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A~traet--This paper presents the solution for minimum-fuel, free-time transfer between coplanar 
elliptical orbits with the possible use of a planetary atmosphere to generate a decelerative braking force. 
The optimal pure propulsive two-impulse transfer is first considered. It is shown that the solution is 
obtained by solving a set of three equations for three unknowns. Reduction of the general equations is 
made for the case of symmetrical transfer and a complete first-order solution is provided for the case of 
transfer from nearly circular orbit. In aeroassisted transfer atmospheric braking at the perigee can be used 
to circularize the orbit, and in the circular configuration the orbit can be arbitrarily rotated without fuel 
consumption. It is shown that complete circularization of this intermediary orbit is optimal only when 
the rotation angle is large, and an explicit formula for evaluating this critical angle is provided. A complete 
solution is presented for the case of optimal rotation of an orbit. Finally, an example of optimal 
aeroassisted transfer is provided for the case of a transfer from a low-energy orbit to a high-energy orbit. 

1. INTRODUCTION 

With the advent of the Orbital Transfer Vehicle 
(OTV), there is a current research interest in the 
analysis of combined aerodynamic and propulsive 
maneuver as a technique for reduction of the fuel 
consumption in orbital transfer. The classical results 
have been presented in two recent survey papers[I,2]. 
As is usually the case for pioneering work, up to now 
the authors concentrated their efforts on the cases 
where the use of atmospheric passages is clearly 
advantageous. These are the case of transfer from a 
high orbit to a low orbit, and the case of transfer 
between noncoplanar circular orbits with large plane 
change. Furthermore, there has been little use of 
the outstanding results of the theory of optimal 
space trajectories obtained during the last two 
decades [3-6]. 

As a new initiative in the integration of the theory 
of optimal propulsive transfer into the theory of 
aeroassisted transfer, it is proposed to solve in this 
paper the problem of orbital transfer between co- 
planar elliptical orbits. First, the pure propulsive 
transfer is analyzed with the restriction of two im- 
pulses for the transfer. The optimal switching condi- 
tions are reviewed, and it is shown that the solution 
is obtained by solving a set of three nonlinear equa- 
tions for three unknowns. Next, in order to show that 
aeroassisted transfer can still be fuel optimal in the 
planar case when the energy of the final orbit is equal 
to the energy of the initial orbit, we consider the 
problem of planar.rotation of an orbit. A semi- 
analytical solution is obtained for the pure propulsive 

tPaper presented at the 36th Congress of the International 
Astronautical Federation, Stockholm, Sweden, 7-12 Octo- 
ber 1985. 

maneuver. By comparing its optimal solution with a 
simple scheme for aeroassisted transfer it is shown 
that, for high eccentricity and rotation angle, aero- 
assisted transfer is a fuel saving maneuver. In the 
aeroassisted transfer, only the drag is required. It is 
used to circularize the orbit, and hence in this inter- 
mediary orbit configuration, the rotation of the 
apsidal line can be achieved without fuel con- 
sumption. Several graphs are generated showing 
different regions of optimality. In the next step, it is 
shown that in the optimal aeroassisted transfer, com- 
plete circularization of the intermediate orbit is not 
necessary. An analytical proof is presented, giving an 
explicit condition for noncircularization. Finally, a 
complete numerical solution is presented for a case of 
optimal aeroassisted transfer from a low-energy orbit 
to a high-energy orbit. 

2. PURE PROPULSIVE TRANSFER 

The theory of optimal propulsive transfer between 
orbits is very complete and has been masterfully 
presented by Marec[6] in his monograph on optimal 
space trajectories. For planar transfer we consider the 
configuration of the orbits as shown in Fig. 1. 

The initial orbit O1 and the final orbit 02 are given. 
These are defined by the orbital elements e~, p~, e2, P2 
and the angle ct between the apsidal lines from Ol to 
02. Let 11 and 12 be the location of the impulses as 
defined by the true anomalies 01 and 02 on the initial 
and the final orbit, respectively. If rl and r 2 are the 
radial distances, we have 

Pl P2 
r l = l + e l c o s 0 1 '  r2--1+e2cos02 (1) 
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O 

Fig. 1. Configuration of the terminal orbits. 

There are three opt imal  condit ions relating the 
elements at the impulses. They are obtained along the 
transfer orbit  O with unknown elements e, p and eg. 
Of  course, co denotes the argument  of the perigee of 
the transfer orbit,  measured from the perigee of  the 
initial orbit,  Let 491 and 492 be the thrust angles 
measured from the local horizontal  (Fig. 2). 

Let 

S, = sin 49, Ti = cos 49i (2) 

be the direction cosines of  the impulses. On the 
transfer orbit,  the impulses are located by the true 
anomal iesf l  and f2. Let A be the transfer angle. F rom 
Figs 1 and 2, we have 

A = f :  - f I  = c~ + 0 2 - 01. (3) 

Fo r  the present analysis, it is convenient to use the 
three opt imal  condit ions as obtained by Vinh[4]. 
They are 

(2 + X l ) K  I - -  (1 + x l ) T  1 = (2 + Xz)K 2 

- (1 + x2)T~ " (4) 

[y~ T, - (1 + Xl)S~I(T, -- K,) = S, T~ (5) 

[y2T2 - (1 + x2)S2](r 2 - K2) = $2T2 (6) 

a¢I 

Fig. 2. Impulses on the transfer orbit. 

where, by definition 

l + x , =  l + e c o s f = P - = - P - ( 1  --e~cosO ) (7 
F~ /'2j 

y, = e sin f (g) 

S 2 - S~ cos A 5) cos A - S~ 
KI - K2 - i9) 

sin A sin A 

Furthermore,  by using the velocity diagram at the 
impulse, we have the relations 

= r, f _vl - '-~= sin 0 , )  (10) 
tan 491 (w/P ~ xfP~) \~P ..... ,fP! , 

tan 492 - (x/P ~'r2 x~2) I ~ -  )" ,V'P:e~ sin 02' ), (111 

It now appears that  instead of  using eleven unknowns 
for solving this problem as suggested by Lawden[3], 
we can simply choose three unknowns namely 0j, 0~ 
and p, and solve for them using the three eqns (4), (5) 
and (6). In these equations (1 + xi) are explicit func- 
tions of p and 0i as shown in eqn (7). As for y~ they 
are given explicitly as functions of p and 0~ by the 
identities 

A 1 [ p  _ p ]  (12) ) ' l = t a n ~ + ~  ~ c o s A  r~'_l 

- tan 2- + si--n-A A 1 [ _p ] y2=  rl--P--cosAr2 13) 

Upon  substituting into eqns (10) and (1 1), we can 
evaluate tan 49~ and hence Si and T,. This gives K~ as 
functions of the same three variables. Once the 
problem has been solved, the eccentricity of  the 
transfer orbit  is obtained from 

e Z = x ~ + ) ' ~  (14) 

while its argument  of the perigee is given by 

o) = 01 - f~, tanf~ = ydx~ (15) 

The characteristic velocities required for the transfer 
are computed from 

r I Cos 491 

4; (,/p; = - x / P )  (16) 
" r 2 COS 492 

where /x is the gravitational constant.  
Explicit solution can only be obtained for some 

special cases involving circular orbits or coaxial or- 
bits. Reduction of  the equations can also be obtained 
when the transfer displays a certain elements of 
symmetry. For  the general cases, a numerical pro- 
gram has been written to routinely solve the system. 
We have also solved the problem in the case where 
the initial orbit  is nearly circular. Its solution to the 
first order in the small eccentricity is the basis for our 
p roof  of noncircularization in aeroassisted transfer. 
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Fig. 3. Symmetric transfer. 

3. OPTIMAL ROTATION OF ORBIT 

We consider the case where the terminal orbits 
have the same shape and size, that is e2 = el, P2 = Pl. 
It is proposed to rotate the orbit by the prescribed 
angle ct with minimum fuel consumption. 

We first consider the case of pure propulsive 
transfer. 

The transfer is symmetric (Fig. 3) and we trivially 
have 

0 ) = 5 ,  02 = 27Z --  01, S2=81,  T 2 = - - T  1 

K2=--KI ,  f z = 2 n - - f l ,  X 2 : X l ,  y 2 = - y l ( 1 7 )  

Because of this symmetry, eqns (5) and (6), (10) 
and (11), (12) and (13) are identical to each other. 
There are only two unknowns which we choose to be 

1 1 
X -  

1 + x, = 1 + e  cosf~ 

X / ~  X/ pl (18) Y = ~-" ~',(l "~ X,) 

Using relations (17) and the definition of X, we write 
eqn (4) as 

tan 4'1 tan (A/2) = 1/(1 + X) (19) 

Similarly, we write eqn (5) as 

[y, - ( l /X)  tan 4'd[1 - tan 4', tan (A/2)] = tan 4', (20) 

Next, we transform eqns (10) and (12) into 

tan 4', = [X/(1 - Y)] [y, - (1/Y)e, sin 01] (21) 

and 

YI = [(X - 1)/X] tan (A/Z) (22) 

To these equations we add eqn (7) written as 

e, cos 01 = y2/X -- 1. (23) 

To solve the system, we first eliminate y, between 
eqns (20) and (22) to obtain 

[(X - 1) tan (A/2) - tan 4'1] 

x [1 - tan 4', tan (A/2)] = X tan 4'1 

By using eqn (19) for simplification, this results in 

(X - 1) tan (A/2) = (2 + X) tan 4', (24) 

Combining eqns (19) and (24), we have the equation 
for the thrust angle 

tan2 4'1 (X -- 1) (25) 
(X + 1)(X + 2) 

which shows that the maximum/xpossible thrust angle 
is such that tan 4'max = X/~ -- X/2, 4'max = 17.632 194 °. 
If we use eqn (22) in eqn (21), with the aid of eqns 
(24) and (25), we obtain 

s i n 0 1 - Y ( X + Y + l ) [  ( X - l )  el (26) 
X ~/(X + I)(X + 2) 

Squaring eqns (23) and (26) and adding, we have 

y2(X + Y + I ) z ( X -  I) ( y 2 _ x ) 2  
e2 = X2(X + 1)(X + 2) q X z (27) 

On the other hand, using the same two equations to 
eliminate el and noticing that 0, = f l  +(~t/2), we 

come up with another equation 

(X - 1)[XY 2 - (X + 1) Y - X ( X  + 1)] tan (ct/2) 

= (X + 1)[(2X + 1) y2 

+ ( X  2 - 1) Y - X(X  + 2)] 

× / (Y_=P 
~/(X + 1)(X + 2) (28) 

For given el and ~, eqns (27) and (28) can be solved 
for X and Y. The pertinent elements of the optimal 
transfer orbit can be deduced. In particular, the total 
minimum characteristic velocity for the two-impulse 
transfer can be obtained from eqn 06 )  written as 

AV n EAV i 2Y(1 - Y) 
(29) xcos4'  

This min imum cost for two-impulse transfer has to 
be compared with the cost via parabolic orbits. In this 
mode, called the P mode, the vehicle is sent into a 
parabolic orbit where the rotation can be achieved at 
large distance with infinitesimal cost. The last phase 
of the transfer is the return from parabolic orbit to 
the final elliptic orbit. The total cost for this transfer 
is 

AVe = 2 [ x / ~ + e l ) _ (  1 +e l ) ]  (30) 

Now, if we assume that the planet around which 
the transfer is being performed is surrounded by an 
atmosphere with radius R <_ rp,, where rp, is the 
perigee distance of the initial orbit, the following 
aeroassisted scheme may be considered. First, a de- 
celerative impulse is applied tangentially at the apo- 
gee of the initial orbit to lower the perigee to the 
distance R. At this distance, atmospheric drag will act 
to progressively reduce the apogee without fuel con- 
sumption. Once the orbit is circularized, we can freely 
select the new direction for the apsidal line to coin- 
cide with the one of the final orbit. The final maneu- 
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ver is a Hohmann transfer from circular orbit with 
radius R to the final orbit. This aeroassisted transfer 
is independent of the rotation angle ~ and hence may 
result in fuel savings for large ~. The toal cost for this 
aeroassisted transfer can be easily computed to be 

AVA~ 
_ _ -  2 ( 1  - -  e ~ ) - -  ~/n(1 + e~) + [ n ( 1  + e~ )  

- 2 ( 1 - e j ) ]  (1 + e i ) + ( 1 - e , )  (31) 

where n is the ratio of the perigee distance to the 
radius of the atmosphere 

n = r r , /R  (32) 

This aeroassisted mode is called the AE mode for the 
reason that the reentry trajectory is elliptic. It should 
be noticed that a complete circularization for rotation 
is not necessary. This is because of the fact that 
although the rotation is effected without cost when 
the orbit is circular, additional fuel is required in the 
last phase for climbing to the final elliptic orbit. The 
condition for this trade-off will be given in explicit 
form in the next section. 

Another aeroassisted mode, called the AP mode, 
can be considered as follows• The vehicle is initially 
propelled into a parabola where the rotation can be 
effected without fuel consumption, just as for the P 
mode. Then, after the rotation, an infinitesimal im- 
pulse is applied to return the vehicle for grazing the 
atmosphere. In subsequent orbit decay, the apogee is 
reduced to the level of the final orbit where an 
accelerative impulse is applied to bring the perigee 
from R to the final value r.,. The total cost for this 
aeroassisted transfer is computed to be 

AVAp____ _ V / ~  + el ) _ 2el - (1 - et) 
v" ,/p, 

~-n 2 (33) 
x (1 +e l )  +(1 - e l )  

We have compared the different modes of transfer 
and the results of this investigation are summarized 
in Figs 4-6. First, the optimal pure propulsive trans- 
fer is assessed, and it depends on the eccentricity 
e~ = e2 of the terminal orbits and the rotation angle 
~. In Fig. 4, the dashed line is the line of equality 

06~- ~ ~ _  ~ , ~ P ~  . . . . . . . .  

I I I I I I 
o* lo ° 2o ° 3o ° 40' 5o* 60* 7o ° 80" 90* 

a / 2  

Fig. 4. Optimal regions for n = 1. 

0 4  ~ 17 

02~- n, lo4 L .~E 

ooL-- l I I i i _ ~ _ . _ ~ . _ _ _  
0 ° 10" 2 0  ° 3 0 "  4 0 *  5Q ° 6 0  ° 70  ° 

a/2 

Fig. 5. Optimal regions for n -= 1.04 

80 ° 90 ° 

between the two-impulse transfer, called the 1I mode 
and the parabolic mode. Above this line, the P mode 
is better, and in the (c~/2, e~) space it is seen that the 
II mode is optimal over a large region. 

The figure also displays the optimal regions for the 
aeroassisted transfer in the most favorable case of 
n = 1, that is when the perigees of the terminal orbits 
are slightly above the sensible atmosphere. Then in 
the AE mode, the circularization and the rotation are 
achieved without fuel consumption, and the cost for 
this transfer is simply the cost for the Hohmann 
transfer from the circular orbit with radius R to the 
final orbit. As for the AP mode, its cost is exactly the 
half of the cost for the P mode. Hence the P mode is 
eliminated when aeroassisted transfer is introduced, 
and we have the result as shown on the graph. The 
optimal region for the II mode is severely restricted. 
The AE mode and the AP mode are equal when 

eL = ¼(2x/~-  11}=0.457 10678 (34) 

In the figure, it should be noticed that the ~/2 axis 
(that is the line e~ = 0) is the line of equality between 
the II mode and the AE mode, since at this limit the 
cost is zero for both these modes. This brings up an 
interesting feature for the aeroassisted transfer be- 
tween orbits with low perigees as shown in Fig. 5 for 
the case where n = 1.04. As the perigee increases, the 
region of optimality for the II mode expands at the 
expense of the AP mode and the AE mode. As a 
general rule, aeroassisted transfer is optimal when the 

eccentricity is high and/or the transfer angle is large. 
But in the case of low perigee, n ~, 1, there exists a 
range of rotation angles ~, where as we increase the 
eccentricity from zero, the optimal mode changes 
from the II mode to the AE mode and comes back 
to the II mode before changing to the AP mode at 
high values of the eccentricity. 

When we increase the ratio n = rp, /R from unity to 
higher values the optimal regions change as shown in 
Fig. 6. The two-impulse mode always exists. 

In Fig. 6a, we have the case where 
1 < n < 1.181 962. Aeroassisted transfer consists of 
the AP mode and the AE mode with high eccentricity 
for the AP mode. Let 

~ n  2n(1 +e~) (351 
x =  ( l + e 0 + ( 1 - - e ~ )  
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Fig. 6. Behavior of the optimal regions in terms of n. 

For  each value of  n, by writ ing the equali ty of  the 
costs between the AP mode  and  the A E  mode,  we 
have the cubic equa t ion  

2 /2 = 4 x  3 - 4 x  2 - 5 x  + 4 
(36) 

2x 2 - x - 2 

U p o n  solving for x, f rom eqn (35) we deduce the 
value of  el where the two modes  are equal  

(n + l )x  2 _ 2n 
e l -  2n - ( n  - 1 ) X  2 (37) 

When  n = l, we have the exact solut ion (34). 
In Fig. 6a, below a certain eccentricity, aeroassisted 

t ransfer  is no  longer optimal.  This value is obta ined  
by compar ing  the AE mode  with the II mode  when  

= 180 °. This corresponds  to the m a x i m u m  value for 
the cost of  the two-impulse t ransfer  

A V[, = 2 ix /1  _ el - (1 - e 0 ]  (38) 

Equat ing  the two equat ions  (31) and  (38), we have 
the equa t ion  for comput ing  x. 

2 x / 2  - x 2 + (4 + x - 3x 2) 

= 4 ( 2 - x  2) 2 n - ( n - 1 ) x  2 (39) 

The value of  the limiting eccentricity is given by eqn 
(37). As n increases, the A E  region decreases and  
disappears  when 

x = 1 .19785478 

n = 1.181 961 53 

ej = 0.364 687 63 (40) 

This solution is obta ined  by solving the two equa- 
t ions (36) and  (39) for x and  n. 

Fo r  the value of  n in the range 1 . 1 8 2 < n < 4  
besides the II mode, only the AP mode is available 
(Fig. 6b). A t  ct = 180 °, the II mode  and  the A P  mode 
are equal  when  

+ (c - 3) 1 
(41) 

where 

c = ( 1  + e l ) / ( l  - - e l )  (42) 

When  n > 4, the P mode  begins to appear  at  high 
eccentricity at the expense of  the AP mode  (Fig. 6c). 
We have the equali ty of  these two modes  when 

e I = (4 + 4n - n2)/(4 - 4n + rt 2) (43) 

In terms of  c, we have 

c = 4 / n  (n  - 4) (44) 

The AP mode  disappears  at  a value of  n satisfying 
bo th  the two eqns (41) and  (44). By el iminat ing ¢, we 
have a cubic equa t ion  

n a + 4n 2 -  28n - 32 = 0 (45) 

with the solution 

n = 4.282 672 23 

el = 0 . 5 3 5  334 03 (46) 

When  n > 4.283, aeroassisted t ransfer  is no longer 
opt imal  (Fig. 6d). 
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4. OPTIMAL TRANSFER FROM NEARLY 
CIRCULAR ORBIT 

It has been mentioned that in the orbit contraction 
process the oribit needs not be circularized. The 
reason is that although the rotation is made free of  
fuel consumption when the orbit is circular, circu- 
larizing involves additional cost to increase the en- 
ergy from low circular orbit to the final energy This 
trade off requires finding the optimal configuration of  
the contracting orbit. This will be done numericall 3 
in the next section with a specific example. Here we 
shall give an analytic solution to the equations m 
Section 2 for the case where the eccentricity of the 
initial orbit is small, that is e~ = ~. From the solution 
to the first order in ~, we easily derive the condition 
for noncircularization, 

The perigee of  the first orbit is fixed at the top of  
the atmosphere at distance r,, = R = l/d. Hence we 
have 

P/ - -  ( I +- ( ) , , ' d  (47) 

We assume that ~ <~ 1. The other given quantities, e2, 
P2 and ~, are arbitrary. It is convenient to change the 
notation with the definition 

,;<-- l / r ,  q, = 1,,'pi, q = l ip  (48) 

When the initial orbit is circular, { = 0, and we have 
the Hohmann transfer used as a reference solution 

0 , = 5 ,  ( L = n ,  k = n  

. 1 1 = 0 . . 1 2 - - n ,  4,~=0, 4 , 2 = 0  (49) 

To ease the notation, in the equations in the second 
section, we use the symbols ,%, &, g/, O , , ~ , f ,  4,i to 
denote the unknowns and calculate to the first order 
in ( 

2; = s, + ~s; 

$,= 4,+~ 4,; (50) 

where s~, . . . ,  4,~ denote the reference solution. With 

this, we write eqns (1) as 

d 
51 -}- {'gl [1 -4- ~ COS (~  -{- E 0'1) ] 

(I  + ( )  

s 2 + es~ = q2[I - e2 cos ~ 02] (51) 

Identifying the coefficients of  ~ 0. ~, we obtain 

s~=d.  .v i = - 2 d s i n : ( ~ / 2 )  

s 2 = k d ,  s ~ = 0  (52) 

where 

k = [q2(1 - e2 ) ] /d  = r,,/r,,: (53) 

is the ratio of  the perigee distance of  the first orbit to 
the apogee distance of  the second orbit. 

Next, we write eqn (7) as 

S 1 -~ ES' 1 = (q + cq ' ) [ l  + (e + ¢e') cos Efl] 

s z + e s ' 2 = ( q  + E q ' ) [ l - - ( e  + E e ' ) c o s E f ~ ]  (54) 

We easily deduce the solution 

q = (d!2) ( l  + k), q = - -d  sin: I ~ 2 )  

4~ 
e = ( t - k ) ; ( I  + k ) ,  { . . . . . . . . . . . . .  :-=~sin:(~ 2) (55) 

4 R " 

As seen from eqn (16), this is sufficient for evaluating 
the characteristic velocity to the first order in {. 
Define the new dimensionless characteristic velocities 
as 

AV~ A~ i 

\, P/ri,, x Pd 

From eqn (16), we have 

x sin 2 c~ 1 ]  
2 2 ]  

;--2 , 

x sin 2 (~!2) 

(1 +- 2k) /;_2._"i 
(l+k)~l+k/ 

(57) 

The total characteristic velocity for a transfer from 
nearly circular orbit is 

At; = At! H + 6(Al') (58) 

where Arn is the cost for the Hohmann  transfer 
f -~ - -  

, (59) 

and the perturbed fuel consumption is represented by 

(~(Av) = E ---1, + x /2  sm | \ ,%.  (60) 
- \/'(1 + k ) U J  

If 6 ( A v )  < O, it is advantageous ['or the first orbit to 
remain elliptic. Hence the condition for a complete 
circularization to be nonoptimal  is that 

,5[ (1-+3k)] (61) 
s i w ~  ~/'2 X . ~ . ]  < 4 

In particular, if k >0.043 584, the condition is 
satisfied for any value of  ~. 

To obta in  a complete solution, we shall evaluate 
the angular  variables 0~, f ~ ,  ~ and aJ', 

We notice that 

= n + ~A' = ~ + ~ ( 0 ~ -  0'1) = rr + e ( ] ' ~ - / ' i )  (62) 

Then, to the first order in {, from definition (9) 

K , = - ( 4 ' ' ~ + 4 ' I ) / A ' = K ,  K 2 = - K  {63) 

To the first order in ~, we linearize eqn (4) to be 

( 2 + e ) K - ( 1  + e )  = --(2 - e ) K -  (1 - - e )  

Solving for K with solution (55) far e, we obtain 

2(1 + k) 
0 ~ - 0 1 = A '  ( 4 ' ' , + 4 ' ~ ) =  f ~ - - / i .  (64) 

(1 - k )  

156} 

X/(I + kY: 
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the coefficients of E in eqns (5), (6), (10) and 

(65) 

(66) 

(67) 

Equating 
(11), and noticing that 2K = e, we have 

[ e f ~ - ( l + e ) 4 ' ~ ] ( 2 - e ) = 2 4 ' ~  

[eft + (1 - e) 4't](2 + e) = - 2 4't 

-'E(lq - \fq~t) 4 ' i e f ~ =  - ~f~ sin c~ 

Sq - q 4 ' ' -  e20~ k / ~  (68) 

Equations (65) and (67) can be solved forf~ and 4"1. 
We have 

(1 + 3k) sin 
(69) 

(1 + 3k) + x / ~ i  4-k)  3 

and 

f ~  = 
2(k 2 + 5k + 2) sin 

(70) 
(1 - k)[(1 q- 3k) 4- ~ 4- k) 3] 

Then eqns (64) and (66) give f t  and 4'~. We have 

(3 + k) ( l  + 2k) sin a 
4'~ = (71) 

( 2 + k ) [ ( l  + 3 k ) + , , / ~ + k )  3] 

and 

2(2k 2 + 5k + 1)(1 + 2k)s in~ 
f t  = (72) 

(1 - k)(2 + k) [(1 + 3k) + ~ + k) 3] 
From eqn (68) we obtain 

(1 + k )  
e2 0t = - (1 - e2) 4- (3 + k----) 

~/2(1 + k)(1 - e2)] 

The variation in the transfer angle is 

2(1 4- k)(5k 2 4- 14k 4- 5) sin c~ 

(73) 

(1 - k)(2 + k ) [ ( l  + 3k) + ~ + k)'] 

(74) 

From this we deduce 0~ = 0 t - A '  and also the 
variation of the argument of the perigee of the 
transfer orbit from eqn (15) as c o ' = 0 ~ -  

f~  = 0t - f t .  
The linearized solution we have derived is for the 

case where rp2 > rp, = R. In the reference solution, 
4'2 = 0 and the second impulse is an accelerative 
impulse. In the case where rp, t> rp2, in the reference 
solution 4'2 = n, and the second impulse is a de- 
celerative impulse. Again, we use rp, as the reference 
distance to obtain the linearized solution applicable 
to this case. For  ri, p and e, we have the same 
solution, eqns (52) and (55) as before. For  the 
characteristic velocities as given by eqn (57), Av I is the 
same but for Av2, we must change the sign on the 
right hand side. The characteristic velocity for the 
Hohmann  transfer is now 

A v u = x / ~ + k ) - x / - ~ - e : ) - I  (75) 

For a slightly elliptic initial orbit with eccentricity 

el = E, the perturbed fuel consumption is 

N / l ~ k )  sm ~ j  (76) 

Hence we now have the condition for non- 
circularization 

2 - sin 2 ~ < ~ (77) 

The formulas for the angular variables 0;, f ; ,  4'~ and 
co' are different. First we have 

sin 
4'~ - (78) 

From this, we compute the other variables 

2(2 + 
f~ - (1 - kk) ) 4'; 

(1 + 2k) , ,  
4';- 

2(1 + 2k) 2 
f t  = (1 - k)(2 + k) 4'~' (79) 

The perturbation in the transfer angle is 

6(1 + k) 
A' = - -  4,~ (80)  

(2 + k )  

Then, as before, we have 0~ = 0~ - A ' ,  ¢o' = 0~ - f ~ ,  
but now with 

e2 0~ = (1 + 2k) 
(2 + k )  

x [ ( 1 - - e 2 ) +  / 2 ( l + k ) ( 1 - e 2 )  1 k 4'~ (81) 

As will be tested in the next section, besides the exact 
condition for noncircularization as given explicitly in 
eqns (61) or (77), the linearized solutions are fairly 
accurate for small values of E. 

5. NUMERICAL EXAMPLES 

As numerical examples, we first consider the prob- 
lem of rotation of an orbit through an angle ~ = 80 °. 
For  the terminal orbits, we have Pl =P2 = 1.5 and 
el = e: = 0.5. Hence rp, =pl / (1  + el) = 1 = rp2. For a 
pure propulsive transfer, we obtain 01 = 145.699 °, 
02 = 360 ° - 0~ = 214.301 ° and p = 2.289 25. This re- 
quires a characteristic velocity Avu = 0.227 59. It 
should be noticed that in this section, we use the 
circular speed at the distance rp, = 1 as the reference 
speed. The parabolic transfer costs Avp = 0.378 94. 
Hence, for pure propulsive transfer, the two-impulse 
mode is optimal. If we assume that the perigees of the 
terminal orbits are at the realm of the atmosphere, 
then circularization of the initial orbit is effected 
without fuel consumption and the cost for aero- 
assisted transfer is the cost for the Hohmann  transfer 
as computed from eqn (75) with k = 1/3. This gives 
AVAE = 0.224 74. Hence this aeroassisted transfer by 
complete circularization is better although the fuel 
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Fig. 7. Characteristic velocity of the two-impulse transfer as 
function of the initial eccentricity. 

saving is small. As seen in Fig. 4, the optimal mode 
is the AP mode which costs AVAp = 0.189 47, but is 
not  practical for finite time transfer. 

Now, if we check the condit ion (77), we find that 
complete circularization is non optimal up to the 
value ~ = 106.852 °. Therefore, AVAE can be reduced 
by stopping the orbit decay process at a certain 
optimal value e* > 0 of the starting elliptical orbit. 
The min imum cost for aeroassisted transfer will be 
the cost for the two-impulse transfer between this 
orbit and the final orbit. With p~ = 1 + e~, P2 = 1.5, 
e 2 = 0.5 and ~ = 80 ° and using the equations in the 
second section, we have solved the problem for 
several values of el from e~ = 0.5 to e~ = 0. The total 
characteristic velocity is plotted versus e~ in Fig. 7. It 
has been found that the optimal value of e~ is 
e * = 0 . 2 2 .  The corresponding min imum cost for 
aeroassisted transfer is AVAE = 0.206 07. As compared 
to the pure propulsive transfer, this amounts  to a fuel 
savings of about  9.5%. 

In the figure, we have plotted in dashed line the 
characteristic velocity using the linearized theory for 
small eccentricity as given by eqns (75) and (76). The 
line is in fact the tangent to the curve displaying the 
exact solution, and as such, it correctly predicts the 
nonoptimali ty of the solution by circularization. 

As another example, we consider the case of trans- 
fer from an initial orbit with Pl = 1.442, e~ = 0.4 to a 
final orbit with P2 = 1.560, e 2 = 0.5 with a rotat ion of 
apsidal line ofct = 120 °. With this, we have rp, = 1.03, 
r ,~=2.40333,  a j = 1 . 7 1 6 6 7 ,  rp2=l .04,  r ,2=3.12,  
a2 = 2.08. Hence this is the case of a transfer from a 
low-energy orbit to a high-energy orbit. Here the 
radius of the atmosphere is the unit  distance and the 
circular speed at this distance is the unit  speed. 

For  the pure propulsive transfer by two impulses 
we obtain the solution 0~ = 154.9832 °, 02= 
197.4696 °, p = 2.484 54, with a total characteristic 
velocity Avn = 0.276 50. This is the optimal solution, 
since the transfer via parabolic orbits requires much 
higher cost. For  aeroassisted transfer using the AE 
mode, we first use a decelerative impulse at the 
apogee of the initial orbit to reduce the perigee to the 
distance rp = R = 1. This necessitates an impulse with 
magnitude Av~ =0.005 17. With complete circular- 

ization the remaining cost for the transfer is the cost 
for Hohmann  transfer from low circular orbit to the 
final orbit such that At'2 + At~ = 0~230 68 + 0.005 87. 
The total cost for aeroassisted transfer is then 
AVAE = Av~ + Av2 + Av3 = 0.241 72. This represents a 
fuel saving of 12.6%, which is significant considering 
the fact that this is a transfer from a low-energy orbit 
to a high-energy orbit. Since in this case, k = 1,3.!2, 
by condition (61), complete circularization is non- 
optimal. It has been found that, during the decay 
process for reducing the eccentricity of the initial 
orbit, the best value to start the two-impulse transfer 
to the final orbit is e* = 0.026. From this value, the 
cost for the transfer to the final orbit including the 
firsl impulse to initiate the decay process is 
Av*~ = 0.232 12. This represents a saving of 16.1% as 
compared to the pure propulsive maneuver. This 
transfer is optimal, since the AP mode requires a cost 
of ArAp = 0.233 48. 

In the orbit decay process, the two orbits O~ and 
02 become tangential at the value e~ = 0.0258, and in 
the vicinity of this value there is a small range of e~ 
where the two-impulse mode becomes the one- 
impulse optimal mode. The numerical computat ion is 
quite sensitive to the initial guessed values of the 
unknowns 0L, 02 and p. In this respect the linearized 
solutions we have derived are very helpful for the 
first estimate of the solution. Also, it should be 
noticed that in practice, instead of a multirevolution 
process to achieve the desired optimal value e,*, we 
can use a steeper atmospheric entry angle 7, ~ 0 to 
realize this orbit in one atmospheric passage The 
penalty in AV is of the order of 7~. [7]. 

As a final note, for the general case of planar 
transfer between arbitrary elliptical orbits, when the 
eccentricities are high and the perigee of the final 
orbit is low, the AP mode is frequently opt imal  The 
inconvenience is that the transfer time is large even if 
we approximate the parabolas by ellipses with high 
eccentricities. For  that reason, the AE mode with one 
atmospheric passage is the most promising transfer 
scheme in aeroassisted technology. 

6. CONCLUSIONS 

This paper presents the solution for minimum-fuel,  
free-time transfer between coplanar elliptical orbits 
with the possible use of atmospheric passage to 
generate a braking force as a replacement of a 
decelerative impulse. The optimal pure propulsive, 
two-impulse transfer is first considered. It is shown 
that the solution is obtained by solving a set of three 
equations for three unknowns which are taken as the 
true anomalies 0~ and 0 2 of the location of the 
impulses on the initial and the final orbits, re- 
spectively, and the semilatus rectum p of the transfer 
orbit. Reduction of the general equations is made for 
the case of symmetrical transfer and a complete first 
order solution is provided for the case of transfer 
from nearly circular orbit. 
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Next the aeroassisted transfer is discussed and a 
complete solution is presented for the case of the 
rotation of an orbit. Aeroassisted transfer is a fuel 
saving scheme because of the fact that atmospheric 
braking at the perigee can be used to circularize the 
orbit and in the circular configuration the orbit can 
be arbitrarily rotated without fuel consumption. 
Complete circularization is optimal only when the 
rotation angle is large. An explicit formula for evalu- 
ating this critical angle is provided. 

Finally, a complete numerical example is presented 
to show that aeroassisted transfer can be optimal 
even in the case of a transfer from a low-energy orbit 
to a high-energy orbit. 
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