y  should recognize ,  broadly ,  t h a t  any 

mixing of r a d i a l -  and bias-ply  t i r e s  between t h e  f r o n t  and 

r e a r  a x l e s  of a  t r u c k  o r  t r a c t o r  may d r a m a t i c a l l y  a l t e r  yaw 

s t a b i l i t y .  

5 )  The t ruck ing  i n d u s t r y  should recognize  t h a t  a s u b s t a n t i a l  

number of t h e  s p e c i f i c a t i o n s  which i t  p laces  upon t r a c t o r  

and t r a i l e r  hardware, p a r t i c u l a r l y  t h e  running g e a r ,  impacts 

upon dynamic s t a b i l i t y  and c o n t r o l  performance. The 

i n d u s t r y  should evolve a  more measured approach toward 

v e h i c l e  "spec-ing" such t h a t  s t a b i l i t y  and c o n t r o l  q u a l i t i e s  

a r e  being optimized along wi th  weight,  d u r a b i l i t y ,  maintain- 

a b i l i t y ,  c o s t ,  e t c .  ( I n  European t ruck ing  p r a c t i c e ,  t h e  



purchaser l eaves  it  up t o  t h e  v e h i c l e  manufacturer t o  

produce a v e h i c l e  which is systems-engineered t o  provide 

t h e  d e s i r a b l e  q u a l i t i e s .  As long a s  t h e  American t ruck  

and t r a i l e r  purchaser i n s i s t s  upon spec i fy ing  t h e  v e h i c l e  

components and dimensions, he should become knowledgeable 

on t h e  means t o  a s s u r e  t h e  s t a b i l i t y  and c o n t r o l  q u a l i t y  

of t h e  system.) 
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