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People possess an abstract inferential rule system that is an intuitive version of
the law of large numbers. Because the rule system is not tied to any particular
content domain, it is possible to improve it by formal teaching techniques. We
present four experiments that support this view. In Experiments 1 and 2, we
taught subjects about the formal properties of the law of large numbers in brief
training sessions in the laboratory and found that this increased both the fre-
quency and the guality of statistical reasoning for a wide variety of problems of an
everyday nature. In addition, we taught subjects about the rule by a ‘‘guided
induction’’ technique, showing them how to use the rule to solve problems in
particular domains. Learning from the examples was abstracted to such an extent
that subjects showed just as much improvement on domains where the rule was
not taught as on domains where it was. In Experiment 3, the ability to analyze an
everyday problem with reference to the law of large numbers was shown to be
much greater for those who had several years of training in statistics than for
those who had less. Experiment 4 demonstrated that the beneficial effects of
formal training in statistics may hold even when subjects are tested completely
outside of the context of training. In general, these four experiments support a
rather ‘‘formalist’’ theory of reasoning: people reason using very abstract rules,
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and their reasoning about a wide variety of content domains can be affected by
direct manipulation of these abstract rules. © 1986 Academic Press, Inc.

Do people solve inferential problems in everyday life by using abstract
inferential rules or do they use only rules specific to the problem domain?
The view that people possess abstract inferential rules and use them to
solve even the most mundane problems can be traced back to Aristotle.
In modern psychology, this view is associated with the theories of Piaget
and Simon. They hold that, over the course of cognitive development,
people acquire general and abstract rules and schemas for solving
problems. For example, people acquire rules that correspond to the laws
of formal logic and the formal rules of probability theory. Problems are
solved by decomposing their features and relations into elements that are
coded in such a way that they can make contact with these abstract rules.

This formalist view has been buffeted by findings showing that people
violate the laws of formal logic and the rules of statistics. People make
serious logical errors when reasoning about arbitrary symbols and rela-
tions (for a review, see Evans, 1982). The best known line of research is
that initiated by Wason (1966) on his selection task. In that task, subjects
are told that they will be shown cards having a letter on the front and a
number on the back. They are then presented with cards having an A, a
B, a 4, and a 7 and asked which they would have to turn over in order to
verify the rule, “‘If a card has an A on one side, then it has a 4 on the
other.”” This research showed that people do not reason in accordance
with the simple laws of conditional logic, which would require turning
over the A and the 7. Subsequent work showed that people do reason in
accordance with the conditional for certain concrete and familiar
problems. For example, when people are given envelopes and asked to
verify the rule, “'If the letter is sealed, then it has a 50-lire stamp on it,”
they have no trouble with the problem (Johnson-Laird, Legrenzi, &
Sonino-Legrenzi, 1972). Many investigators have concluded from results
of the latter sort that people do not use abstract rules of logic when
solving concrete problems. Instead, people use only domain-specific
rules (e.g., D’Andrade, 1982; Golding, 1981; Griggs & Cox, 1982;
Johnson-Laird et al., 1972; Manktelow & Evans, 1979; Reich & Ruth,
1982). If people solve a problem correctly, it is because they are suffi-
ciently familiar with the content domain to have induced a rule that
allows them to solve problems in that domain.

Research on inductive reasoning has followed a similar history. Kah-
neman and Tversky (e.g., 1971, 1973; Tversky & Kahneman, 1974) dem-
onstrated that people fall prey to a multitude of failures to employ statis-
tical rules when reasoning about everyday life problems. In particular,
people often fail to reason in accordance with the law of large numbers,



STATISTICAL TRAINING 255

the regression principle, or the base rate principle. (For reviews see Ein-
horn & Hogarth, 1981; Hogarth, 1980; Kahneman, Slovic, & Tversky,
1982; Nisbett & Ross, 1980).

We and our colleagues, however, have shown that people do use statis-
tical concepts in solving particular kinds of problems in particular do-
mains (Jepson, Krantz, & Nisbett, 1983; Nisbett, Krantz, Jepson, &
Fong, 1982; Nisbett, Krantz, Jepson, & Kunda, 1983). For example,
Jepson et al. (1983) presented subjects with a variety of problems drawn
from three very broad domains. All of the problems dealt with events that
are variable and, as such, can be analyzed in terms of statistical concepts
such as sample size. One domain examined by Jepson et al. consisted of
problems for which the random nature of the sample is obvious. In one
problem, for example, the protagonist has to judge characteristics of a
lottery. As expected, the great majority of the answers for these “‘proba-
bilistic’” problems were statistical answers, that is, they incorporated in-
tuitive notions of the law of large numbers or the regression principle in
their answer. At the other extreme, a different group of problems dealt
with subjective judgments about the properties of some object or person.
In one of these problems, for example, the protagonist has to decide
which of two college courses he should take, either on the basis of one
visit to each class or on the basis of the evaluations of students who took
the courses the previous term. Statistical responses were relatively rare
for these ‘‘subjective’” problems, constituting only about a quarter of the
total. In between these extremes, there were a number of problems that,
while not containing broad hints as to the random nature of the events in
question, dealt with events that are of a sufficiently objective nature that
it is relatively easy to recognize that they are characterized by a degree of
random variation. These problems dealt primarily with athletic events
and academic achievements. For these ‘‘objective’’ problems, slightly
more than half of the answers were statistical in nature.

Nisbett et al. (1983) interpreted these and similar results as reflecting
the fact that people possess intuitive but abstract versions of statistical
rules. They called these intuitive rules ‘‘statistical heuristics,”” and ar-
gued that people call on such heuristics to the degree that (a) problem
features are readily coded in terms of statistical rules, that is, when the
sample space and sampling process are clear, and when the events can be
coded in common units (as is the case for athletic events and academic
achievements, for example); (b) the presence of chance factors or random
variation is signaled by the nature of the events or by other cues in the
problem; and (c) the culture recognizes the events in question as being
associated with random variation (for example, gambling games) and thus
prescribes that an adequate explanation of such events should make ref-
erence to statistical principles.
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This account presumes that statistical heuristics are abstract. It ex-
plains people’s frequent failures to use abstract rules as being the result
of difficulty in coding problem elements in terms that trigger the rules or
as the result of the presence of competing heuristics. But the evidence to
date does not rule out the view that statistical heuristics are not abstract
at all, but rather are local, domain-bound rules that happen to overlap
with formal statistical rules. These rules are better developed in some
domains than in others, and it is for this reason that people are much
more likely to give statistical answers for some problems than others.

If statistical heuristics are abstract, then it should be possible to im-
prove people’s statistical reasoning about everyday events by formal in-
struction in the rule system, without reference to any domain of everyday
events. Such abstract instructional methods should help people apply the
rules over a broad range of problem content. On the other hand, if such
formal instruction fails to help people to solve concrete problems, despite
‘the fact that people can be shown to have learned a substantive amount
about the formal properties of the rules, this would be discouraging to the
formal view, It would also be discouraging to the formal view if it were to
turn out that abstract instruction affects only people’s solution of proba-
bilistic problems, where the relevance of statistical rules is obvious, and
where competing rules have relatively little strength.

In order to test the view that formal training per se results in an in-
crease in people’s use of statistical principles across a variety of do-
mains, we trained subjects, in brief but intensive laboratory sessions, on
the concepts associated with the law of large numbers. We then pre-
sented them with a number of problems in each of three broad domains,
dealing, respectively, with events generally construed as probabilistic,
with objectively measurable events, and with events that are measurable
only by subjective judgments.

We also tested the formal view in another way. Some subjects were not
given formal instruction, but instead were shown how to apply the law of
large numbers for three concrete example problems, all of which dealt
with objectively measurable events. If subjects are capable of inducing
generalized rules of some degree of abstraction from such training, then
they might be expected to reason more statistically about problems in the
other domains as well, even though they have not been presented with
examples in those domains. Whereas the empirical view suggests that
statistical training will be domain specific, with training in one domain
failing to generalize to other domains, the formalist view predicts that
statistical training in one domain should generalize readily to other do-
mains.

All of the problems presented to subjects concerned everyday life
events and were of a type that, in previous work, we have found at least
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some subjects answer in a statistical fashion. All questions were open
ended, and we coded the written answers according to a system that dis-
tinguished among varying degrees of statistical thinking. This procedure
provided us with a great deal of information about how people reason
about events in everyday life and allowed us to determine whether
training can enhance not only the likelihood of employing statistical con-
cepts, but also the likelihood that those concepts will be employed prop-
erly.

EXPERIMENT 1
Testing Method

Subjects’ intuitive use of statistical reasoning was tested by examining their answers to 15
problems to which the law of large numbers could be applied and 3 for which the law of
large numbers was not relevant. In this section we describe the instructions that introduced
the test problems, the design of the 18 problems, and the system of coding the open-ended
answers. The actual text of the problems is given in Appendix A.

Instructions

The instructions for the control subjects read as follows:

We are interested in studying how people go about explaining and predicting
events under conditions of very limited information about the events. It seems to
us to be important to study how people explain and predict under these condi-
tions because they occur very frequently in the real world. Indeed, we often have
to make important decisions based on such explanations and predictions, either
because there is too little time to get additional information or because it is simply
unavailable.

On the pages that follow, there are a number of problems that we would like
you to consider. As you will see, they represent a wide range of real-life situa-
tions. We would like you to think carefully about each problem, and then write
down answers that are sensible to you.

For groups that received training, the first paragraph of the above instructions was pre-
sented as part of the introduction to the training materials. After the training, the test
booklet was introduced by the second paragraph, which ended with the sentence, *‘In many
of the problems, you may find that the Law of Large Numbers is helpful.’”

Problem Types and Problem Structure

The 18 problems were divided into three major types as follows:

Type 1. Probabilistic. In these six problems, subjects had to draw conclusions about the
characteristics of a population from sample data generated in a way that clearly incorpo-
rated random variation. Randomness was made clear in various ways: by the explicitly
stated variation in sample outcomes (for example, the number of perfect welds out of 900
made by a welding machine ranged from 680 to 740), by including in the problem a random
generating device (for example, shaking a jar of pennies before drawing out a sample), or by
simply stating that a sample was ‘‘random.”

Type 2. Objective. In these six problems, subjects had to draw conclusions about charac-
teristics of a population on the basis of “*objective’ sample data but with no explicit cue
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about randomness of the data. One problem, for example, asked subjects to decide which of
two makes of car was more likely to be free of troublesome repairs, on the basis of various
facts about the repair records. Other problems dealt with the outcomes of athletic events
and with academic accomplishments.

Type 3. Subjective. In these six problems, subjects had to draw conclusions about sub-
jective characteristics of a population from ‘‘subjective’’ sample data. In one problem, for
example, a high school senior had to choose between two colleges. The underlying subjec-
tive characteristic in this problem was liking for the two schools and the data consisted of
his own and his friends’ reactions to the schools.

In order to systematize the kinds of problems we presented to subjects across the three
domains, we selected six different underlying problem structures and for each structure we
wrote one problem of each of the above three types. The structures varied in types of
samples drawn, type of decision required, and type of competing information.

Structure 1 problems required subjects to draw conclusions about a population from a
single small sample. Structure 2 problems pitted a small sample against a large sample.
Structure 3 problems required subjects to explain why an outcome selected because of its
extreme deviation was not maintained in a subsequent sample (i.e., regression). Structure 4
problems were similar to those in Structure 2, except that the large sample was drawn from
a population that was related to, although not identical to, the target population. Structure 5
problems pitted a large sample against a plausible theory that was not founded on data.
Structure 6 (false alarm) problems involved conclusions drawn from a sample that was
large, but also highly biased. As such, criticism or arguments in these problems should be
based on the sample bias, but not on sample size. We included these problems to determine
whether subjects who received training on the law of large numbers would then proceed to
invoke it indiscriminately, or if they would apply it only to the problems of Structures 1-5,
for which it was genuinely relevant.

In short, the 18 test problems followed a 3 x 6 design, with problem type crossed with
problem structure. The order of the 18 test problems was randomized for each subject, with
the constraint that no 2 problems with the same structure appeared successively.

Coding System

To study the use of statistical reasoning, a simple 3-point coding system was developed
for the 15 problems for which the law of large numbers was applicable (Structures 1-5). To
illustrate this coding system, we present examples of responses to the ‘‘slot machine
problem,’’ the probabilistic version of Structure 2 (small sample vs large sample). The pro-
tagonist of the story, Keith, was in a Nevada gas station where he played two slot machines
for a couple of minutes each day. He lost money on the left slot machine and won money on
the right slot machine. Keith’s result, however, ran counter to the judgment of an old man
sitting in the gas station, who said to Keith, ‘“The one on the left gives you about an even
chance of winning, but the one on the right is fixed so that you’'ll lose much more often than
you’ll win. Take it from me—I’ve played them for years.”” Keith’s conclusion after playing
the slot machines was that the old man was wrong about the chances of winning on the two
slot machines. Subjects were asked to comment on Keith's conclusion. Every response to
the test problems was classified into one of three categories:

1 = an entirely deterministic response, that is, one in which the subject made no use of
statistical concepts. In responses of this type, there was no mention of sample size, ran-
domness, or variance. The following was coded as a deterministic response to the slot
machine problem: ‘‘Keith’s reasoning was poor, provided the information given by the man
was accurate. The man, however, may have been deceiving Keith.”’

2 = a poor statistical response. Responses given this score contained some mention of
statistical concepts, but were incomplete or incorrect. These responses contained one or
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more of the following characteristics: (1) the subject used both deterministic and statistical
reasoning, but the deterministic reasoning was judged by the coder to have been preferred
by the subject; (2) the subject used incorrect statistical reasoning, such as the gambler’s
fallacy; (3) the subject mentioned luck or chance or the law of large numbers but was not
explicit about how the statistical concept was relevant. The following is an example of a
poor statistical response to the slot machine problem:

1 think that Keith’s conclusion is wrong because the oid man had better luck on
the left one, so he thought it was better. Keith had better luck on the right one so
he thought it was better. 1 don’t think you could have a better chance on either
one.

3 = a good statistical response. Responses given this score made correct use of a statis-
tical concept. Some form of the law of large numbers was used, and the sampling elements
were correctly identified. If the subject used both deterministic and statistical reasoning, the
statistical reasoning was judged by the coder to have been preferred by the subject. In
general, the subject was judged to have clearly demonstrated how the law of large numbers
could be applied to the problem. The following was coded as a good statistical response to
the slot machine problem:

Keith’s conclusion is weak. He is wrong in making the assumptions against the
old man. Keith is judging the machines on only a handful of trials and not with the
sample number the old man has developed over the years. Therefore, Keith’s
margin of error is much more great than the old man’s.

The coding system thus distinguished each response on the basis of whether or not a
statistical concept had been used and, within the class of statistical responses, whether or
not it was a ‘‘good’’ statistical response, that is, one that showed a correct use of the law of
large numbers.

Such coding obviously runs into borderline cases. A coding guidebook was created which
documented the principal types of borderline cases and the recommended treatment of
them, for each problem. Reliability was tested by having four coders code a sample of 20
test booklets (300 law of large numbers problems). There was exact agreement among all
four coders on 86% of these responses. Having achieved a high level of reliability, the
primary coder (who had been one of the four coders), coded all of the responses, blind to
conditions. His coding comprised the data we present here and in Experiment 2.

The coding of the three Structure 6 (false alarm) problems is described in a separate
section below.

Training Procedures

All training procedures began with an introductory paragraph about decisions with lim-
ited information (quoted in full above as the first paragraph in the testing instructions for the
control subjects).! Next followed a paragraph introducing the law of large numbers. This
always began as follows:

Experts who study human inference have found that principles of probability
are helpful in explaining and predicting a great many events, especially under
conditions of limited information. One such principle of probability that is partic-
ularly helpful is called the Law of Large Numbers.

t All training materials can be obtained from the authors.
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Rule Training Condition

Subjects read a four-page description of the concept of sampling and the law of large
numbers. This description introduced the important concepts associated with the law of
large numbers and illustrated them by using the classic problem of estimating the true pro-
portion of blue and red gumballs in an urn from a sample of the urn. Thus, the gumballs in
the urn constituted the population, the proportion of blue and red gumballs in the urn
formed the population distribution (in the example, the population distribution of gumballs
was set at 70% blue and 30% red), and a selection of gumballs from the urn constituted a
sample.

The concept of sampling was then presented by explaining that since it is often imprac-
tical or impossible to examine the entire population to determine the population distribution
(*‘Imagine counting a million gumballs!’’), it is necessary to rely instead on samples to
estimate the population distribution. Sample distributions, subjects were told, vary in their
closeness to the population distribution, and that the only factor determining the closeness
of a random sample to the population is sample size. Finally, the law of large numbers was
presented in the following way:

As the size of a random sample increases, the sample distribution is more likely to get
closer and closer to the population distribution. In other words, the larger the sample, the
better it is as an estimate of the population.

When subjects had finished reading this description, the experimenter performed a live
demonstration of the law of large numbers, using a large glass urn filled with blue and red
gumballs. In order to maximize subjects’ understanding of the concepts they had just read,
the demonstration was designed to adhere closely to the description. Each of the concepts
introduced in the description was illustrated in the demonstration. For example, the popula-
tion distribution of the urn was 70% blue and 30% red, just as it had been in the description.

After reintroducing all of the concepts, the experimenter drew four samples of size 1,
then four of size 4, and finally, four of size 25. (The gumballs were returned to the urn after
each sample.) The experimenter summarized each sample on a blackboard, keeping track of
the deviation between each sample and the population. Subjects were told that the average
deviation of a sample from the population would decrease as the sample size increased, in
accordance with the law of large numbers. Thus, for example, samples of size 25 would, on
the average, deviate less from the population than would samples of size 4 or 1. (By good
luck, these expected results were obtained in all the training sessions.)

Examples Training Condition

Subjects in the examples training condition read a packet of three example problems with
an answer following each problem that provided an analysis of it in terms of the law of large
numbers. The three example problems were drawn from Structure 1 (generalizing from a
small sample), Structure 3 (regression), and Structure 5 (large sample vs theory without
supporting data), and were presented in that order. The three examples were all drawn from
the domain of objective problems. After the paragraph that introduced the law of large
numbers, there followed a single sentence describing one example of the principle (a public
opinion poll based on a large sample is more likely to be accurate than one based on a small
sample). The example problems were then introduced in the following way:

The basic principles involved in the law of large numbers apply whenever you
make a generalization or an inference from observing a sample of object, actions,
or behaviors. To give you an idea of how broad the law of large numbers is, we
have, in this packet, presented three situations in which the law of large numbers
applies. Each situation is analyzed in terms of the law of large numbers.
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For each example in turn, subjects read the problem and were asked to consider it for a
few moments before turning the page to read the law of large numbers answer. The answers
to the example problems were constructed so that subjects could learn how the law of large
numbers might be applied to a variety of real-life situations. The format of the answers was
constant across training domain and structure and included the following characteristics:

1. A statement about the goal of the problem;

2. Identification of the sample or samples and their distributions in the problem;

3. Explanation of how the law of large numbers could be applied to the problem. This
identified the population distribution(s) and explained the relationship between the
sample(s) and the population(s).

4. The conclusion that could be drawn from the application of the law of large numbers.

The three example problems are presented in Appendix B.

Full Training Condition

Subjects received rule training, followed by examples training, except that the first sen-
tence of the passage introducing the examples was replaced by the following sentence:
““One reason that the law of large numbers is important to learn is that it applies not only to
urns and gumballs.”’

Demand Condition

Subjects received only the one-sentence definition of the law of large numbers that intro-
duced the examples training, along with the brief example. We included this condition in
order to assess whether training effects might be due to experimenter demand or to simply
making statistical rules salient to subjects. If performance of the demand group turned out
not to be higher than that of the control group, these alternative explanations would be ruled
out.

In addition, there was a control condition, which received no training before answering
the test problems.

In summary, there were five conditions in Experiment 1, as shown in Fig. 1. They were
defined by crossing the presence or absence of rule training with presence or absence of
examples training. Note that the bottom-left cell of Fig. 1, where neither type of training
was given, contains both the control and demand conditions.

Subjects and Procedure

The 347 subjects were adults (229) and high school students (118) from various New
Jersey suburban communities. They were paid to participate in the experiment. The adult
subjects varied widely in age and education, but almost all were females who were not
employed fullitime outside the home. Most of them had participated previously in psy-
chology experiments at Bell Laboratories. Because adults and high school students showed
the same pattern of results, their responses were combined in the analyses we present.

Subjects were scheduled in groups of 4-6, with the same training condition presented to
the entire group. Training condition was randomly determined. Subjects were told the gen-
eral nature of the experiment, given the appropriate training, and then given the 18-problem
test booklet. They were given 80 min to complete the problems.

Results
Overview of Data Analysis

Recall that subjects’ responses were coded using a 3-point system: A
code of *‘1°° was given for responses that contained no mention of statis-
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RULE TRAINING

NO YES
FULL

YES EXAMPLES TRAINING
EXAMPLES
TRAINING

DEMAND
NO RULE
CONTROL

FI1G. 1. Design of Experiment 1.

tical concepts such as variability or sample size, whereas a ‘2 or *‘3”
was given for responses that incorporated statistical notions. Within the
class of statistical responses, a ‘‘2’’ was given for ‘‘poor’’ statistical re-
sponses, and a ‘‘3”" was given for ‘“‘good’’ statistical responses.

We analyzed the data in terms of two dichotomies. The first one asks
whether the response was deterministic (code = 1) or statistical, regard-
less of quality (code = 2 or 3). We refer to analyses based on this di-
chotomy as analyses of frequency of statistical responses. The second
dichotomy asks, for statistical responses only, whether the response was
poor (code = 2) or good (code = 3). We refer to analyses based on this
dichotomy as analyses of quality. The quality dichotomy is conditional: it
is defined only for statistical responses and is undefined (missing) for de-
terministic responses.

These two analyses allowed us to separate the questions of whether
training increased the incidence of any kind of statistical reasoning from
whether it increased the proper use of statistical principles. If we found
that training led to an increase in frequency but a decrease in quality, this
would lead to the pessimistic conclusion that training merely serves to
make statistical concepts salient to subjects without conveying any real
sense about how such concepts should be used properly. On the other
hand, if training was found to increase both frequency and quality, then this
would support the optimistic notion that training not only makes salient
the usefulness of statistical principles in analyzing inferential problems,
but also improves the ability to use those principles correctly.

Because our basic variables were dichotomous, we used a log-linear
modeling approach (e.g., Bishop, Fienberg, & Holland, 1975), in which
we modeled frequency and quality as a function of (1) training differ-
ences, (2) individual differences within training groups, (3) problem dif-
ferences, and (4) problem X training interaction. This approach closely
parallels a three-factor ANOVA model, in which training is a between-
subjects variable and problems are crossed with subjects (i.e., problems
are treated as repeated measures).
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TABLE 1
Frequency and Quality of Statistical Answers in Experiment 1
Frequency Quality
Overall Log-linear Overall Log-linear
Condition n proportion effect proportion effect
Control 68 421 -0.515 .542 -0.501
Demand 73 .440 —0.420 577 -0.316
Rule 69 557 0.188 .666 0.165
Examples 69 .535 0.074 .659 0.181
Full training 68 .643 0.673 .708 0.471

Effect of Training on Frequency of Statistical Reasoning

Column 3 of Table 1 shows the overall frequency of statistical re-
sponses for each of the five experimental groups.? It is clear that training
increased the frequency of statistical responses, as predicted. Specifi-
cally, there resulted a three-level ordering of the conditions. At the
lowest level, subjects who received no training (the control and demand
conditions) were least likely to employ statistical principles in their an-
swers (42 and 44%, respectively, across all 15 problems). At the middle
level, subjects who received only rule training or only examples training
were more likely to reason statistically (56 and 54%, respectively). And at
the highest level, subjects in the full training condition (those who re-
ceived both rule and examples training) were most likely to use statistical
reasoning in their answers (64%).

The statistical reliability of these proportions cannot be directly as-
sessed from the binomial, since they involve repeated measures over
subjects. An alternative strategy would be to employ an analysis of vari-
ance on subject means. Such an approach, although quite feasible, would
ignore problems as a source of variance, and thus would be inappropriate
for our purposes.

Instead, we assessed the reliability of group differences by log-linear
analysis. The log-linear effects of training groups, subjects within groups,
and problems were all large and highly reliable; the training group X
problem interaction was small and only marginally significant.

The simplest way to assess the effects of training is given by the effect
sizes for an additive log-linear model based only on training group and

2 Each of the frequency means represents the proportion of problems for which subjects
in that condition utilized some kind of statistical concept. Thus, the frequency mean of .42
for the control condition is based on 1007 responses (68 subjects X 15 problem each, minus
13 unanswered problems).
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problems as factors.? These effects are shown in Table 1, Column 4. The
standard error of each pairwise difference was 0.19, which we obtained
from jackknifing.* Hence, the difference between the control and the de-
mand conditions and between the rule and examples conditions were not
statistically reliable, whereas all of the other pairwise differences were
highly reliable (p < .01). Thus both formal training and training by
“‘guided induction’’ over examples were effective in increasing the use of
statistical heuristics. In addition, training effects were not due to mere
experimenter demand or mere salience of statistical rules, since the de-
mand condition was significantly lower than any of the training condi-
tions. In fact, there was no evidence that the demand instructions had
any effect whatsoever, compared to controls.

Effect of Training on Quality of Statistical Reasoning

But does training have a beneficial effect on people’s ability to use
statistical principles appropriately? The right-most columns in Table 1
show the overall quality proportions and corresponding effects.’ The
jackknifed estimate of the standard error of the differences in quality be-
tween any two conditions was 0.18.

3 The additive log-linear model can be expressed as: log py, — log(1-pg) = u + o; + B; +
€ Where p, is the probability of a statistical response by the kth subject in the jth training
group for the ith problem. The parameters were estimated by maximizing the likelihood of
the 15 x 347 (problem X subject) matrix of zeroes and ones, subject to the identifying
constraints that the sum of the problem effects, Za,, and the sum of the training group
effects, Zp;, are zero. The estimation was accomplished by the Loglin function of the statis-
tical package S (a product of AT&T Bell Laboratories). The Loglin function uses an algo-
rithm developed by Haberman (1972). The entries in Table 1, column 4, are the estimated
values of B;. The fit was barely improved by including the problem X training interaction
parameters, vy to the model. The fit was considerably improved by including subject pa-
rameters, ;, to the model, but this created difficulties in identifying §;, because a few of the
subject parameter estimates were + o or —, corresponding to 15 out of 15 or 0 out of 15
statistical answers. Therefore, we stuck with the simple additive model when we tested for
differences among training conditions. The B;s from the above model are good descriptive
statistics for assessing the effects of training condition, and their sampling properties can be
estimated by jackknifing (see Footnote 4).

4 Jackknifing was performed with 10 subsamples, each formed by randomly dropping 10%
of the subjects. The estimated standard error of the pairwise differences (that is, differences
between any two B;s) varied only slightly from one pair of groups to another.

5 The quality data were analyzed using the same models as for the frequency data (see
Footnote 3). The corresponding parameter estimates, B;, are shown in the right-most
column of Table 1. The 15 x 347 data matrix of zeros and ones for quality had nearly half
missing data, since quality was defined only for statistical answers. The nonlinearity of the
log-linear model leads to some minor differences between the quality proportions and their
corresponding log-linear effects. For example, note that although the rule proportion is
greater than the examples proportion, the rule log-linear effect is actually less than the
examples log-linear effect.
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The effect of training on the quality of statistical responses was strik-
ingly similar to the effects of training on frequency, though somewhat
smaller in magnitude. As degree of training increased, the ability to
utilize statistical concepts properly increased. This resulted in a similar
three-level ordering of the conditions. However, the log-linear analysis
indicated that the differences between the full training condition and the
rule and examples conditions were significant only at the .10 level.

The effects of training on frequency and quality can be seen clearly in
Fig. 2, where the five conditions in Experiment 1 are represented by the
filled points. (The open points are from Experiment 2, which are added to
demonstrate the stability of training effects across experiments and
across different subject populations.) Each training group is represented
by one point, with the log-linear frequency effect on the abscissa, and
log-linear quality effect on the ordinate. The standard errors of differ-
ences for frequency and for quality are shown by a horizontal and vertical
bar, respectively.

The diagonal line in Fig. 2 is the least-squares regression line for the
five conditions in Experiment 1. It is clear that there is a very stable
relationship between the training effect on frequency and on quality, #(3)
= 98, p < .005. The slope of the line is 0.80, which corresponds to the
finding that the effect of training on quality was slightly less than the
effect on frequency. (Equal effects would be indicated by a slope of 1.00.)
This slope is an interesting way to characterize the nature of training
procedures. One can imagine procedures that would lead to a much lower
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slope (for example, emphasizing the identification of chance processes
without much concern for explaining the principles underlying them), or
a much higher slope (for example, emphasizing the principles of mathe-
matical statistics, with advice to use great caution in applying such prin-
ciples broadly).

To summarize, training on the law of large numbers increased the likeli-
hood that people will employ statistical concepts in analyzing everyday
inferential problems. Moreover, there appears to be a three-level ordering
such that either rule or examples training alone improves performance
and that training on both has an additional effect. Training also serves to
increase the proper application of statistical concepts in the same way,
although this effect is somewhat weaker.

The Effect of Problem Type on the Use of Statistical Principles

Collapsing across training condition, subjects were most likely to em-
ploy statistical reasoning for probabilistic problems (75%), less likely to
do so for objective problems (48%), and least likely for subjective
problems (33%).6 This result is consistent with the findings of Nisbett et
al. (1983) that the use of statistical reasoning is associated with features
of the inferential problem that relate to the clarity of the sampling ele-
ments and sample space, the salience of the presence of chance factors,
and the cultural prescriptions concerning whether causal explanations
should include statistical concepts.

Analysis of the quality proportions for the three problem types showed
a quite different pattern. There was no significant differences. (The
overall proportions for probabilistic, objective, and subjective problems
were .63, .53, and .55, respectively.) This suggests that the source of the
differences among problem types in statistical reasoning is in the likeli-
hood that a person will notice the relevance of statistical principles to
begin with. Given that a person has done so, the three problem types do
not differ significantly in whether the person will be able to generate a
good statistical response.

Thus, frequency of statistical answers was strongly associated with
problem type while quality was only weakly associated with problem
type. This result is consistent with the notion that people solve problems
by use of abstract rules rather than by use of domain-dependent rules:
different domains differ with respect to the likelihood that people will
recognize the relevance of statistical rules, but once the relevance is rec-

¢ The predicted ordering of the three problem types with respect to frequency of statis-
tical answers (probabilistic > objective > subjective) resulted for each of the five problem
structures for which the law of large numbers was relevant (Structures 1-5). The proba-
bility of this occurring by chance is extremely low, p = (1/6)° < .001.



STATISTICAL TRAINING 267

ognized, the same abstract rules are applied across domains with approx-
imately the same degree of success.

Relationship between Training and Problem Type

Are the effects of statistical training limited to the more obvious proba-
bilistic problems, or do they extend to the objective and subjective
problems? Figure 3 presents the frequency of probabilistic answers by
training condition and problem type. The profiles are nearly parallel,
which suggests that there is no interaction between training and problem
type.

The log-linear analysis verifies this: Although the interaction between
training condition and the 15 problems was significant (x3(56) = 80, p <
.05), the pattern of residuals from the additive model indicates very
clearly that the source of the interaction was due to variation of problems
within problem type and not at all to systematic differences between
problem types. Thus, training increased statistical reasoning for subjec-
tive events just as much as it did for objective and probabilistic events.

Figure 4 presents the quality of probabilistic answers by training con-
dition and problem type. Note that the three profiles are much closer to
each other than are the profiles in Fig. 3: this reflects the fact that fre-
quency was strongly related to problem type, whereas quality was unre-
lated. We used the same analytic approach to test whether the effect of
training on quality of statistical reasoning interacted with problem type.
The training X problem interaction was not significant, x3(54) = 60, p >
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.20. Thus, as with frequency, training effects on quality did not interact
with problem type.

These results are consistent with a strong version of the formalist view.
Formal rule training improves statistical reasoning and enhances the
quality of such reasoning for all kinds of events, not just for probabilistic
problems for which there are few plausible alternative kinds of solutions.
This finding suggests that operations directly on the abstract rules them-
selves may be sufficient to produce change in subjects’ analysis of essen-
tially the full range of problems they might confront.

These results support the formalist view in a second way. The ex-
amples training consisted of example problems only in the domain of ob-
jective events. The empirical view predicts domain specificity of training:
examples training should lead to greater use of the law of large numbers
for the objective test problems but should have less effect for probabi-
listic and subjective problems. The formalist view, in contrast, predicts
domain independence of training. In this view, examples training, insofar
as it makes contact with people’s relatively abstract rule system of statis-
tical principles, should generalize to other domains as well.

As shown in Figs. 3 and 4, the results are much more consistent with
the formalist view. Training on objective example problems improved
performance on both probabilistic and subjective problems essentially as
much as it improved performance on the objective problems. There was
no residual advantage for problems in the domain on which training took
place.
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False Alarms

Since subjects can only learn so much in a 25-min training session, and
since a little learning is a dangerous thing, we should be concerned that
our training session may be dangerous in some way. One danger is false
alarms, that is, the use of the law of large numbers in situations where it
is inappropriate. For example, subjects might claim that the sample size
is too small even for problems in which the sample size is quite large. It
should be clear that the overuse of the law of large numbers as well as the
failure to use it can lead to erroneous conclusions. We explored the possi-
bility that our training may have promoted the indiscriminate use of the
law of large numbers by including false-alarm problems in our test
package.

There were seven problems for which false-alarm data could be exam-
ined. In the three Structure S (large sample vs theory without supporting
data) problems, the conclusion based on a large sample was contradicted
by an opposing argument that was plausible but which was unsupported
by data. An answer was given a false-alarm code if it stated that the
sample was too small to combat the argument. The three Structure 6
(false alarm) problems involved conclusions drawn from large but biased
samples. A false-alarm code was given if a subject accepted the criticism
that the sample size was too small. And the objective version of Structure
1 (which we will refer to as O1) asked subjects to comment on two con-
clusions—one based on a large sample (part a), and one based on a very
small sample (part b). Part a was used to assess subjects’ tendency to
false alarm; part b was used to assess the subjects’ ability to use the law
of large numbers correctly.

Of the seven false-alarm problems, three of them (OS5, S5, and S6) elic-
ited virtually no false alarms (less than 2%). For a fourth problem (P6),
the false-alarm rate was about 10%, with the false alarms distributed ap-
proximately equally among the five conditions. The results for these four
problems suggest that trained subjects do indeed increase their use of the
law of large numbers in a discriminating fashion.

For the other three problems, the false-alarm rates were only some-
what higher for the three trained groups (about 16%) than for the two
untrained groups (about 10%). And it is interesting that the specific pat-
tern of false alarms across the three trained groups varied depending on
whether subjects had received examples training. In P5 (the probabilistic
version of Structure 5), for instance, subjects exposed to examples
training (the examples and full training conditions) were less likely to
false alarm than those exposed to rule training only. This is probably be-
cause the examples training package included a Structure 5 problem.
These subjects had thus been alerted to the possibility that large samples
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were indeed ‘‘large enough’’ to make confident conclusions and were
therefore less likely to false alarm on P5. In contrast, subjects receiving
only rule training were not given any information about when a sample
was large enough. It is not surprising, then, that these subjects were more
likely to false alarm to this problem.

There is also evidence from problem Ol that the tendency to false
alarm was negatively related to the proper use of the law of large
numbers. For this problem, there was a strong negative relationship be-
tween false alarms to part a and the quality of statistical responses to part
b. Of the subjects who false alarmed on part a, none gave a good statis-
tical answer to part b, that is, quality was equal to .00. In contrast, for
those subjects who had not false alarmed, quality was equal to .16. This
analysis suggests that a little learning can be somewhat dangerous, but
that subjects who absorb the training more thoroughly are able to use it in
a discriminating fashion.

In summary, our 25 min training session did rnot lead to widespread
overuse of the law of large numbers.” Instead, subjects were surprisingly
sophisticated in avoiding the improper use of the law of large numbers,
sometimes citing intuitive versions of statistical concepts such as power
and confidence intervals in their answers. Moreover, subjects who did
false alarm were also less likely to use the law of large numbers correctly
when it was appropriate.

EXPERIMENT 2

The results of Experiment 1 indicate very clearly that people can be
taught to reason more statistically about everyday inferential problems.
They can be taught through example problems showing how statistical
principles can be applied, and they can also be taught through illustrating
the formal aspects of the law of large numbers. These results are consis-
tent with the formalist view that people possess abstract inferential rules
and that these can be improved both by guided induction through ex-
amples and by direct manipulation.

One of the important results in Experiment 1 was the absence of an
interaction between training and problem type. Examples training had an
equal effect in enhancing statistical reasoning across all three problem
types. Thus, training on objective problems increased the use of statis-
tical thinking no more for objective events than for subjective events,
such as choosing a college or explaining a person’s compassionateness,
or for probabilistic events, such as those involving lotteries or slot ma-
chines. That training effects were entirely domain independent is quite

7 Complete details of the false-alarm analyses for Experiments 1 and 2 can be obtained
from the authors.
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remarkable when contrasted with the strong domain specificity of sub-
jects’ spontaneous use of statistical reasoning. Subjects were much more
likely to use statistical principles for probabilistic problems than for ob-
jective problems and much more likely to use them for objective
problems than for subjective problems.

Experiment 2 was designed to explore more fully whether training ef-
fects might vary as a function of the training domain. In Experiment 1, all
subjects who received examples training were given example problems
only in the objective domain. In Experiment 2, subjects were taught how
to apply the law of large numbers in one of the three problem domains:
probabilistic, objective, or subjective. All subjects were then tested on all
three problem domains. This design makes it possible to see whether
there are domain-specific effects of training. The empirical view suggests
that subjects would be expected to show more improvement for problems
in the domain in which they were trained than for other problems. The
formal view, on the other hand, predicts that there will be no such inter-
action between training domain and testing domain.

Method
Subjects

The subjects were 166 undergraduates at the University of Michigan who were enrolled in
introductory psychology classes. They participated in the 2-h experiment in small groups.

Design and Procedure

Subjects were randomly assigned to one of four conditions. The control condition was
identical to that in Experiment 1. In the other three conditions, subjects were given training
identical to the full training condition in Experiment 1, except that the type of example
problems varied. Subjects in the probabilistic training condition read three probabilistic
example problems and were shown how each could be analyzed by the application of the
law of large numbers. Subjects in the objective training condition were given the same three
objective example problems that were used in Experiment 1. And subjects in the subjective
training condition were given three subjective example problems. The probabilistic and
subjective examples matched the objective examples in structure: they were drawn from
Structures 1, 3, and 5.

All subjects then answered the same set of 18 test problems (15 law of large numbers
problems and 3 false-alarm problems) used in Experiment 1.

The subjects’ responses to the open-ended questions were coded by two raters under the
same coding system used in Experiment 1. The reliability of the coding was high—there
were exact matches by the two coders on 88% of the responses.

Results

The data analytic procedures we used in Experiment 1 were employed
here. From the 3-point coding system, we derived frequency and quality
dichotomies and then used log-linear models to estimate the effects of
training, test problem, and training X test problem interaction. The
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jackknifed estimate of the standard error of the difference between any
two conditions for frequency and quality were 0.20 and 0.18 on the log-
linear scale, respectively. These standard errors correspond very closely
to those found in Experiment 1.

Effects of Training

As in Experiment 1, training significantly enhanced the frequency of
statistical responses. Subjects in the control conditions were least likely
to use statistical concepts for the 15 test problems (53% of responses
were statistical). The three training groups were significantly more likely
than controls to give statistical answers (72, 81, and 79% for the probabi-
listic, objective, and subjective training groups, respectively. All compar-
isons with the control condition were significant at the .001 level). In
addition, subjects trained on probabilistic examples were less likely than
subjects trained on objective or subjective examples to reason statisti-
cally (p < .01 and .05, respectively); the objective and subjective ex-
ample conditions did not differ from each other.

Training also increased the quality of statistical answers. The quality
proportions were .47 for the control group and .70, .70, and .66 for the
probabilistic, objective, and subjective groups, respectively. Once again,
training significantly enhanced the quality of statistical responses (all
comparisons with the control condition were significant at the .001 level).
But, in contrast to the frequency data, no training domain was more ef-
fective than any other in enhancing the quality of statistical answers.

The relationship between the training effects on frequency and on
quality was very consistent with Experiment 1, as can be seen by looking
back to Fig. 2, where the open points represent the frequency and quality
effects of the three training conditions and the control condition for Ex-
periment 2.

Effect of Problem Type

The strong effect of problem type found in Experiment 1 was replicated
here. Collapsing across conditions, subjects were most likely to reason
statistically for probabilistic problems (91%), less likely to do so for ob-
jective problems (68%), and least likely for subjective problems (56%).%

As in Experiment 1, the quality of statistical answers varied only

8 Although the pattern of these proportions are similar to those in Experiment 1, their
magnitude is substantially greater. One reason is that whereas the five conditions in Experi-
ment 1 varied considerably in the degree of training, three of the four conditions in Experi-
ment 2 were essentially full training conditions (all were given rule training). When aver-
aging across conditions, the proportions for Experiment 2 will reflect this more extensive
training.



STATISTICAL TRAINING 273

slightly across the three problem types. The quality proportions were .69,
.65, and .60 for the probabilistic, objective, and subjective problems, re-
spectively. These differences were not statistically significant.

The primary goal of this experiment was to examine the relationship
between training domain and test domain. Figures 5 and 6 present the
frequency and quality of statistical answers as a function of training do-
main and test domain. If training effects were domain specific, we should
find that frequency and quality for problems in a given domain will be
highest for those subjects who were trained on that domain. These do-
main-specificity data points are represented as larger data points in the
two figures. Figures 5 and 6 make it clear that this was not the case: the
domain-specific data points are not consistently higher than the other
data points. For example, subjects who were trained on problems in the
probabilistic domain were actually less likely to think statistically on the
probabilistic test problems than were subjects trained on objective or
subjective problems. In short, training significantly increased statistical
reasoning; the domain of training had no differential effect.

The log-linear analysis confirms the absence of domain specificity of
training. There was no significant interaction between training domain
and test domain, either for frequency, x%(42) = 55, p = .10, or for quality,
x2(42) = 49, p > .15.

Finally, the false-alarm rates for Experiment 2 were generally higher
than they were for Experiment 1, for the control group as well as for the
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trained groups. The difference may be due to the fact that the subjects in
Experiment 2 were college students, but this is only speculation.

Discussion

The results of Experiments 1 and 2 show that instruction in statistics
can have a marked effect on the way people reason about a broad range
of everyday problems. Such training affects not only their reasoning
about transparently probabilistic events such as lotteries, but also their
reasoning about events that most people analyze using only deterministic
rules.

Both formal training, restricted to descriptions of the formal aspects of
the law of large numbers, and ‘‘guided induction,”’ that is, teaching the
rule by means of examples, were effective in improving both the fre-
quency and the quality of statistical reasoning. The former finding sug-
gests that the more abstract aspects of academic training in statistics
may, by themselves, be sufficient to produce significant improvement in
the way people reason. We test this hypothesis in Experiments 3 and 4.
The latter finding indicates that the use of examples adds greatly to
people’s ability to use their abstract rule systems.

The two types of training were approximately additive on the log-linear
scale, that is, examples training plus rule training added as much im-
provement, both in frequency and quality, as would be expected from the
sum of the effects of each type of training in isolation. It is important to
note that, in the present experiments at least, the effect of examples
training does not appear to be in the form of rules about how to *‘map”’
the law of large numbers onto the content of particular domains. This is
because there was no domain specificity of training effects. In general,
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subjects taught examples in one domain learned no more about how to
solve problems in that domain than they did about how to solve problems
in other domains. There are two hypotheses that may account for this
domain independence of examples training. What subjects learn from ex-
amples training may be an abstracted version of the law of large numbers.
Alternatively, or perhaps in addition, they may learn an abstracted ver-
sion of how to apply the principle to problems in general.

The domain independence of training effects we found should not be
presumed to be highly general, however. Every teacher knows that stu-
dents sometimes apply a rule beautifully in a domain in which they have
been taught the rule and yet fail to apply it in another domain in which it
is just as applicable. Two aspects of the present work probably contrib-
uted to the domain independence of statistical training that we found.
First, the domains we used were very broad, constituting three hap-
hazard samples of problems, one sample united only by the fact that
some obvious randomizing device was present, another consisting of
problems where a protagonist had to make a judgment about some objec-
tively measurable aspect of a person or object, and another consisting of
problems where a protagonist had to make a judgment about some sub-
jective aspect of a person or object. Had we studied substantially nar-
rower domains—the domain of sports, for example, or the domain of
judgments about personality traits—and had we taught subjects specific
tools for coding events in those domains and for thinking about their vari-
ability, we might well have found some domain specificity of training ef-
fects.

A second factor that almost surely contributed to the lack of domain
specificity of training effects was the fact that testing immediately fol-
lowed training. Thus subjects could be expected to have their newly im-
proved statistical rules in “‘active memory’’ at the time they were asked
to solve the new problems. This fact could be expected to reduce do-
main-specificity effects to a minimum.

It may have occurred to the reader to suspect that the temporal relation
between testing and training might not only reduce domain-specificity ef-
fects of training but might be essential in order to produce any effects of
training at all. In fact, it could be argued that all our “‘training’’ did was to
increase the salience of subjects’ statistical heuristics and did not teach
them anything new at all. As we have known since Socrates’ demonstra-
tion with the slave boy, it is always hard to prove whether we have taught
someone something they did not know before or whether we have merely
reminded them of something they already knew.

We have two main lines of defense, however, against the suggestion
that our training effects in Experiments 1 and 2 were due simply to
making the law of large numbers more salient to subjects. First, re-
minding subjects about the law of large numbers and encouraging them to
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use it had no effect either on the frequency or the quality of their an-
swers. This is shown clearly by the fact that subjects in the demand con-
dition were no higher than subjects in the control condition on either
measure. Second, our training manipulations improved not only the fre-
quency of statistical answers, which would be expected on the basis of a
mere increase in salience, but the guality of answers, which would not be
expected on the basis of a mere increase in salience.

The most effective response to the artifactual possibility of salience,
however, would be to separate the time and context of training from the
time and context of testing. We did this in two different experiments. In
Experiment 3, we examined the effect of differing amounts of formal
course training in statistics on subjects’ tendencies to give statistical an-
swers to problems. In Experiment 4, we examined the effect of course
training in statistics, and we also disguised the context of testing as an
opinion survey. In addition to helping rule out the salience and testing
context alternatives, these experiments speak to practical questions
about the effects of statistical training in formal courses on everyday in-
ferential problems.

EXPERIMENT 3

In Experiment 3 we examined the effect of varying amounts of formal
course training on the way people reasoned about two different versions
of a problem from everyday life. The two versions were very similar,
except that one had a powerful probabilistic cue. The study thus allows a
comparison of the effects of training on both the likelihood of using sta-
tistical reasoning and the quality of statistical reasoning for both a
problem for which statistical reasoning is relatively common and a
problem for which it is relatively rare.

Subjects and Method

Four groups of subjects participated. These groups were chosen for their background, or
lack of background, in formal statistical training. The no statistics group were 42 college
undergraduates who were attending a lecture on attitudes; none had taken college level
statistics. The statistics group were 56 students attending the same lecture who had taken
an introductory statistics course. The graduate group were 72 graduate students in psy-
chology, who were attending the first session of a course on statistical methods; all had
taken at least one statistics course, and many had taken more than one. And the tech group
were 33 technical staff members at a research laboratory who were attending a colloquium
on probabilistic reasoning. Nearly all were Ph.D. level scientists who had taken many sta-
tistics courses.

Subjects were presented with a problem about restaurant quality. There were two ver-
sions. In the no randomness cue version, a traveling businesswoman often returns to restau-
rants where she had an excellent meal on her first visit. However, she is usually disap-
pointed because subsequent meals are rarely as good as the first. Subjects were asked to
explain, in writing, why this happened.
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The randomness cue version included a random mechanism for selection from the menu.
In this version, the protagonist was a businessman in Japan who did not know how to read
the language. When eating at a restuarant, he selected a meal by blindly dropping a pencil
on the totally unreadable menu and ordering the dish closest to it. As in the other version,
he is usually disappointed with his subsequent meals at restaurants he originally thought
were superb. Why is this?

Answers were classified as ‘“statistical”’ if they suggested that meal quality on any single
visit might not be a reliable indicator of the restaurant’s overall quality (e.g., ‘‘Very few
restaurants have only excellent meals; odds are she was just lucky the first time’’). ‘‘Non-
statistical’” answers assumed that the initial good experience was a reliable indicator that
the restaurant was truly outstanding, and attributed the later disappointment to a definite
cause such as a permanent or temporary change in the restaurant (e.g., ‘‘Maybe the chef
quit’’) or a change in the protagonist’s expectation or mood (e.g., ‘‘Maybe her expectations
were so high on the basis of her first visit that subsequent meals could never match them™’).
Explanations that were statistical were coded as to whether they merely referred vaguely to
chance factors (‘‘poor statistical’’) or whether they also articulated the notion that a single
visit may be regarded as a small sample, and hence as unreliable (‘‘good statistical’’). Thus,
the coding system was essentially the same as the one used in Experiments 1 and 2.

Results

Figure 7 shows the frequency and quality of answers as a function of
training and type of problem. The left side of Fig. 7 demonstrates clearly
that the frequency of statistical answers increased dramatically with level
of statistical training, x%(6) = 35.5, p < .001. Almost none of the college
students without statistical training gave a statistical answer to the ver-
sion without the randomness cue, whereas 80% of Ph.D. level scientists
did so.

Inclusion of the randomness cue markedly increased the frequency of
statistical answers, x*(4) = 27.1, p < .001. For the untrained college stu-
dents, for example, the presence of the randomness cue increased fre-
quency from 5 to 50%. The randomness cue thus apparently encourages
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the subject to code restaurant experiences as units that can be sampled
from a population.

The right side of the figure indicates that degree of statistical training
was also associated with guality of statistical answers, x*(3) = 12.3,p <
.001. Only 10% of the statistical answers by untrained college students
were rated as good, whereas almost 80% of the statistical answers by
Ph.D level scientists were rated as good.

Although the presence of the randomness cue was very important in
determining whether subjects would think statistically at all, it did not
affect the quality of statistical answers for subjects at any level of
training. This duplicates the findings of Experiments 1 and 2, showing
that problem difficulty does not affect the quality of answers, given that
the answers are statistical. Apparently cues about randomness can
trigger the use of statistical rules, but they do not necessarily produce
good statistical answers. Such cues can only trigger rules at whatever
level of sophistication the subject happens to possess them. This correla-
tional study thus buttresses our assertion that, whatever plausibility the
salience alternative has for the frequency results, it has very little plausi-
bility for the quality results.

Discussion

These data indicate that, when one examines people who represent a
broad range of statistical expertise, one can find very marked differences
in the tendency to approach certain kinds of problems statistically. The
data also indicate that, even when statistical approaches are preferred by
untutored subjects, as for the version of the problem having the random-
ness cue, the quality of answers given by such subjects will be markedly
inferior to that which more expert subjects can give.

But, while suggestive, the data do not show to precisely what degree
formal rule training per se is effective. First, statistical training was un-
doubtedly confounded with intellectual ability, and perhaps even with ex-
periences in superb restaurants. Second, more extensive training in sta-
tistics is normally associated with more extensive training in content dis-
ciplines that teach the use of statistical and methodological rules in at
least an informal way, across a variety of domains. Thus statistical
training is also confounded with other types of potentially relevant
training.

In Experiment 4, we removed these sources of confounding and also
provided a testing context that would not be expected to cue subjects into
using statistical rules. We conducted Experiment 4 in order to examine
the effects of formal statistical training in a setting completely outside of
the context of training. Students enrolled in an introductory statistics
course were contacted at home and were asked to participate in a tele-
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phone survey on ‘‘students’ opinions on sports.”’ Some of the questions
could be analyzed with reference to statistical concepts such as the law of
large numbers and the regression principle. None of the students was
aware that the survey was related to the statistics class they were
enrolled in. If training has an effect in this situation, this would provide
very strong evidence for the formal view that statistical heuristics are
represented at a highly abstract level and that statistical training provides
inferential tools that are quite domain and context independent.

EXPERIMENT 4
Subjects

The subjects were 193 randomly selected males at the University of Michigan who were
enrolled in an introductory statistics course. The course had a total enroliment of over 600
students.

Method

We obtained the class list from the instructor and randomly selected half of the males to
be contacted during the first week of the semester, and the other half to be contacted during
the last week of the semester.

The protocol we used was designed to convince subjects that we were conducting a gen-
uine opinion survey. The interviewer introduced herself in the following way:

I am calling from the Research Center for Group Dynamics at the University of
Michigan. We’re conducting a campus survey about students’ opinions on sports.
Some of the questions in this survey ask for opinions on current events in profes-
sional and collegiate sports; other questions ask for general opinions about
sports. The whole survey takes only about 10 to 15 min. Would you have time
now to answer our questions?

After asking for some demographic information®, the interviewer went on to the ques-
tions. To enhance the idea that this was a legitimate opinion survey, the first two questions
indeed asked subjects to give their real opinions about certain sports controversies (e.g.,
what colleges should do about recruiting violations). Respondents were quite unaware that
the survey was really designed to test their statistical knowledge —none voiced any suspi-
cion.

Following the filler items, subjects were asked a series of questions that couid be an-
swered with reference to statistical concepts. This was the first such question:

In general, the major league baseball player who wins Rookie of the Year does
not perform as well in his second year. This is clear in major league baseball in the
past 10 years. In the American League, eight Rookies of the Year have done
worse in their second year; only two have done better. In the National League,
the Rookie of the Year has done worse the second year 9 times out of 10. Why do
you suppose the Rookie of the Year tends not to do as well his second year?

° In order to ensure that subjects had enough knowledge of sports to be able to under-
stand the survey questions, they were asked to rate their knowledge about sports. Those
who rated themselves as having little or no knowledge of sports were not used in this ex-
periment.
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Responses to this regression question were tape-recorded and coded for the presence of
statistical reasoning and for whether a statistical response was a good one. A typical non-
statistical response for this question would be, ‘‘The Rookie of the Year doesn’t do as well
because he’s resting on his laurels; he’s not trying as hard in his second year.”” A good
statistical response would be, ‘A player’s performance varies from year to year. Sometimes
you have good years and sometimes you have bad years. The player who won the Rookie-
of-the-Year award had an exceptional year. He'll probably do better than average in his
second year, but not as well as he did when he was a rookie.”’

Results and Discussion

Results indicated that training in a standard statistics course had a sig-
nificant effect in enhancing the use of statistical explanations for this
question. For those contacted at the beginning of the term, 16% gave
statistical answers. For those contacted at the end of the term, over twice
as many (37%) gave answers that utilized statistical thinking. This in-
crease in frequency was significant, z = 3.23, p < .005. In addition, the
statistics course also enhanced the quality of statistical responses, from
.12 to .38, though this was only marginally significant, z = 1.77, p < .10.

Similar results were obtained on another problem, which asked sub-
jects to explain why the top batting average after 2 weeks of the season is
around .450, when such a high average has never been obtained over an
entire season. Frequency increased from .50 to .70, z = 2.87, p < .01,
and quality increased from .24 to .50, z = 2.74, p < .01.

The statistics course did not have any effect on two other problems
that we included in the sports survey. One problem asked whether a more
talented squash player should choose a five-point or a one-point tie
breaker. The other asked subjects to critique a large sample study about
whether marriage has an adverse effect on a professional athlete’s perfor-
mance. We have no explanation for why a statistics course failed to en-
hance statistical reasoning for these two problems.

This study indicates clearly that statistical training can enhance the use
of statistical rules in reasoning about everyday life and can do so com-
pletely outside the context of training.

GENERAL DISCUSSION

The experiments presented here demonstrate that statistical training
serves to enhance the use of statistical principles in reasoning. The ef-
fects of training are impressive in their generality across method, con-
text, type of subject, and event domain. Statistical training conferred
benefits whether the training consisted of several statistics courses, a
single semester-long course, or even a 25-min training session. Training
effects occurred not only when the testing context was identical to the
training context, but also when the testing context was completely dif-
ferent from the training context in time and situation. Training enhanced
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statistical thinking not only for college students enrolled in introductory
psychology, but also for high school students and adults. Training en-
hanced both the frequency and quality of statistical thinking not only for
events commonly associated with uncertainty and probability, but also,
to the same extent, for events rarely associated with such concepts.

A qualification that must be placed on the present results is that the
effects at least of relatively brief training sessions may be limited to
problems for which some untrained subjects are able to give a statistical
answer. Many previous demonstrations of people’s difficulties with sta-
tistical principles are based on problems to which no subjects, or almost
no subjects, apply statistical reasoning (e.g., Hamill, Wilson, & Nisbett,
1980; Kahneman & Tversky, 1972, 1973; Tversky & Kahneman, 1983).
Quite deliberately, we avoided such difficult problems in the present in-
vestigations. Even for the subjective problems in Experiment 1 and 2, the
average rate of statistical answers for untrained subjects was slightly in
excess of 20%.

It is indeed striking that statistical training enhances statistical thinking
for subjective judgments, such as those made about the social world. So-
cial judgments such as attributions of success or failure, or judgments of
a person’s traits based on a first impression, are those that, by their very
nature, have a critical impact on our lives. At the same time, social judg-
ments are those for which unexplained variation plays a major role.

But because social events are difficult to code, and because the sample
space for such events is typically difficult to define, social judgments are
also those that are least likely to be made with reference to statistical
considerations. This is shown by the domain-specificity effects found in
the experiments presented here and by Jepson et al., (1983) on the use of
statistical thinking for probabilistic, objective, and subjective events. It is
a disturbing state of affairs that the domain where statistical thinking is
most necessary on an everyday basis is the one where it is least likely.

Our training studies, however, suggest that people are able to under-
stand and accept the applicability of statistical principles for social events
as well as for nonsocial events. The lack of an interaction between
training and problem domain indicates that statistical training enhances
statistical thinking for social events just as much as it does for nonsocial
events. This domain independence of statistical training makes us opti-
mistic that people can indeed be taught to understand the role of uncer-
tainty and sample size in making social judgments.

More generally, the studies reported here make an important point
concerning pedagogy in statistics. In the early 1800s, Laplace wrote,
“‘the theory of probabilities is at bottom nothing but common sense re-
duced to calculus.” It seems to us that courses in statistics and proba-
bility theory today concentrate almost entirely on the calculus, while
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often ignoring its commonsense roots. Experiments 3 and 4 clearly dem-
onstrate how classroom training in statistics can potentially have a signif-
icant effect on how people make judgments. If introductory statistics
courses were to incorporate examples of how statistical principles such
as the law of large numbers can be applied to judgments in everyday life,
we have no doubt that such courses would have a more far-reaching ef-
fect on the extent to which people think statistically about the world.

These studies suggest very strongly that people make use of abstract
inferential rules in the form of statistical heuristics. We also know this
because training on the purely formal aspects of the law of large numbers
improves statistical thinking over a broad range of content, and because
showing,subjects how to use the rule in a given content domain gener-
alizes completely to quite different content domains. We are aware of no
more convincing evidence, in fact, for the existence of abstract rules of
reasoning than the present work.

What is the origin of abstract inferential rules about the law of large
numbers? Why do people develop such high-level representations of the
law of large numbers? We suspect the answer comes, in large measure,
from the ubiquity of the principle. The basic notion that large samples are
more reliable than small samples underlies concept formation and gener-
alization. It can be argued that during cognitive development, the child
learns, through repeated exposure to the law of large numbers across
many domains, a highly abstract representation of the principle.

The experiments presented here demonstrate the dual usefulness of in-
ferential training studies. Such studies are important for pragmatic
reasons because they provide information about how everyday reasoning
might be improved. It is heartening to discover that a 25-min session on
the law of large numbers can serve to significantly enhance people’s use
of statistical thinking, and that a formal course in introductory statistics
can lead to a greater appreciation of variability in judgments, even those
made outside the context of the classroom or laboratory. In addition,
such studies are important for theoretical reasons not only because of
what they tell us about how inferential rules are utilized, but also about
how they are represented and how they can be modified.

APPENDIX A

The Eighteen Test Problems Used in Experiments 1 and 2

Probabilistic— Structure 1

At Stanbrook University, the Housing Office determines which of the 10,000 students
enrolled will be allowed to live on campus the following year. At Stanbrook, the dormitory
facilities are excellent, so there is always great demand for on-campus housing. Unfortu-
nately, there are only enough on-campus spaces for 5000 students. The Housing Office
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determines who will get to live on campus by having a Housing Draw every year: every
student picks a number out of a box over a 3-day period. These numbers range from 1 to
10,000. If the number is 5000 or under, the student gets to live on campus. If the number is
over 5000, the student will not be able to live on campus.

On the first day of the draw, Joe talks to five people who have picked a number. Of these,
four people got low numbers. Because of this, Joe suspects that the numbers in the box
were not properly mixed, and that the early numbers are more favorable. He rushes over to
the Housing Draw and picks a number. He gets a low number. He later talks to four people
who drew their numbers on the second or third day of the draw. Three got high numbers.
Joe says to himself, “‘I'm glad that I picked when I did, because it looks like I was right that
the numbers were not properly mixed.”

What do you think of Joe’s reasoning? Explain.

Probabilistic— Structure 2

For his vacation, Keith decided to drive from his home in Michigan to California to visit
some of his relatives and friends. Shortly after crossing the border into Nevada, Keith
pulled into a gas station and went inside to buy a state map. There, in a corner of the gas
station, were two slot machines. Keith had heard about slot machines before, but had never
actually seen one. He went over to the slot machines and looked at them, trying to figure
out how they worked. An old man who was sitting close to the machines spoke to Keith.
““There ain’t no winning system for slot machines. It’s all luck. You just put in a coin, pull
the lever, and hope that you’ll win. But let me tell you this: some machines are easier to lose
on than others. That’s because the owners can change the mechanism of the slots so that
some of them will be more likely to make you lose. See those two slot machines there? The
one on the left gives you about an even chance of winning, but the one on the right is fixed
so that you’ll lose much more often than you’ll win. Take it from me—1I’ve played them for
years.’” The old man then got up and walked out of the gas station.

Keith was by now very intrigued by the two slot machines, so he played the machine on
the left for a couple of minutes. He lost almost twice as often as he won. ‘‘Humph,’’ Keith
said to himself. **The man said that there was an even chance of winning at that machine on
the left. He’s obviously wrong.’’ Keith then tried the machine on the right for a couple of
minutes and ended up winning more often than he lost. Keith concluded that the man was
wrong about the chances of winning on the two slot machines. He concluded that the oppo-
site was true—that the slot machine on the right was more favorable to the player than the
machine on the left.

Comment on Keith’s conclusion and his reasoning. Do you agree? Explain your answer.

Probabilistic— Structure 3

Bert H. has a job checking the results of an X-ray scanner of pipeline welds in a pipe
factory. Overall, the X-ray scanner shows that the welding machine makes a perfect weld
about 80% of the time. Of 900 welds each day, usually about 680 to 740 welds are perfect.
Bert has noticed that on some days, all of the first 10 welds were perfect. However, Bert has
also noticed that on such days, the overall number of perfect welds is usually not much
better for the day as a whole than on days when the first 10 welds show some imperfections.

Why do you suppose the number of perfect welds is usually not much better on days
where the first batch of welds was perfect than on other days?
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Probabilistic—Structure 4

Joanna has a large collection of pennies with dates in the 1970s. Donny admires her
collection and decides to start his own collection of pennies, but decides to collect only 1976
pennies because he wants to commemorate the Bicentennial. Looking through his pockets,
he discovers he has only a dime. Examining it carefully, he finds that it is a 1971 dime, with
a “‘D”’ (Denver) mint mark. Donny thinks it would be fun to collect 1976 pennies with the
same initial as his name and asks Joanna what proportion of the 1976 pennies in her collec-
tion have a “‘D’’ mint mark on them. She doesn’t know, but they decide to find out. They
take the huge jar of her pennies out. Since the jar has thousands of pennies in it, Donny
shakes the jar and then reaches into it and picks out a handful from the middle of the jar.
Donny finds all the 1976 pennies that he scooped out (four of them) and finds that two of
them have ‘D’ mint marks. Because of this, he estimates that around 50% of all Joanna’s
1976 pennies have the *“D*’ mint mark. But Joanna looks through the other 36 pennies they
have scooped out (dated 1970-1975 and 1977-1979) and discovers that only 2 of them have
the ‘‘D’’ mint mark. She argues that only 4 of 40 pennies altogether have the *‘D’’ mark, and
estimates that around 10% of the 1976 pennies in her collection are *‘D’’ pennies.

Comment on the validity of Joanna's and Donny’s reasoning. Whose conclusion about
the 1976 pennies in Joanna's collection is more likely to be correct? Explain.

Probabilistic—Structure 5

An auditor for the Internal Revenue Service wants to study the nature of arithmetic errors
on income tax returns. She selects 4000 Social Security numbers by using random digits
generated by an “‘Electronic Mastermind’’ calculator. And for each selected social security
number she checks the 1978 Federal Income Tax return thoroughly for arithmetic errors.
She finds errors on a large percentage of the tax returns, often 2 to 6 errors on a single tax
return. Tabulating the effect of each error separately, she finds that there are virtually the
same number of errors in favor of the taxpayer as in favor of the government. Her boss
objects vigorously to her assertions, saying that it is fairly obvious that people will notice
and correct errors in favor of the government, but will **overlook’ errors in their own favor.
Even if her figures are correct, he says, looking at a lot more returns will bear out his point.

Comment on the auditor’s reasoning and her boss’s contrary stand.

Probabilistic— Structure 6

A brewery buys nearly all of its reusable glass bottles from a local glass manufacturer.
One summer, however, the local company is unable to deliver enough bottles, and the bre-
wery orders a shipment from a large glass manufacturer that distributes its products nation-
wide. On the first day that these new bottles are used, however, the bottle-filling machinery
has to be stopped four times because of jamming, and, as a result, production for the day is
unusually low. (Ordinarily the brewery does not experience more than one jamming stop-
page per day and frequently there are none at all.) The foreman is worried about the new
bottles. He decides to test the new bottles produced by the national manufacturer carefully.
He randomly selects 300 cases of these new bottles and instructs the bottle-filler operators
to record carefully each jamming incident. Meanwhile, company mechanics carefully lubri-
cate and check adjustments on the bottle-filling machinery. When they are finished, the
bottle-filling machinery is running more smoothly than it has for years. During the next 2
days, the 300 cases of new bottles are fed to the machine. There are only two jamming
incidents, one each day. The foreman concludes that there is in fact little or no real disad-
vantage of the new bottles with respect to jamming of the bottle-filling machinery.
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Comment on the foreman’s reasoning. Is it basically sound? Can his procedure be criti-
cized?

Objective—Structure 1

A talent scout for a professional basketball team attends two college games with the
intention of observing carefully the talent and skill of a particular player. The player looks
generally excellent. He repeatedly makes plays worthy of the best professional players.
However, in one of the games, with his team behind by 2 points, the player is fouled while
shooting and has the opportunity to tie the game by making both free throws. The player
misses both free throws and then tries too hard for the rebound from the second one, com-
mitting a foul in the process. The other team then makes two free throws, for a 4-point lead,
and goes on to win by 2 points.

The scout reports that the player in question ‘‘has excellent skills, and should be re-
cruited. He has a tendency to misplay under extreme pressure, but this will probably disap-
pear with more experience and better coaching.”

Comment on the thinking embodied in the scout’s opinion that the player (a) ‘‘has excel-
lent skills’’ and that the player has (b) ‘‘a tendency to misplay under extreme pressure.”’
Does the thinking behind either conclusion have any weaknesses?

Objective—Structure 2

The Caldwells had long ago decided that when it was time to replace their car they would
get what they called ‘*one of those solid, safety-conscious, built-to-last Swedish cars’’—ei-
ther a Volvo or a Saab. As luck would have it, their old car gave up the ghost on the last day
of the closeout sale for the model year both for the Volvo and for the Saab. The model year
was changing for both cars and the dollar had recently dropped substantially against Euro-
pean currencies; therefore, if they waited to buy either a Volvo or a Saab, it would cost
them substantially more—about $1200. They quickly got out their Consumer Reports
where they found that the consensus of the experts was that both cars were very sound
mechanically, although the Volvo was felt to be slightly superior on some dimensions. They
also found that the readers of Consurmer Reports who owned a Volvo reported having some-
what fewer mechanical problems than owners of Saabs. They were about to go and strike a
bargain with the Volvo dealer when Mr. Caldwell remembered that they had two friends
who owned a Saab and one who owned a Volvo. Mr. Caldwell called up the friends. Both
Saab owners reported having had a few mechanical problems but nothing major. The Volvo
owner exploded when asked how he liked his car. *‘First that fancy fuel injection computer
thing went out: $250 bucks. Next I started having trouble with the rear end. Had to replace
it. Then the transmission and the clutch. I finally sold it after 3 years for junk.”’

Given that the Caldwells are going to buy either a Volvo or a Saab today, in order to save
$1200, which do you think they should buy? Why?

Objective—Structure 3

Howard was a teacher in a junior high school in a community known for truancy and
delinquency problems among its youth. Howard says of his experiences: ‘‘Usually, in a
class of 35 or so kids, 2 or 3 will pull some pretty bad stunts in the first week—they’ll skip a
day of class, get into a scuffle with another kid, or some such thing. When that kind of thing
happens, I play it down and try to avoid calling the class’ attention to it. Usually, these kids
turn out to be no worse than the others. By the end of the term you'll find they haven’t
pulled any more stunts than the others have.’” Howard reasons as follows: ‘‘Some of these
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kids are headed toward a delinquent pattern of behavior. When they find out nobody is very
impressed, they tend to settle down.”’

Comment on Howard’s reasoning:

(a) Do you agree that it is likely that the students who pull a ‘‘pretty bad stunt in the first
week’’ are ‘‘headed toward a delinquent pattern of behavior?”’

(b) Do you agree that it is likely that the students who initially pull a ‘‘pretty bad stunt’’
turn out to be no worse than the others because they find no one is impressed with their
behavior?

Objective—Structure 4

The psychology department of the University of Michigan keeps records on the perfor-
mance of all its graduate students and relates this performance score to all kinds of back-
ground information about the students. Recently there was a debate on the admissions
committee about whether to admit a particular student from Horace Maynard College. The
student’s scores on the GRE and his GPA were marginal—that is, almost all students actu-
ally admitted to the department have scores as high or higher, while most rejected students
have lower scores. The student’s letters of recommendation were quite good, but none of
the writers of the letters were personally known to any of the Michigan faculty.

One member of the admissions committee argued against admission, pointing out that
department records show that students who graduate from small, nonselective colleges like
Maynard perform at a level substantially below the median of all Michigan graduate stu-
dents. This argument was countered by a committee member who noted that 2 years ago
Michigan had admitted a student from Maynard who was now among the three highest
ranked students in the department.

Comment on the arguments put forward by these two committee members. What are their
strengths and weaknesses?

Objective—Structure 5

The superintendent of schools was urging the school board to make an expensive curric-
ulum shift to a ‘‘back-to-basics’ stress on fundamental learning skills and away from the
electives and intensive immersion in specialized arts and social studies topics that had re-
cently characterized the secondary schools in the district. He cited a study of 120 school
systems that had recently begun to emphasize the basics and 120 school systems that had a
curriculum similar to the district’s current one. The ‘‘back-to-basics’’ school systems, he
said, were producing students who scored half-a-year ahead of the students in the other
systems on objective tests of reading, mathematics, and science. Of the 120 ‘‘back-to-
basics’” school systems, 85 had shown improved skills for students in the system vs only 40
with improved skills in the 120 systems which had not changed. One of the school board
members took the floor to argue against the change. In her opinion, she said, there was no
compelling reason to attribute the improved student skills in the **back-to-basics’’ systems
to the specific curriculum change, for two reasons: (1) school systems that make curriculum
changes probably have more energetic, adventurous administrators and faculty and thus the
students would learn more in those school systems no matter what the curriculum was. (2)
Any change in curriculum could be expected to produce improvement in student perfor-
mance because of increased faculty interest and commitment.

Comment on the reasoning of both the superintendent and the board member. On the
basis of the evidence and arguments offered, do you think it is likely that the ‘‘back-to-
basics’’ curriculum is intrinsically superior to the district’s current curriculum?
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Objective—Structure 6

An economist was arguing in favor of a guaranteed minimum income for everyone. He
cited a recent study of several hundred people in the United States with inherited wealth.
Nearly 92% of those people, he said, worked at some job that provided earned income
sufficient to provide at least a middle-class life style. The study showed, he said, that con-
trary to popular opinion, people will work in preference to being idle. Thus a guaranteed
income policy would result in little or no increase in the number of people unwilling to
work.

Comment on the economist’s reasoning. Is it basically sound? Does it have weaknesses?

Subjective—Structure 1

Gerald M. had a 3-year-old son, Timmy. He told a friend: ‘*You know, I've never been
much for sports, and I think Timmy will turn out the same. A couple of weeks ago, an older
neighbor boy was tossing a ball to him, and he could catch it and throw it all right, but he
just didn’t seem interested in it. Then the other day, some kids his age were kicking a little
soccer ball around. Timmy could do it as well as the others, but he lost interest very quickly
and started playing with some toy cars while the other kids went on kicking the ball around
for another 20 or 30 min.”’

Do you agree with Gerald’s reasoning that Timmy is likely not to care much for sports?
Why or why not?

Subjective—Structure 2

David L. was a senior in high school on the East Coast who was planning to go to college.
He had compiled an excellent record in high school and had been admitted to his two top
choices: a small liberal arts college and an Ivy League university. The two schools were
about equal in prestige and were equally costly. Both were located in attractive East coast
cities, about equally distant from his home town. David had several older friends who were
attending the liberal arts college and several who were attending the Ivy League university.
They were all excellent students like himself and had interests that were similar to his. His
friends at the liberal arts college all reported that they liked the place very much and that
they found it very stimulating. The friends at the Ivy League university reported that they
had many complaints on both personal and social grounds and on educational grounds.
David initially thought that he would go to the liberal arts college. However, he decided to
visit both schools himself for a day. He did not like what he saw at the private liberal arts
college: several people whom he met seemed cold and unpleasant; a professor he met with
briefly seemed abrupt and uninterested in him; and he did not like the *‘feel”” of the campus.
He did like what he saw at the Ivy League university: several of the people he met seemed
like vital, enthusiastic, pleasant people; he met with two different professors who took a
personal interest in him; and he came away with a very pleasant feeling about the campus.

Which school should David L. choose, and why? Try to analyze the arguments on both
sides, and explain which side is stronger.

Subjective—Structure 3

Janice is head nurse in a home for the aged. She says the following of her experiences:
“‘There is a big turnover of the nursing staff here, and each year we hire 15-20 new nurses.
Some of these people show themselves to be unusually warm and compassionate in the first
few days. One might stay on past quitting time with a patient who’s having a difficult night.
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Another might be obviously shaken by the distress of a patient who has just lost a spouse. I
find though that, over the long haul, these women turn out to be not much more concerned
and caring than the others. What happens to them, I think, is that they can’t remain open
and vulnerable without paying a heavy emotional price. They usually continue to be consid-
erate and effective but they build up a shell.”

Comment on Janice’s reasoning. Do you think it is likely that she correctly identifies the
nurses who are unusually warm and compassionate? Do you agree it is likely that most of
the ones who are unusually warm at first later build up a shell to protect themselves emo-
tionally?

Subjective—Structure 4

The director of a Broadway production of Shakespeare’s As You Like It had just finished
auditions for the female lead in the show. Two of the candidates gave readings for the part
he liked a great deal. Another was an actress whom the director had worked with before in
three Shakespeare comedies. The director thought she had been superb in each. Unfortu-
nately, of her three readings for the lead in this play, one had been fairly good, but two had
been quite flat. This third actress had to know immediately whether she was going to be
chosen for the part. If not, she would take a minor role in a movie that would keep her on
the West Coast for the next 6 months.

What should the director do—hire the third actress or hire one of the two whose readings
he liked better? Why?

Subjective— Structure 5

Two New Yorkers were discussing restaurants. Jane said to Ellen, ‘‘You know, most
people seem to be crazy about Chinese food, but I'm not. I’ve been to about 20 different
Chinese restaurants, across the whole price range, and everything from bland Cantonese to
spicy Szechwan and I'm really not very fond of any of it.”” *‘Oh,”” said Ellen, ‘‘don’t jump
to conclusions. I'll bet you’ve usually gone with a crowd of people, right?”’ “‘Yes,” ad-
mitted Jane, ‘‘that’s true. I usually go with half a dozen people or more from work.”’ *‘Well,
that may be it,”” said Ellen. ‘‘People usually go to Chinese restaurants with a crowd of
people they hardly know. I know you, you're often tense and a little shy, and you’re not
likely to be able to relax and savor the food under those circumstances. Try going to a
Chinese restaurant with just one good friend. I'll bet you’ll like the food.”

Comment on Ellen’s reasoning. Do you think there is a good chance that if Jane went to a
Chinese restaurant with one friend, she’d like the food? Why or why not?

Subjective—Structure 6

Martha was talking to a fellow passenger on an airplane. The fellow passenger was on his
way to Hawaii for a month’s vacation. *‘I don’t like vacations myself,”’ Martha said. “‘I've
always worked. I put myself through college and law school and now I have a full-time legal
practice. Frequently, of course, I've had slow periods when 1 wasn’t working at all, but I
never liked those times. For example, there would usually be a week or two between the
end of school and the beginning of 2 summer job and another week or two of enforced
idleness at the end of the summer. And there were many occasions when I was getting
started in my career when I had no real work to do for fairly long periods. But I never
enjoyed the leisure. I know there are some people who talk about using vacations to ‘‘re-
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charge’’ themselves. But I suspect many of these people don’t really enjoy their work or
don’t have a very high energy level. I do have a lot of energy, and 1 do enjoy my work, and I
guess that's why I don’t really like vacations.”

Analyze Martha’s reasoning. Do you think she had good evidence for feeling she doesn’t
like vacations?

APPENDIX B

The Three Objective Example Problems Used in Experiment 1, Also
Used in the Objective Examples Training Condition of Experiment 2

Example 1 (Structure 1)

A major New York law firm had a history of hiring only graduates of large, prestigious law
schools. One of the senior partners decided to try hiring some graduates of smaller, less
prestigious law schools. Two such people were hired. Their grades and general record were
similar to those of people from the prestigious schools hired by the firm. Although their
manners and ‘‘style’’ were not as polished and sophisticated as those of the predominantly
Ivy League junior members of the firm, their objective performance was excellent. At the
end of 3 years, both of them were well above average in the number of cases won and in the
volume of law business handled. The senior partner who had hired them argued to col-
leagues in the firm that, “‘This experience indicates that graduates of less prestigious
schools are at least as ambitious and talented as graduates of the major law schools. The
chief difference between the two types of graduates is in their social class background, not
in their legal ability, which is what counts.”

Comment on the thinking that went into this senior partner’s conclusion. Is the argument
basically sound? Does it have weaknesses? (Disregard your own initial opinion, if you had
one, about graduates of nonprestigious law schools, and concentrate on the thinking that
the senior partner used.)

Please consider this problem for a few moments. After you have considered the problem
and analyzed it for a minute or two, turn the page for our analysis.

The senior partner is trying to draw a conclusion about a certain population. We can think
of the members of this population as newly graduated lawyers, from nonprestigious law
schools, who otherwise meet the law firm’s hiring standards. If we divide the members of
this population into rwo categories, *‘excellent’” and ‘‘mediocre or worse,”’ we can think of
the population distribution as the percentage in each category. The senior partner has con-
cluded that the percentage in the ‘‘excellent’” category is very high, or anyway, just as high
as in another population, involving graduates of prestigious law schools. This conclusion
was based on observing a sample of size = 2, in which the sample distribution was 100%
“‘excellent,”” 0% ‘‘mediocre or worse.”’

Apart from any other considerations, however, the sample distribution for size 2 is apt to
be quite different from the population distribution: the latter could be only 60 or 50% or
even perhaps as low as 40% ‘‘excellent,” and a 2-0 sample split would not be so unusual;
just as one would not be at all amazed to draw two out of two red gumballs from an urn with
only 40% reds. So the senior partner’s attitude is quite unwarranted: a larger sample is
needed.
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Example 2 (Structure 3)

Susan is the artistic director for a ballet company. One of her jobs is auditioning and
selecting new members of the company. She says the following of her experience: ‘‘Every
year we hire 10-20 young people on a 1-year contract on the basis of their performance at
the audition. Usually we’re extremely excited about the potential of 2 or 3 of these young
people—a young woman who does a brilliant series of turns or a young man who does
several leaps that make you hold your breath. Unfortunately, most of these young people
turn out to be only somewhat better than the rest. I believe many of these extraordinarily
talented young people are frightened of success. They get into the company and see the
tremendous effort and anxiety involved in becoming a star, and they get cold feet. They'd
rather lead a less demanding life as an ordinary member of the corps de ballet.”’

Comment on Susan’s reasoning. Why do you suppose that Susan usually has to revise
downward her opinion of dancers that she initially thought were brilliant?

Please consider this problem for a few moments. After you have considered the problem
and analyzed it for a minute or two, turn the page for our analysis.

We can analyze this problem using the law of large numbers by thinking of each ballet
dancer as possessing a population of ballet movements. Susan is interested in excellence, so
we can divide the members of each population into two categories: ‘‘brilliant movements’’
and ‘‘nonbrilliant, or other movements.”” We can think of the population distribution as the
percentage or proportion in each category. For many dancers, the population distribution is
actually 0% brilliant and 100% other: these dancers simply lack the talent to perform a
brilliant movement. For many other dancers, there is a small or moderate percentage of
“*brilliant movement’’ gumballs in their urn. A true ballet star would therefore have a popu-
lation distribution with a greater percentage of ‘‘brilliant’’ movements than an ordinary
member of the corps de ballet.

By conducting auditions, Susan is observing samples of each dancer’s population distri-
bution. An audition, however, is a very small sample of a dancer’s movements. We know
from the law of large numbers that small samples are very unreliable estimates of the popu-
lation. When a dancer performs some brilliant moves during an audition, it is often because
the dancer has happened to draw a couple of the ‘‘lucky gumballs’ that day: it does not
prove that the population distribution for that dancer consists of a large percentage of *‘bril-
liant movements.’’ It is reasonable to think that there are really very few dancers that have
population distributions with a large percentage of brilliant movements; and so when Susan
sees a dancer performing brilliantly at audition, the chances are it is just a lucky draw from a
dancer who is capable of performing some, but not necessarily a great number of *‘brilliant
movements.’” Therefore, when Susan hires such dancers and evaluates them after seeing a
much larger sample of their movements, it is not surprising that she finds that many of these
dancers that were brilliant at audition turn out to be only somewhat better than the rest.

Example 3 (Structure 5)

Kevin, a graduate student in sociology, decided to do a research project on ‘‘factors
affecting performance of major league baseball players’ in which he gathered a great
amount of demographic data on birthplace, education, marital status, etc., to see if any
demographic factors were related to the performance of major league baseball players (e.g.,
batting average, pitching victories). Kevin was unable to use data for all the major league
teams because information for some of the players was unavailable, but he was able to
obtain data for some 200 players in the major leagues.
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One finding that interested Kevin concerned the 110 married players. About 68% of these
players improved their performance after getting married, while the remainder had equal or
poorer performance. He concluded that marriage is beneficial to a baseball player’s perfor-
mance. At a social hour sponsored by the Office of the Commissioner of Major League
Baseball, he happened to mention his finding to a staff member of the office. The staff
member listened to Kevin’s results and then said, *“Your study is interesting but [ don’t
believe it. I'm sure that baseball performance is worse after a marriage because the ball
player suddenly has to take on enormous responsibilities: taking care of his spouse and
children. Plus the factor of being stressed by having to be on the road so much of the time
and therefore away from the family. The player will no longer be able to devote as much
time to baseball as before he was married. Because of this he will lose that competitive
quality that is necessary for good performance in baseball.

What do you think of the staff member’s argument? Is it a sound one or not? Explain your
reasoning.

Please consider this problem for a few moments. After you have considered the problem
and analyzed it for a minute or two, turn the page for our analysis.

Kevin is trying to find out how performance in major league baseball is affected by being
married. To do this, he obtained data for 200 players in the major leagues and discovered
that out of the 110 that had gotten married, 68% had improved performance after the wed-
ding (and 32% had equal or poorer performance). According to the law of large numbers,
which states that the larger the sample, the better it is in estimating the population, there is
substantial evidence that marriage is beneficial to baseball players’ performance. Recall that
in the gumball demonstration, samples of size 25 were very good estimates of the popula-
tion: these samples did not differ much from population. Extending the argument, samples
of size 110 are extremely accurate estimates of the population. Thus, it can be concluded
that, in general, marriage is beneficial to baseball players’ performance.

What about the staff member’s theory that baseball performance is worse after a marriage
because the ball player assumes enormous responsibilities and will no longer be able to
devote as much time to baseball as before? Although this argument may have some intuitive
appeal, it should be discounted because it is not supported by any data and is, in fact,
contradicted by Kevin’s large sample of 110 players.
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