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Given a doubly even binary code of order 2", we define a code loop, a
certain Moufang loop of order 2"+, It is something like “a nonassociative
extraspecial 2-group.” The squaring, commutation, and association
relations are related to the code structure.

The first main result of this paper, Theorem 10, proves existence of the
above sort of Moufang loop. The possibility of doing this was inspired by
Richard Parker’s recent construction of certain Moufang loops and by
Conway’s use of this idea in giving a new construction of the monster and
its nonassociative algebra [2]. Our aim was to make a construction based
on doubly even codes, which are rather familiar objects, and to thereby
extend the domain of this sort of construction. Parker’s approach does not
involve codes. Rather, one is given a vector space V over F, and a subset 2
of ¥ —{0}. Squaring, commutation, and association is based on how many
vectors in certain subspaces lie in 2. A special hypothesis is that every 4-
dimensional space contain evenly many elements of £. This is satisfied by
the set of dodecads in the binary Golay code; that this is so follows from
Proposition 11 of this paper (we do not know of a reference for this fact in
the existing literature). See Definition 13 for an exact statement. Later, we
realized that Parker’s construction and ours involved exactly the same
objects (see Theorem 14). This coincidence was not obvious at first.

Even though we have not created any loops which did not already exist,
our interpretation of these loops puts them in a natural context, hence may
have some value. We know of no other published proof of the construction
of this class of loops. Parker has apparently not circulated his proof. For
some recent developments, see [7].

DeriNITION 1. A loop is a set & with a binary operation ¥ x ¥ —» %
such that % has an identity element and every element of ¥ has a 2-sided
inverse.
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DEeFINITION 2. A loop is Moufang if it satisfies any of these equivalent
properties: (1) xy-zx=(x-yz)x; (2) (xy-z) y=x(y-zy); (3) x(y- xz)=
(xy- x) z; for all loop elements x, y, z.

We recall a basic result. See Bruck [1].

THEOREM 3 (Moufang). If a, b, ¢ are elements of a Moufang loop and
ab-c=a- be, the subloop generated by {a, b, ¢} is a group.

DerFINITION 4. Let V be a subspace of P(Q2), the power set of a finite set
Q regarded as a vector space over F,. We say that Vis doubly even if AeV
implies | 4| =0 (mod 4). Thus, |4 ~ B| is even, for A, Be V.

LEMMA 5. For elements of a doubly even code,

(i) &lxl+ix+yl+3lyl=3lxny| (mod 2).

() HIxl+[yl+lzl+Ix+yl+lp+zl+lz+x[+|x+y+z]} =
[x nynz| (mod 2).

(i) Yxn@@+o) +Ixnunvl =Lxou + ixnv;ixn ¥,
ul + Zi<j|xmuimuj| =327 [xnul (mod 2).

(iv) [(x+y)n(u+v) = |xoul + |ynul + |xnv| + [yno] —
lxnynul + [xnyno| + [xnunvl + |ynunv]) + 4lxnynunl.

DEeFINITION 6. Let V< P(Q) be doubly even. A factor set is a function
¢: VxV—-TF, such that

(S) o(x, x)=4lx|;

(C) ox, »)+o(y, x)=3lxnyl;

(A) o(x,y) + o(x+y,2) + @(y,2) + o(x, y+2) = |xnynz| for
all x, y, ze V.

Two factor sets are equivalent if their difference is expressible as a(x) +
a(y)+ a(x + y), for some function a: V — F, with «(0)=0.

LemMMA 7. For any factor set ¢,

(1) (0, x)=o(x,0)=0;
(i) o(x, y)+o(x, x+y)=jlx];
(iii) o(b,x) + @b, x+d) + @(d, x) + ¢(d, x+b) = 3|bd|, for all
x,y, b, deV.

Proof. (i) In (A), set x=0 to get @0, ¥) + o(y,z) + @(y,z) +
o(0, y+2)=0, ie., that ¢(0, y) is independent of y. Now use (A) with
x =0 to get (0, y)=0, then (C) to get ¢(y, 0)=0.
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(ii) In (A), set y=x to get o(x,x) + ¢0,2) + o(x,z) +
o(x, x+z)=0. Now use (i) and (S).

(iii)) From (A), ¢(b,x) + ob+x,d) + o(x,d) + @b, x+d) =
[xnbnd|. From (C), o(b+x,d) + o(d, b+ x) = {dn(b+x)| = Ydnb|
+ Ydnb| + |[dnbnx| and @(x,d) + o(d, x) = Yxnd|.

NoTaTION 8. (V, ¢) is the set F,x V with binary compositon (¢, x)o
(d, y)=(c+d+(x, y), x+y). At once, (V, @) is a loop. We call it a code
loop.

PROPOSITION 9. A code loop is a Moufang loop.

Proof. The Moufang identity in (¥, ¢) is equivalent to

ox, )+ oz, x)+o(x+y, 2+ x)=0(y,2) + o(x, y+ z) + o(x + y + 2, x).
(1)

Using (A), @(x, y) + ¢(x+y,z+x) + o(y, 2+ x) + ¢o(x,x+y+z) =
[xnyn(x+z)] = |xnynz| and so o(x,y) + ex+y,z+x) =
(3, z+x) + o(x+y+z,x) + [xnynzl + Yxn(x+y+z)|. The last
term equals 3jxny| + |xnz| + |xnynz|. Thus (1) is equivalent to

0=0(zx)+oy2)+olx, y+2)+ oy, z+x)+3xnyl+ilxnzl. (2)
Since ¢(z, x) = @(x, z) + i|x N z|, (2) follows from Lemma 7(iii).

THEOREM 10. Given a doubly even subspace V < P(Q), factor sets exist.
In fact, if n=dim V, there are 2*' ="~ of them. Any two are equivalent.

First Proof. Induction. Choose a chain of subspaces Vo<V, < - <
V,=V,withdim V,=iSet W, =V, ,,—V,, fork=0, 1,..,n— 1. We argue
by induction on k that there is ¢: V, x V, —» F, so that (8), (C), and (A)
hold.

Suppose k=1. Define ¢(x, y)=0 if 0Oe {x, ¥} and ¢(x, x)=1|x|, for
xeV,—{0}.

We now suppose that n—1>k>0 and that ¢ has been defined on
V,x V, and satisfies (S), (C), and (A). We choose xe W,. Consider the
axioms

Q) o(x, y)+o(x, x+y)=4ilx[;
(R) (b, x)+ @b, x+d)+ @(d, x) + @(d, x+ b) = 3|b " d].

These are taken from Lemma 7, and we use them to define ¢ on V%
V1. The definition proceeds in steps.
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(D1) Define ¢ arbitrarily on {x} x V,, but make ¢(x, 0)=0; deduce
the values of ¢ on V, x {x} using (C).

(D2) Deduce ¢ on {x}x W, by imposing (Q) and deduce ¢ on
W, x {x} from (C).

(D3) Deduce ¢ on W, x W, by using (R) with be V', de W,.

(D4) Deduce ¢ on W,x V¥V, by using (Q) with x representing an
arbitrary element of W, and ye V,; deduce ¢ on V, x W, using (C).

We must now check that (S), (C), and (A) hold for this ¢ defined on

Vierx Vi

(S): From (D2), ¢(x, 0)+ ¢(x, x)=1|x| and ¢(x,0)=0 from (D1).
Now take d=x+be W, be V.. From (D3), o(d, d) = ¢(b, x) + ¢(b, b)
+ @b+x,x) + ibn(b+x). From (D1) and (D2), ¢(b,x) +
p(b+x,x) = @(x,b) + o(x,x+b) = ix|. So, ¢(d, d)=1]d| because
o(b, b)=14|b|, by induction, and i|bn(b+x)|=%ibnx| and by Lem-
ma 5(i).

(C): ela, b)+ @(b, a)=1%an b| holds by induction or by definition,
unless a, be W,. Assume, then, that a, be W,. By (D3), ¢(a, b) and ¢(b, a)
were defined by

ob+x,x)+ @b+ x, x+a)+¢(a, x)+¢a b)=3/(b+x)nal, (1)
ela+x,x)+@la+x, x+b)+ @b, x)+ @b, a)=3(a+x)nb|, (2)

respectively. Let R,,.., Ry denote the eight summands on the left side.
From (D1), R, +R,=1%/x|] and R;+ Rs=4|x|. By induction, R,+
Ro=14|(a+ x)n (b + x)|, which by Lemma 5(iv) equals 4|x N b| + 3lan x| +
Ylanb|. Summing (1) and (2) and simplifying their right sides, we get
o(a, b)+ ¢(b, a)=1lan b|, as required.

(A): This is the hardest axiom to check. Define A(a, b, ¢c) = ¢(a, b)
+ @a+b,c) + @b, ¢) + @(a, b+ c). By induction A(a, b,c)=lanbnc|
fora, b, ceV,. Fora, b, ceV,,,, Ala,b,c) + A(b,c,a) + A(c,a,b) =
ela+b,c) + ob+c,a) + o(c+a,b) + ¢la,b+c) + ob,c+a) +
o(c, a+ b). Since (C) holds, this simplifies to

Ala, b, c)+ A(b, c,a) + A(c,a,b)=|anbnc|, (3)

using Lemma 5(iii). We shall prove (A) by studying cases, and (3) will cut
down the work.

Case 1. a, b, ce W,. By definition of ¢(a, b) and ¢(b, ¢), from (D3),
p(b+x,x)+ @b+ x, x+a)+oa x)+o¢la b)=5l(b+x)nal (4)
|

1
2
olc+x, x)+o(c+x, x+b)+ (b, x)=3(c+x)nbl. (5)

481/100/1-15
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From (D4), ¢(a+b,c) = Y(a+b)nc| + @(c,a+b) = L(a+b)nef +
olc,a+b+c) + Y| and @(a, b+ c¢) = ¢la,a+b+c) + ilal. From (D3),

ola+b+c+x,x)+olatb+c+x,x+a)+ola, x)+ola,a+ b+ )
=Lan (b+c+x) (6)

ola+b+c+x,x)+elat+b+c+x,x+c)+olc, x)+o@(c,a+b+c)
=dlcn(a+b+x)). (7)

Define T = @b+ x, x+a) + e(c+x, x+b) + ola+b+c+x, x+a) +
pla+b+c+x, x+c¢) and U = b+x)nal + Llc+x)nb] +
Han(b+c+x)| + Hen(a+b+x)| + S{a+b)nc| + L] + Ljal, which,
by Lemma 5(iii), equals |c| + ia| + xnb| + Yxnel + |bnxnal +
lcnxnbl + lanbncel + lanbnx] + lancnx| + |enanb] +
[cnanx|] + |lenbnx| + i(a+b)nel = §lc| + Hal + Yxnb| +
Hxnel + Yanel + bnel + lanbnc|. Then, using o(b+x, x) +
o(b,x) = x| = @lc+x,x) + ¢(c, x), we get A(a, b, c) = T+ U.

Since r=x+a, s=x+b, and t =x+ ¢ are in ¥, we may evaluate T by
induction. We have T = o(s,r) + o(t,s) + or+s+tr) +
o(r+s+1t,t). By induction, o(r+s+1,r) = @(r,r+s+1) + Hro(s+ 1)
= @(r,s+1t) + Lr| + 3lro(s+1)] = o(s+¢t,r) + 4rl and @(r+s+1,1)
= @(r+s,1t) + i1 = o(t,r+s)y + 3(r+s)ntl + i|z]. Therefore, T =

At s,r) + S+ Yl + Hen(r+s)| = |tosor] + 3 + i +
ea(r+s) = 3 + 3 + denr) + Yins) = dx+¢l + dix+a) +
Hx+e)n(x+a) + Yx+e)n(x+b) = Hel + Hal + Lxnel +

Yxmal + ixnal + Yxacel + YHanel + dxnb| + Yxnel + dbncel =
Hel + YHal + Ylance] + Yxnbl + dxncl + Lbnc|l. We conclude that
A(a,b,c}y = T+ U = |lanbncl, as required.

Case2. a,ceV,, beW, Set x=a+b+c, y=a+b, z=b. Case 1 for
x, y, z gives lanbncl=A(a+b+c, a+ b, b). Using (D4), we get

ola,b+c)=o¢la,a+b+c)+ilal
=@la+b+c a)+3lal +ilan(b+c) (8)
pla+bc)=pla+b a+b+c)+ilat+b
=@la+b+c,a+b)+ia+bl+3l(a+b)nc] 9)
@(a, b)=@(b, a)+3lanb]|
=@b,a+b)+ib|+3lanbl=pla+b, b)+ Lb]. (10)

Therefore, A(a, b, ¢) = Ala+b+c, a+b, b) + 3] + al + Ha+b] +
Yam+c) + Y(a+b)nel + 3bne| (the last summand is the price for
changing ¢(c, b) to ¢(b, ¢)), and A(a, b, c)=|anbnc].
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Case 3. aeW,, b, ceV,. From (D4),

¢(a, b)+ o(a, a+b)=1lal (11)
p(a,b+c)+ola,a+b+c)=14lq| (12)
pla+b c)+ola+bat+b+c)=Lla+b|. (13)

Thus, A(a,b,c) = ¢@(a,a+b) + e¢latba+b+c) + o(bc) +
@la,a+b+c) + ila+b|. We now refer to (D3) to get

ola+b+x,x)+ola+b+x,x+a)+¢(a, x)+¢la, a+b)
=4l(b+x)ndl (14)
platb+c+x, x)+ela+b+c+x,a+b+x)
+oe(a+b, x)+ela+b,a+b+c)

=d(c+x)n(a+b) (15)
platb+c+x,x)+@la+b+c+x,x+a)+o(a x)+o(a,a+b+c)
=i(b+c+x)nal. (16)

Let R; be the (7, j) term on the left sides of these equations, i=1,2,3, j=
1,2,3,4 From (C) and (D4), R,;+ R,;=4|x|. Also, R;;=R;; and
Ry =R;,. Now set u=a+b+x, v=a+x. Since u, v, ce V,, we have by
induction that (v, u) + o(v,u+c) + @(c,u) + @lc,u+v) = Yvne.
Note that R, = @(v, u) + Yunv|, Ry, = @(v,u+c) + Y(u+c)novl, Ry
= olc,u) + lul, o(c,u+v) = @(c,b) = @b, c} + 3|bnc|. Therefore,
Riy + Ry + Ry = 3Ix| + 3lvncl + YHunv] + 3(u+e)no| + Hul +
bl + eb,e) + Hb+x)nal + Yc+x)n(a+b) +
sb+c+x)nal = {x| + lunvncel + Yul + Ybnel + o(b,c) +
slbral + dxmal + lbnxnal + i(c+x)nal + Yc+x)nbl +
llc+x)nanbl + 3lbnal + 3(c+x)nal + 3bnal + |(c+x)nanb
= 3xl + [bnanel + |bnxnc + Ya+b+x| + Lbncl + @b, c) +
dxoval + [baxnal + e+ x)nbl = Ha+b| + Yanx| + 4bnx| +
lanbnx| + |bnancl + [baxnel + 3lbnel + o(b,c) + Yxna| +
tbbnxnal + ilenbl + dxnbl + [enxnb] = Ya+b| + lanbne| +
(b, c). It follows that A(a, b, ¢} = lanbn |, as required.

Case 4. ceW,, a, beV,. A(a, b, ¢)=|anbnc| follows from (3) and
Cases 2 and 3.

Case 5. a, be W,, ceV,. Case 3 applied to x=qa, y=a+b+c, z=c
gives lanbnel = A(a,a+b+c,c). By (D4), o(ag,a+b+c) =
ola, b+c)+3lal and (b+c,¢c) = @(b+c,b) + Lb+c| = @b, b+c¢) +
boel + db+cl = @(b,c) + Llc|. By induction, ¢(a+b+c,c) =
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olc,a+b+c) + l(a+b)ncl = olc,a+b) + ile| + 3l(a+b)nc] =
p(a+b,c) + ic|. Again, by (D4), ¢(a,a+b) = ¢(a,b) + 3|a|. Thus,
A(a,a+b+c,c)=A(a, b, ¢).

Case 6. aeV,, b, ce W,. The same argument as Case 5, except that we
employ (C) in slightly different ways to use (D4).

Case 7. a, ce W,, beV,. Use Cases 5 and 6 and (3).

This completes the induction step.

We now prove that two factor sets are equivalent. If {(x, y) denotes the
difference of two factor sets, {: Vx V — [, satisfies {(x, x)=0, {(x, y)+
{(y,x)=0, and {(x, y) + {(x+y,2) + {(y,2) + {(x, y+2)=0 for all x,
v, ze V. Thus, { is a 2-cocycle which gives an elementary abelian group as
an extension of V by F,, hence { is cohomologous to 0, ie., there is
a: Vo[, with {(x, y) = a(x) + a(y) + a(x+y). Thus, our two factor
sets are equivalent.

The number of factor sets is, from n applications of (D1), 24, where
A(n) = ¥, (2"'—1) = 2"—1—n. The previous paragraph suggests
that A(n) might be 2" — 1. The difference of » is explained by the fact that
replacement of a factor set ¢(x, v) by o(x, y) + a(x) + a(y) + a(x+y)
results in no change precisely when a: V' — [F, is a homomorphism.

Second Proof. H. N. Ward was so kind as to supply an existence proof
for factor sets by using a calculus described in his paper [6]. In the
notation of [6], we are looking for a function ¢ such that

P(x, x)=4q(x)
p(x, )+ @y, x)=dq(x, y) (*)
o(x, p)+olx+p 2)+ oy, 2)+ olx, y+2)=dq(x, y, z),

where g(x)=3/x|, for xe V (see Lemma 5). Notice that dg(w, x, y,z)=0
(see Proposition 11). Thus, the combinatorial degree of ¢ and the
polynomial degree of ¢ are at most 3. Since ¢(0)=0, ¢ is a linear com-
bination of 4,, 1,4,, and 1,4,4,, where 4;€ V*. Define x; = 4,(x) for xe V.
Then, using 2.5 of [6],

dp(x, y)=0 il p=41;
dp(x, y) =Xy + X2,
and
dp(x, y,z)=0 if p=24,4,;
dp(x, y)=X1X293+ X1 p2X3+ Y1 X2 X3
T X1 Y2V3 T YiX2Y3tViyaX;
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dp(x, y, z)= Y X:YiZk if p=44,4;.
{ijk}={123}

If p=4,, A;4,, or 4,4,4; replaces g on the right side of (%), then
d(x, y) =X, X\ Vs, OF X, ¥,V3+ VX2V + ¥V, X3, respectively, is a solution.
Since ¢ is a linear combination of such p, the correponding linear com-
bination of the respective ¢ solves (*).

We finish as in the First Proof.

We now record an elementary property of doubly even codes.

ProposITION [1. Ifdim V=4, Y, ., ¢(v,v)=0.

Proof. Write V=U@ W, where dim U=2. For we W, w+#0, let S(w)
be the 3-space span{U,w}. If veV, |{we W—{0}|veS(w)}| is 1 or
|Wi—1; both numbers are odd. For ScV, let a(S)=3,.s (v, v)
Then a(V)=3,.w_ (0 a(S(w)). Let {u;,u,} be a basis of U. By
Lemma 5(ii), a(S(w))=|wnu, nu,|. Therefore, since dim W =2, a(V)=
(Xwew— 10y WhNu Nyl =10nu; Ny =0.

DerFINITION 12, Let & be a loop. We say that & is afforded by the code
V' if V is a binary, doubly even code and there is a factor set ¢ such that
L= (V, ¢). We also say that V affords <.

We now proceed to the setup considered by Parker. The model for this
definition is the case where V is the binary Golay code and 2 is the family
of 2576 dodecads in V.

DerFINITION 13, Let V be any finite-dimensional vector space over F,.
Let & be any subset of V—{0}. A Parker function is a function p: V x
V' — F, such that

(S) p(x,x)=|xn2|;

(C) plx, Y)+p(3, X) =2 e i, [(ix+jy) N D

(A) plx,y) + px+y,2) + p(r,z) + plx, y+2) = X, jher Iix+
iy +kz)n9|.

The associated Parker loop is (V, p), the set F,x ¥V with binary com-
position (¢, x)o(d, y) = (c+d+ p(x, y), x + y).

We write p(x} or g(x) for p(x, x). Notice that the right sides of (C), (A)
are 0 if {x, y}, {x, y, z}, respectively, are linearly dependent. Also, write
q(x, y) for 3, c r, pix +jy) and q(x, y, z) for X, ;xc r, PUix +jy + k2).

The Parker condition is the requirement that, for any 4-dimensional sub-
space UKV, Y .., p(x)=0.
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THEOREM 14. [f V satisfies the Parker condition, the Parker loop (V, p)
is a code loop. More precisely, there is a doubly even code W, a linear
isomorphism «: V — W, and a factor set ¢ on W such that (c, v) < (c, a(v))
gives an isomorphism of loops (V, p)= (W, ¢). In particular, (V, p) is a
Moufang loop. Conversely, a code loop is a Parker loop satisfying the Parker
condition.

This theorem shows that the loops obtained by the apparently special
conditions of Parker’s construction are identical to those coming from the
rather natural-looking doubly even code construction of Proposition 9. The
converse is trivial to prove, since we take 2 to be the family of sets in the
code with cardinality 4 (mod 8), then quote Proposition 11.

The code affording (¥, p) is certainly not unique. Let C < P(£2) be such
a code and let I" be a set, || =0 (mod 8), @~ I'= . Take any nonzero
linear map f: C = F, and define C'< P(Qu ) as the set of all x+ f(x) I,
for xe C. Then C’ affords (V, p) and C" £ C.

Before proving the Theorem, we need a lemma.

LEMMA 15. If the Parker condition holds, q(x, y, z) is trilinear.

Proof. Suppose that z =z, + z,. Without loss, {x, y} is independent.

Suppose that all of {x, y, z}, {x, »,z,}, and {x, y, z,} are independent.
Then {x, y, z,,z,} spans a 4-space, U. We have q(x, y,z) +q(x, y, z;) +
q(x, y, z2,)=2,., p() =0, whence linearity in this case.

If not all three sets are independent, then oddly many are dependent and
g vanishes on these, whence dependence since the remaining sets span the
same 3-space.

We are done by symmetry.

Proof of Theorem 14. We induct on dim V. If dim V=0, the argument
is trivial and if dim V' =1, say, V"= {0, x}, just take an 8-set or a 4-set, 4,
as p(x)=0or 1 and let W= {0, 4} < P(A).

Now let k> 1 and take a basis x,,..., x, | for V. Set U=span{x,,..., x}.
By induction, there are a finite set 2, a doubly even subspace W < P(R2), a
factor set ¢ on W, and a linear isomorphism «: U — W such that
pluy, uy) = @lalu,), a(uy)), for u,, u,e U.

For i, j=1,., k, i#J, let 2, be an 8-set and 2, an 8-set and 2, ,, an
8-set, with all of ,, Q, mutually disjoint and disjoint from 2. Define

k
B=a(x)u,u ) 2,
i
and  ¢;=p(x;, Xp o)+ p(Xpi1,x,), for i=1.,k Define d;=
q(x;, X X1 ), 17 ), 1 <i, j<k. Fori#jin {1,.,k} take 4,=Q, to be a
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set of cardinality d; (mod2). Then take A4,£Q,, i=1,.,k so that
314;0 ;4 4,1 =c; (mod 2). Finally, take 4, ,, S, ., so that

k+1
A=) 40 | 4,
i=1 i)
ij= 1,k
satisfies 1| 4| = p(x,, ;) (mod 2).

Let ' be the union of © and all the 2, and Q.. Set W=
span{B,.., B;, A} < P(Q'). The space W' is doubly even since the basis
elements have cardinality 0 (mod 4) and the intersection of any two is an
even set. We define a linear isomorphism a': V— W’ by o'(x;)=B8,;, i=
L,...k, and a'(x,, )= 4.

We now prove that

Ha()] = p(v) for veV; (1)
and

Pl X )+ p(Xiy i u) =3’ (wyn 4l for xeV—-U uel. (2)

By induction on k, it suffices to check (1) for v of the form u+x, , ,, ue U.
We prove (1) and (2) by induction on the cardinality of supp(u) = the set
of i appearing in an expression of u as a linear combination of xy,..., x,.

If [supp(u)| <1, (1) and (2) follow by the definitions. Now suppose
[supp(u)| = 2. Write u =u, + u, where |supp(u;)| < |suppl(u)}, i=1, 2.

The functions ¢(x, y, z) and ¢'(x, y, z)=|¢'(x)na'(y)na'(z)| are both
trilinear (Lemmas 5 and 15), and both alternating. We agrue that they are
equal, and it suffices to check them on triples (x,, x;, x,), i < j < /. By induc-
tion, we may even assume that /=k + 1. On such triples, we have equality
since 4 was arranged to satisfy |4 B,n B =d, (mod 2).

We have g(u,, uy, x) =3 e r, Pl +jus + D p). If (i, , #(1,1,1),
we have p(fu, + ju, + Ix, . ) = 4o’(iu, + ju, + Ix, . ;)|, by induction on &
or on the cardinality of support. The previous paragraph now gives
equality at (1,1, 1). So, (1) holds.

To get (2), we argue as follows. From (C), p(u, x4, )+ p(x4 ., 1) =
2ijer, PUixe+ju) = quy, uyy X)) + qluy, Xey) + qlua, X0 y) =
lo'(uy) A () Al + La'(u) Al + La'(uy) n 4], by induction. By
Lemma 5(iii), the right side equals 3|a’'(u) N A|, proving (2).

It follows from (1) that ¢'(x, y) = p(a’ ~!(x), «’ ~'(y)) is a factor set on
W’. At once, (V, p)=(W’, ¢’) via (c,v)< (¢, a’(v)). Since (W, ¢’) is a
Moufang loop, all parts of Theorem 14 are proven.

ExampLe 16. Let dim V=3 and D=V — {0}. The loop % afforded by
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V has order 2*. The eight pairs {+x}, xe #, form a double basis for the
Cayley number, %. Aut(.%) is a nonsplit extension 2*- L5(2), and it is well
known that Aut(#) < Aut(%), whose complexified form is G,(C). See [7]
for full details on this.

We show that % is afforded by a code. Take Q= {1, 2,..,7}, and let
V< P(£2) be the span of {1,2,3,4}, {3,4,5,6}, {1,3,5,7}. Every non-
zero set in V has cardinality 4.

The procedure of Theorem 14 for finding a suitable £ constructs one of
cardinality 38. Evidently, that procedure is not best-possible.
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