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Multi-armed Bandits with Simple Arms* 

ROBERT KEENER 

University of Michigan, Ann Arbor, Michigan 48109 

An exact solution to certain multi-armed bandit problems with independent and 
simple arms is presented. An arm is simple if the observations associated with the 
arm have one of two distributions conditional on the value of an unknown 
dichotomous parameter. This solution is obtained relating Gittins indices for the 
arms to ladder variables for associated random walks. 0 1986 Academic PRSS. IX 

1. INTRODUCTION 

Bandit problems have received considerable attention in the statistical 
literature, in large part because the choice between taking actions for 
immediate reward and taking actions to acrue information must be ad- 
dressed. Fundamental progress on bandit problems with independent arms 
was accomplished by G&tins and his co-authors in a series of papers 
(Gittins and Jones [4], Gittins and Galzenbrook [3] and Gittins [2]). They 
proved that it is possible to assign to each arm a dynamic allocation index 
such that the optimal strategy is to play the arm with the greatest index at 
each stage. In the sequel we will call this index Gittins index. It is related by 
their theorems to the solutions of a class of stopping problems. 

The main result of this note is an explicit formula for the Gittins index of 
a simple arm. An arm is simple if the distribution of the associated 
observation X is governed by an unknown dichotomous parameter 8 = 0 or 
1. Given 8 = 0, X - P and given 6 = 1, X - Q. Theorem 2 relates the 
Gittins index of a simple arm to ladder variables for two associated random 
walks. 

Bandit problems with two simple arms both governed by the same 
parameter 8 (so the arms are highly dependent) have been studied by 
Feldman [l] and Keener [5]. 
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The specific set up is as follows: 8,, . . . , 8, are independent Bernoulli 
variables representing the unknown parameters for the k arms. A(n) E 
(1,. . ., k} is the arm played at stage n. Xi, X,, . . . are the observations. 
Let 9n = a(A(1) ,..., A(n), Xi ,..., X,}. The process {A(n)},,, must 
satisfy the measurability constraint that A(n + 1) is 9$ measurable. The 
distributions for the X, are given recursively by 

~(X,+,l4,..., 4, E) = (1 - 4~(n+&‘~(n+1) + '!qn+~,Q~,n+,, 

for n 2 1 (*a is the trivial sigma field). Thus Pi and Qj are the distribu- 
tions for an observation when arm j is played and 8 = 0 and 1, respec- 
tively. 

The control problem is to choose the process {A(n)} to maximize 

where R: {O,l} X {l,..., k} --) R is an arbitrary reward function and 
/3 E (0,l) is the discount factor. Let ?rj(n) = P(0, = 119”). The Gittins 
index for arm j at stage n is Gj( rj(n)). It depends only on quantities 
related to arm j-the distributions Pi, Qj, the two rewards R(0, j) and 
R(1, j), and the discount factor /3. Gittins definition of Gj will be given in 
the next section. The following theorem is Gittins main result [4, Theorem 21 
in this special case. See also Whittle [7] for a simpler proof. 

THEOREM 1. A policy which at each stage n chooses A(n + 1) equal to a 
value j which maximizes Gj( rj(n)) is optimal. 

2. STOPPING FQOBLEMS FOR SIMPLE AMS 

From Gittins result, arms may be considered separately. For this section 
we will consider isolated arms. 8 will be a Bernoulli parameter, and given 8, 
x,, x*9... will be i.i.d. with 

x,le = 0 - P 

and 

X,$9 = 1 - Q. 

{3I>n20 will be the filtration associated with the X,,, i.e., 9n = 
0(X1,..., X, }. Let ?r = P( 8 = 1) and define 

7-l 
v(Tr, p, A) = supE npr + c (r,(l - e) + r,e)p 

7 tl==O 
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where the supremum is over all extended stopping times with respect to the 
filtration { 9”). Gittins index can be defined in terms of the values for these 
stopping problems by 

G(r) = (1 - fi)inf{ A: V(a, p,A) = A}. 

These stopping problems are closely related to a stopping problem studied 
by Lorden [6]. Let 

where q, and ci are positive constants and the infimum is over extended 
stopping times with respect to { Fn }. Define 

> 11e = 1 

+P 
dQ" 
- > 11e = 0 
dP” - 

. 

Here dP”/dQ” denotes the likelihood ratio, 

dP” 
-@=Ij$Cxi)* 

log$(Xi)le = 0 log$(X,)lB = 1 

the i.i.d. structure we can write 

L = exp - 2 I{ P*“([ - cc,O]) + (2*“((0, co])} 
n=l n 

where * denotes convolution. As noted in Lorden, l/L is the product of 
expected ladder times for random walks generated by P and 0. the 
following result is Lemma 1 of Lorden [6]. 

LEMMA 1. R(a) < q,(l - m) if and onb if (1 - r) c,L > rrcl. 

A similar result holds for a discounted version of this problem. Let 

and 
i 

7-I 
R(n, p) = infE ~~(1 - e)p + cl8 C j3” 

7 n=O i 

L(p) = L(jl, P,Q) = exp - f T{P*“([-m,O]) + ~*“((O,CXJ])}. 
n-1 
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COROLLARY 1. R(s,p) -c c&l - n) # and only if (1 - n)c&(& > 
7X1. 

Proof Let si = P(B = 11X,). From standard results in dynamic pro- 
gramming, R(n) and R( B, fi) are unique solutions of the equations 

and 

R(7r) = min{ cO(l - n), cir + ER(m,)} 

R(a, a) = min{ co(l - n), cp + BER(q, P)}. 

Using Bayes theorem, 

Jwq) = JRb/[ s + (1 - n)e’]}{ a&(x) + (I - fl)dp(x)}. 

Now, if we define k = @ + (1 - p)S, and Q = PQ + (1 - p)S-, where 
s + o3 are point measures on + cc, then using R(0, fi) = R(1, /3) = 0, we 
can write 

PW% P) = JR{4 a + (1 - 7+X], p}{ B&(X) + (1 - 7+.@(x)}. 

Hence R(s, /I>, satisfies the same defining equation as R(n) with P replac- 
ing P and Q reelacing Q. The corollary now follows easily since 
P*“([ - co, 01) = /3”[*“([ -fi~,O]) and Q*“((O, co]) = B”Q*“((O, co]). It is 
worth noting that P and Q are distributions for a log likelihood when at 
stage n, in addition to observing X,,, a variable Y, is observed which is 
uninformative with probability /3 and is completely informative otherwise. 
From this observation a probabilistic proof of the corollary could be 
obtained. 

The following result expresses Gittins index as a function of the prior rr, 
the rewards r, and r2, the discount factor /I, and L(p). 

THEOREM 2. Zf r,, 2 rl, the Gittins index is given by 

rdl - P) + cdl - g>L(B) 

Gb) = 7r(l - /3) + (1 - Ir)L@) * 

Proof: First note that if (1 - /I)A 2 r0 then V(Q, /3, A) = A(r = 0 is 
optimal) and if (1 - p)A I rl, V(T, /3, A) = (vrI + (1 - Ir)r,)/(l - /3) 
< A( 7 = cc is optimal). Hence the Gittins index must lie in [rl, rO] and we 
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need only consider A E (rl, ro)/(l - fi). After some algebra 
7-l 

E A/3’ + C (r,(l - 0) + r18)/3” 
n=O 

“y--;)) -E{(+A)(l+’ 

r-l 

+((I - PM - r,)e C P” 
n=O I 

Letting ci = (1 - p)A - rl and co = -A + r,/(l - /3), for (1 - p)A E 
(rl, ro), both co and c1 are positive and 

V(a, p, A) = 
rot1 - r) 

1 _ p + VA - R(r* P). 

Now V(rr, p, A) = A if and only if R(s, j3) = c,(l - n), and by the 
corollary this happens if and only if 

(1 - r)( j-+j - AIL(p) I~r((l - jI)A - rl). 

The theorem follows. 
A few special cases of Theorem 2 are of interest. If the expected reward 

from playing an arm does not vary with time (except through the discount- 
ing) the arm is called $xed. This happens if s = 0 or 1, or if r. = rl = r. 
The Gittins indices in these three cases are ro, rl, and r, respectively. An 
arm is also fixed if the observations associated with the arm are completely 
uninformative, i.e., P = Q. In this case P*fl and Q*” are point distributions 
concentrated on 0, and L(p) = (1 - p). In this case G(r) = m1 + (1 - 
r)ro, which remains constant over time since 7~,, = 77 for all n. Finally, if P 
and Q are singular, so observations are completely informative, i)*” and 
Q - ** are point distributions concentrated on + cc and - 00, respectively. 
This gives L(B) = 1 and G(n) = ml + (1 - v)ro + @(r. - r1)7r(1 - 
s)/(l - r/3). The last term here is the value of the information from the 
potential observation. That Theorem 1 holds for two armed bandits with 
one fixed arm and one completely informative arm can be easily checked by 
direct computation. 
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