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Abstract: In a recent quark-model study of the NN interaction, we explicitly incorporated the qq 
excitations inherent in the quark-gluon interaction lagrangian into the model space, and examined 

the contributions to the NN potential of particular (3q)(qq) components of the single-nucleon 

wave function, with specific baryon and meson quantum numbers, through the Wigner transforms 

of the resultant coupling terms of the quark exchange kernels. The present investigation focuses 

on the long-range parts of the potentials. It is shown that these arise almost entirely through two 

of the 25 possible types of exchange terms, and that these two correspond to the simple exchange 

of a qq pair between the two nucleons and contribute only through coupling terms for which the 

(3q) components have the quantum numbers of a nucleon and the (qq) component the color-singlet 

character of a real pseudoscalar or vector meson. The potentials arising from these simple color- 

singlet qq exchanges have been evaluated in explicit analytic form. In their dependence on nucleon 

((II. uz) and (7, . T*) factors and the relative importance and signs of spin-spin, spin-independent 

central, LS, and tensor terms they have all the characteristics of conventional OBEP’s. They are 

in remarkably good agreement with conventional OBEP’s in the r 2 1.2 fm range and have the 

same qualitative radial features over an even wider range, the one exception being the steep 

short-range repulsive rise of the spin-independent central term of the o-exchange potential. The 

corresponding qq exchange potential instead changes sign to become attractive at r < 0.8 fm. 

1. Introduction 

In the past few years QCD-inspired quark models have been widely used in 

attempts to gain a more fundamental understanding of the NN interaction. In the 

simplest quark models the nucleon is assumed to be a pure three-quark (3q) system. 

The earlier studies of the NN interaction based on such simple (3q)-(3q) models 

have attempted only the elucidation of the characteristics of the extreme short-range 

repulsive part of this interaction. In a recent study ‘) we explicitly incorporated the 

quark-antiquark excitations inherent in the quark-gluon interaction lagrangian into 

a quark model to study the effects of such excitations on the NN interaction. In 

this study the (3q) components of the single-nucleon wave function were augmented 

by (3q)(qq) components generated by the off-shell terms of the Fermi-Breit one- 

gluon exchange interaction. All 24 possible spin, isospin, color combinations of the 

(3q)(qq) excitations with the resultant quantum numbers of a single nucleon and 

energetically iowest p-wave relative motion functions were included. Quark exchange 
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kernels for the two-nucleon system described by these improved single-nucleon 

internal wave functions were calculated in the framework of the resonating group 

method. These exchange kernels were then transformed into momentum-dependent 

potentials and converted into phase-shift-equivalent effective NN potentials through 

a local-momentum approximation using the Wigner transforms of the kernels. The 

contributions to the exchange kernels from the (3q)(qq) components of the nucleon 

wave functions lead to the following effects in the S-wave NN potentials: the 

repulsive core heights of the simple (3q)-(3q) model are greatly reduced but retain 

their strong energy dependence; the potentials gain an attractive part in the 0.8-2 fm 

range. 

Since the (qq) admixtures make significant contributions to the properties of the 

nucleon itself, these were examined in detail in ref. ‘). It was shown, in particular, 

that the improved single-nucleon wave functions are consistent with the low-energy 

electromagnetic properties of the nucleon and are consistent with the strengths of 

the nucleon-meson coupling constants for q, p and w mesons. Moreover, they give 

the observed tensor/vector coupling ratios for the vector mesons, and the vector 

dominance of the electromagnetic form factors is reproduced naturally. However, 

since a simple (qq) cluster with the quantum numbers of a pion cannot be expected 

to give a realistic picture of the pion, agreement with the observed strength of the 

pion-nucleon coupling constant was not expected. (The predicted pion-nucleon 

coupling constant gkNx is too weak by a factor of -3.) Also, since a simple (qq) 

cluster with the quantum numbers of a pion cannot be expected to have the mass 

of a real pion, we do not expect to reproduce the extreme long-range Yukawa tail 

of the OPEP part of the NN interaction. 

Despite the possible shortcomings of the extreme long-range part of the interac- 

tion, it was the aim of the study of ref. ‘) to explicitly incorporate the mesonic 

degrees of freedom into the quark models through such (qq) excitations. By thus 

staying completely within the framework of a quark model it was hoped to bridge 

the gap between the simple quark model and more sophisticated models in which 

the quark degrees of freedom are coupled to meson fields ‘) where, however, these 

meson fields are considered as separate entities outside the basic framework of 

QCD. Nevertheless, it was difficult to recognize the characteristics of the conven- 

tional meson exchange potentials in the NN potentials of ref. ‘). In principle, the 

Wigner transforms of the quark exchange kernels are ideal to study the contribution 

to the NN potential of a particular (3q)(qq) term with specific baryon and meson 

quantum numbers. Since the largest amplitudes of the (3q)(qq) components in the 

improved single-nucleon wave function are of order ~~0.25, only terms of first 

order in these c’s need to be retained in the calculation of the full exchange kernels 

for the two-nucleon system. It is thus possible to turn on one (3q)(qq) term at a 

time and examine the contribution corresponding to a qq-pair excitation with the 

color-singlet and spin, isospin characteristics of a particular real meson. Such curves 

are exhibited in ref. ‘); but since they gain their most prominent contributions in 
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the r S 1 fm range, the discussion of ref. ‘) focused attention on the short-range 

parts of these potentials where the effects of antisymmetrization may also wash out 

the distinctions between different (qq) mesons. In general, these potentials gain 

contributions from 25 distinct types of exchange terms corresponding to 6 different 

types of quark exchanges each with as many as 5 distinct possible placements of 

the quark potential lines. The prominent extreme short-range parts of these potentials 

have their origin in the more complicated exchange terms of the “three-cluster” 

variety, i.e. terms involving quark exchanges between the quark of the qq pair as 

well as quarks from the (3q) clusters of both nucleons. They thus correspond to 

processes more compiicated than the simple exchange of a qq pair between the two 

nucleons. To make the connection between these potentials and the conventional 

one-boson exchange potentials it is necessary to isolate those exchange terms which 

actually correspond to the exchange of a qq pair between the two nucleons. It is 

the purpose of this investigation to show that the long-range parts (r 2 1.2 fm), of 

the effective NN potential of ref. ‘) are dominated by two of the 25 types of quark 

exchange terms, that these exchange terms correspond to the exchange of a qq pair, 

and that the simple color singlet qq-pair exchange terms of this type lead to NN 

potentials which are in very good qualitative agreement with the usual one-meson 

exchange potentials. The simple qq-pair exchange terms involve only quark 

exchanges of the “two-cluster” variety, i.e. the exchange of the quark of the qq pair 

in one nucleon with a quark from a single (3q) cluster in the other nucleon. Such 

exchange terms have been named “) “semi-direct”. The momentum dependence of 

these simple color-singlet qq exchange terms is very mild compared with the strong 

momentum dependence of the full Wigner transforms including all 25 types of 

exchange terms. The smaller degree of nonlocality of the simple color-singlet qq 

exchange terms makes it even more attractive to identify these with the meson 

exchange potentials. Finally, the simplicity of the color-singlet qq exchange terms 

has made it possible to evaluate the exchange kernels for these terms, as well as 

their Wigner transforms, in explicit analytic form. It is also possible to express their 

spin, isospin dependence in terms of nucleon CT- and I-operators demonstrating 

explicitly the correspondence between these terms and the conventional one-boson 

exchange potentials. 

In order to isolate the simple qq exchange terms, sect. 2 gives a brief review of 

the different types of quark-gluon exchange terms which contribute to the exchange 

kernels from the coupling of the (3q)-(3q) components to the (3q)-(3q)(qq) com- 

ponents of the two-nucleon wave functions. By comparing the full Wigner trans- 

forms, (including the contributions from all 25 types of exchange terms), with the 

Wigner transforms derived from the simple color-singlet qq exchange terms, it is 

shown that the latter dominate the effective NN potentials in the long-range, 

r 2 1.2 fm, region and are significant contributors in the I - 1 fm range. Sect. 3 gives 

the explicit evaluation of the exchange kernels for the simple color-singlet qq 

exchange terms. By expressing their color, spin, isoapin dependence in terms of 
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nucleon u- and r-operators it becomes possible to separate these into spin-indepen- 

dent central, spin-spin, LS, and tensor terms. The Wigner transforms of these kernels 

at P = 0 are then identified as the simple color-singlet qq exchange potentials. In 

sect. 4 these are compared with the conventional one boson exchange potentials 4), 

regularized with the usual momentum-cutoff factors ‘). Although the qq exchange 

potentials are not in precise quantitative agreement with the one meson exchange 

potentials, there is a very gratifying correspondence between the various components 

of the two types of potentials. In particular, the qq exchange potentials corresponding 

to pseudoscalar meson exchange have no spin-independent central and no LS terms, 

whereas the potentials corresponding to vector-meson exchange have both spin-spin 

and spin-independent central terms, as well as LS terms. In addition, the qq exchange 

potentials and the conventional OBEP’s are in good correspondence not only 

regarding the relative signs and magnitudes of the 7, rr, w and p potentials, and 

the relative importance of spin-spin and tensor terms, but also regarding their 

general radial characteristics in the r z 1 fm range. One of the significant differences 

between the two types of potentials involves the steep repulsive rise in the central 

part of the w-exchange potential in the r G 1 fm range. This is missing in the 

corresponding qq exchange potential although the two types of potentials are in 

very good quantitative agreement for r 3 1.2 fm. The implications of this finding for 

the NN interaction are discussed in a concluding section which summarizes results 

and points to future directions: Specifically, the medium-range attraction carried 

by a scalar g-meson exchange potential in the conventional one-boson exchange 

picture can be incorporated into our quark model through the (qq)(qq) excitations 

generated by RPA-type off-shell terms in the Fermi-Breit quark-gluon interaction. 

The quark exchange kernels needed will be presented in a future study. 

2. Meson exchange diagrams 

The off-shell (qq)-pair creation terms of the Fermi-Breit one-gluon exchange 

interaction couple the (3q) component of the single-nucleon wave function to 

(3q)(qq) components, with color-singlet (qq) pairs, only through two types of 

exchange diagrams. [See e.g. fig. 2c of ref. ‘).I In the two-nucleon problem these 

lead to the NN interaction diagrams shown in fig. la. These diagrams have already 

been singled out by Yu and Zhang 6, as the seat of the meson exchange potential 

in their quark-model study of nucleon-meson vertex functions. In the framework 

of the resonating group method, with single-nucleon wave functions augmented by 

(3q)(qq) components, such interactions arise from the cross-terms of the exchange 

kernel, coupling the two-nucleon (3q)-(3q) components to (3q)-(3q)(qq) com- 

ponents. The full set of exchange terms follow from the exchange operator [see eq. 

(48) of ref. ‘)I: 

1 c,P=-3P,,-9P,,+9P,,P,,+9P,,P,,+18P,,P,,+l8P,,P,,, (1) 
P 
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i 23 654 
i=1,2 i=3 i=4,5,6 

Fig. 1. Simple q4 exchange diagrams. 

where the quarks are labeled with indices i = 1,2,3 in the single-nucleon (3q) cluster, 

i =4, 5, 6 for the (3q) cluster and i=7, 8 for q, 4. respectively, in the (3q)(q@ 

component. It is convenient to introduce diagrams in which the admixed (3q)(qq) 

components of the single-nucleon wave function are represented by a shaded box. 

The different exchange types are characterized by the index i which gives the 

placement of the potential line in the Uq_sqq (q; x7, x8) interaction. Such diagrams 

for the P3, quark exchange terms are shown in fig. lb. It is clear that the meson 

exchanges, via color-singlet qCj pairs, of fig. la result from the combinations of 

(i=3) with (i=3); (i=3) with (i=l,2); and (i=l,2) with (i=l,2), respectively. 

Thus, the two types of P3, exchange terms with (i = 1,2) and (i = 3) correspond to 

simple color-singlet (qq) meson exchange terms. The P3, exchange terms with i = 4, 

5,6, on the other hand, involve only a simple quark exchange. Most of the remaining 

of the 25 possible types of exchange terms lead to quark exchanges and gluon 

exchanges only. This is illustrated in fig. 2. The four types of Pxe exchange terms, 

also of the “two-cluster” or “semi-direct” variety, with i = 1,2 or 3 lead only to 

one-quark and one-gluon exchange; and with i =4, 5 or 6 to pure one-quark 

exchange. The Pj6Px7 exchange terms with i = 4,5 or 6 are pure one-quark exchange 

terms. However, fig. 2 shows that PJ6Ps7 exchange terms with i = 1,2 or 3 also lead 

to color-singlet qq-pair exchanges; but since these are of the complicated “three 

cluster” variety they must be expected to contribute predominantly to the short-range 

part of the NN interaction. The remaining exchange terms of quark exchange 
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123 654 
i= i,2 i=3 i=6 

(a) P& 
7 8 

123 654 
i=i,2 i =3 

i=4,5 

i=4,5 

(b) P,,PJ 

Fig. 2. Examples of other quark exchange diagrams. 

character, P37P36, P36P57, P36P27 (not shown in fig. 2), lead only to pure quark and 

gluon exchanges or include qq exchanges accompanied by additional quark 

exchanges. The P3, exchange terms with i = 1,2 or 3 have thus been singled out as 

the seat of meson exchange processes. It is also interesting to note that the P3, 

exchange terms with i = 1, 2 or 3 are the only “semi-direct” terms which give rise 

to color-singlet qq exchanges. The remaining “semi-direct” terms, of exchange type 

Px7, i = 4, 5, 6, or Ps6 with any i, contribute only through the hidden color (3q)(qq) 

components of the coupling kernel. Henceforth the PST exchange terms with i = 1, 

2, 3 will therefore be denoted as simple color-singlet qq exchange terms. 

Figs. 3-6 are included to show that these simple color-singlet qq exchange terms 

dominate the effective NN potentials in the long-range r 2 1.2 fm domain and are 

a significant contributor to the potentials in the r - 1 fm range. As in ref. ‘), the 

P = 0 Wigner transforms of the quark exchange kernels for the cross terms, coupling 

the (3q)-(3q) component of the two-nucleon wave functions to a specific (3q)- 

(3q)(qq) component, with the (qq) quantum numbers of a real meson, are used as 

a measure of the effective NN potentials for that “meson”. The figures single out 

the contributions of a single (3q)(qq) component with color-singlet (qq) coupled 

to a (3q) piece with the quantum numbers of the nucleon, N. Figs. 3 and 4 show 

the Wigner transforms for the Ng and Nm components. For the vector mesons the 

Nw and Np terms gain contributions from two components since the spin & [in 

the notation of ref. ‘)I of the (3q)(qq) components has the two possible values Sr2 = $ 

and $. Figs. 5 and 6 show the Wigner transforms for Nw and Np summed over the 

two possible & values. These sums have been chosen partly for simplicity, but also 
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because some terms, such as the Np Si2 = i contributor to the 3S NN potential, are 

extremely small in the r~ 1.2 fm range. Note also that An and Ap potentials are 

missing. Although these are among the most important contributors to the medium 

range attractions they gain their strengths from more complicated exchange types. 

Contributions of P3, exchange with i = 1,2,3 are prohibited for An and Ap potentials. 

(For such exchange terms, quark lines 4, 5, 6 of fig. lb must carry the quantum 

numbers of a nucleon.) Figs. 3-6 compare the full Wigner transforms, including the 

contributions of all 25 types of exchange terms, with curves for which all but the 

simple color-singlet qq exchange terms have been turned off; that is, for curves 

which gain their contributions entirely from the P3, exchange terms with i = 1, 2 

and i = 3. The importance of the simple color-singlet qq exchange terms for the 

long-range parts of each component of the NN potentials is clearly demonstrated. 

Finally, the relative simplicity of the simple color-singlet qq exchange terms makes 

it possible to evaluate such exchange kernels, as well as their Wigner transforms, 

in explicit analytic form. 

3. Simple color-singlet qij exchange potentials 

The cross-term of the RGM kernel resulting from the coupling of the (3q)-(3q) 

component of the two-nucleon wave function to the (3q)-(3q)(qq) components has 

the form [see ref. ‘)I, 

G(R, R’) =C &a ; CP C i G;“(R R’) , (2) 
a O=D,M i=l 

where 

x 6(x, - &FB(xi, x,) * Y”( i; 7,s) 

x I[~H(3q)~~(3q)lS,M~TM~~(rOO-Rf)), (3) 

and where the (3q)(qq) component of the single-nucleon internal wave function, 

characterized by quantum numbers LY, is given by 

4 u,sMsTMT((3q)(qq)) = ihT~l’2[x:~i(P)[~S2T2(h*)(3q)~SzT~(~h)(qq)lS2~T(00~1SMsTMT. 

(4) 

The square brackets denote spin, isospin, and color coupling. Note that the quantum 

number $3, part of (Y, was previously named S2, see ref. ‘). In eq. (2) cO and c, 

are the amplitudes of the 4(3q) and +,((3q)(qq)) components of the single-nucleon 

internal function. As in ref. ‘), only terms linear in c, have been retained. In the 

present investigation the exchange types, sums over P and i, will be restricted to 

the simple qq mesonic exchange type, i.e. P = P37 and i = 1,2 or 3 only [see eq. (1) 
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and fig. 11; and consequently the states (Y are restricted to the color-singlet variety, 

(AA) = (00), with SzT2=& the quantum numbers of the nucleon, i.e. only the 

contributions of states (Y = NT, NT, and NW, Np with S,, = i, $, need to be considered 

for this simple exchange type. In eq. (3) the q&pair creation interaction U,,,,,, has 

been given in vector form. The spin-vector operators @(i; 7,8) give the spin, 

isospin, color factors of the interaction, see specifically eqs. (8c, d) of ref. ‘). The 

spatial vector factors F”(Xi, x7) are of two types, 0 = D (derivative type) and 6’ = M 

(momentum type): 

with 

FD(Xi, X,)=~~(I) ; F”(Xi, x7) = F(r)$ 3 
I 

~(r)=;n-&;,~; r=Ixi-x71 9 
h 1 xc----_. 

mc b 
(9 

In eq. (3), r,,, give the relative position vectors (rO,, from the c.m. of one (3q) cluster 

to the other, and ro, from the cm. of the (3q)(qq) cluster to the c.m. of the other 

(3q) cluster), while p is the relative position vector from the c.m. of the (3q) cluster 

to the c.m. of the (qq) cluster. As in ref. ‘), the (3q)-(qq) relative-motion function 

is approximated by a harmonic-oscillator function for the energetically lowest 

p-wave. For the separation of the kernel into space and spin, isospin, color parts it 

is convenient to express these p-wave oscillator functions in terms 

coherent state: 

Y-h Y) = 2Ji;(e* P) f 

[ 1 
314 

e-vP2 = e 
. (;A&, e~)e~,¶ 

with 

where a specific Op oscillator function is regained through 

of a vector 

(ha) 

(6b) 

(6~) 

and where e is a real unit vector with standard spherical components efi (=e,,). 

In terms of such functions the exchange kernels of eq. (3) can be written as 

Gsq(R, R’) = -4a,hcN,‘/2& 
I 

de^(l?;(R, R’) . A$:“) , (7) lr 

where the space part is expressed in terms of the OS internal orbital functions by 

I%(R, R’) = (p~,,(3q)~,,(3q)~,,(qq)xe(p, yP(rol -WI 

x~(~~-~d~“(-G x-!)l~Os(3q)~os(3q)6(roo-R’)). (8) 
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This space part of the RGM kernel is evaluated through its Bargmann transform 

or complex generator-coordinate kernel ‘“) 

@;(R, R’) = J dtL(z) d&z’)A,,(R, z)A$(R’, z’)I~;~~“(z, z’) , (9) 

where the z, z’ are 3-dimensional Bargmann space variables, and the 6-dimensional 

dp(z) include the Bargmann weighting function F3 exp (-z - z*). The complex 

GCM kernel is given by the term linear in e: 

(IP,i o~eGCM(~, z’)), = es (-$Z’A,,,( rol, z)A,(p, e)~o,(3q)40,(3q)~o,(qq)l 

X S(X~-~,)F~(X~,~~)IA,(~OO, Z')~os(3S)~os('q)) 
> 

* (10) 
.Z=O 

The three range parameters [r, = 15/16b*, y = 3/5b*, -y. = 3/4b2] differ in their 

reduced mass factors; b is the standard oscillator length parameter. These GCM 

kernels are easiest to evaluate if the scalar function, F(r) of eq. (5), is expanded 

in terms of gaussians exp (-air*). In particular, 

b 2b O” -=- J rdGo 

dx e-X2r2 (11) 

Note also that the derivative operations of eq. (5) commute with the x-integration. 

The GCM kernels for the above vector operators can be expressed in terms of 

Cartesian jk components, 

(I!$GCM (Z, Z'))j=C (I~,YcM(G Z'))jkek- 
k 

(12) 

With the replacement, b/r + exp (-x2r2), these have the simple form 

~~M(Z,z’)~{(~Z*~bz’)j(~z*+dz’)~+~~~~}~Xp[-~fi*2-~gZ’2~hZ*~~’], (13) 

where the coefficients, a, . . . , h, have been evaluated for the different exchange 

terms, P, i, and the two 0’ by the techniques of refs. 3,7,8). 

The spin, isospin, color parts needed to construct the full kernels, through eq. 

(7), are given by 

where & and 5cl,S23T=i 1 are the spin, isospin, color parts of the color singlet 4(3q) 

and &((3q)(qq)), respectively. Eq. (14) involves the angular momentum coupling 

of the I= 1 vector operator e with the spin S,, to resultant angular momentum 1. 

By a recoupling transformation to the form [e1[5~5a,Szai]S,,,7]SM,TM, and explicit 
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expansion, this can be put in the form 

(X;?Le)p = e&-ML-p c (l(M,-M~-~)S,*,(M:,+~)ISM,) 
%3 

x(S’M$lCLlS,,,(M:,+CL))(--1) %,,+s,,+s+I U( 1 S&; $,*J 

x (&3IlX~$S’) 9 (19 

where the reduced matrix element, 

c%23lIx~Plls’)~ VT54 *2 a.S,,flS,23TlI+%; 7, fN1[5~5&x) 3 (16) 
is given by the defining relation [(full matrix element) = (reduced matrix element) x 

(Wigner coefficient)] without dimensional factors such as (2SIz3 + 1))“2. To express 

the vector operators X;S;e of eqs. (14), (15) in terms of the vector e and nucleon 

operators ul, u2, it is convenient to subject these to one more recoupling transforma- 

tion to yield 

x (-1)“+s~3U(1s23s~; is,23)(s,23(Ix~yIIs’). (17) 

Here, the dependence on two-nucleon spins, through the (S’M!.&mflSMs) factor, 

can be represented in terms of nucleon spin operators, with ranks f = 0, 1,2, through 

i 

1 

( 

0 

sfm = %a, +u2Ln, forf= 1 

b,~212,, 2, 

(18) 

where we use the two-nucleon matrix elements 

~~X~,(~~X:~~~~I~~~~~~~~~,,~~X~~~~~X~~~~~IS~M;~M,~ = ~~‘~~f~J-I~~s~~~ll~~ll~‘~ 
(19) 

to fix the coefficients. For NN scattering, with isospin-conserving interaction, the 

combination of the Pauli principle and parity conservation requires S’= S, so that 

the two-nucleon reduced matrix elements have the simple form 

(SllSfllS’) = &d~fo+ Mm,, +m”2~f2)~ . (20) 

The vector operators X:P” can thus be expressed in terms of nucleon vector 

operators .C-O;a’e P,’ I with two-nucleon matrix elements 

~~~~e=~~~~~:(~~~~~~~~ls~~~~.~~~~~cl~~~Z(~~~~~~~~1~~~~~~~, (21) 

where (with f= [2f+ 1]1’2) 

x W123llx~P IIS> . (22) 
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By expanding [ e,Sf] :, using identities such as [a, b,] L = &[a x b],, where [a x b] 

is the ordinary vector product, the two-nucleon vector operators can be put in the 

form 

+~,,[~a,(e~u2)+~az(e~a,)-fe(o, ~u~)]&/~SI,~~ 

~(3[4-S,~3(S,~3+1)1[3-S~23(S~~3+1)1-16)} 

x(-l) S=3+s=+S+fU( lS*,Sf; ~S,~~)(S~~~~~X~~J~S) ) 

where S =&u, + u2). 

(23) 

Using the RGM analog of eq. (12) 

(Z?Y(R, R’))j =F (ZQR R’)),kek, I 
(24) 

and the simple relation 

& dt? ejt?k = sj, (25) 

for Cartesian components of e, the space and spin, isospin, color factors of the 

kernels can now be combined via the relation (cf. eq. (7)) 

-& 
I 

de^(Zz;(R, R').~~~;e)=~~(Z~,i(R,R'))jjX~~c 
j 

jkl 

(26) 

The three terms of this expression will lead to the central (C), spin-orbit (ES) and 

tensor (T) parts of the potentials. The three types of spin, isospin, color factors are 

given by 

x2% c (_1)%+WS+l Z-J(lS,&; tSI*JS**,IIX$W>, 
s123 

-~,,3/~ n=c 

s,,$J~~**,[4-S,,,(S,,,+1)1 for fit= LS 

6s,~~J~~123(3[4-s,23(Si23+ 1)1[3-%(S,,,+ l)l- 16) 12=T. 

(27) 
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For the construction of the exchange kernels an explicit evaluation of these spin, 

isospin, color factors is needed. For the special case of the color singlet qq exchanges, 

with exchange type restricted to P= P3,, i = 1,2,3, and with Q = 

[S,T,(AA)S,T,(AA)]S,,T,,=~ restricted to color singlet (AA) = (00) and nucleon 

(3q) type, S,T, = %, these can be expressed in terms of single-nucleon spin, isospin, 

color factors; and their dependence on two-nucleon S and T quantum numbers 

can be expressed in terms of nucleon u- and r-operators. Recoupling transformations 

of the type used in ref. ‘) lead to 

(28a) 

with (Y,,= [~(OO)S,~J(OO)]S,,$, and with 

YR(SJ,; ST) = [~T1O+~T$(rl * 41 

2 J; ( ) J; -2 
(28b) 

for 0 = C, LS, T, respectively, where we use the matrix notation 

(28~) 

In eq. (28a), the X$Y,~ are the single-nucleon spin, isospin, color factors which are 

tabulated in table la of ref. I). 

In order to convert the exchange kernels into effective NN potentials, it is still 

necessary to evaluate the Wigner transforms of the above RGM kernels. For the 

cross-terms of the kernels, coupling (3q)-(3q) to (3q)-(3q)(qq) components, the 

Wigner transforms of the symmetrized RGM kernels are needed, 

G”(R, R’) = G(R, R’)+ G(R’, R)+, (29) 

since the (3q)(qq) admixtures in the single-nucleon internal functions appear sym- 

metrically in both bra and ket. The needed Wigner transforms for the full kernels 

are then 

Gw(R,P)=~dsexp[$s.P)]G’(R-fs,R+$), (30) 

where this particular form of the Wigner transform applies for the case when the 

coefficient of the (R - R’) term in the exponential factor of the kernel is positive, 
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h > 0. [See ref. ‘), and eq. (13) for the definition of h; and note that only h > 0 

occurs for terms of exchange type P = P3,, i = 1,2,3.] It is convenient to define the 

analogous Wigner transforms for the corresponding symmetrized forms of the orbital 

kernels Az’(R, R’), defined through the last line of eq. (26): 

(31) 

For the simple qq mesonic exchange terms, with P = PX7 and i = 1,2,3, these are 

particularly simple and can be given in explicit analytic form. In a simplified 

shorthand notation, in which the indices 0, P, i are omitted, 

i 

%(R, PI 
&(R, P) = %kyR, P)(L* S) 

Y&(R, P)s,,+ q&R, Fys;, t %Z(R, q&s;‘, ) 

(32a) 

where 

L=$R.P,, S=;(a,+a2)) 

$2 = 3(a, . &(a, * Ii, -(a, . UJ ) 

s:, = 3(u, * P,(u, * fi) -(a, * a*) ) 

s;; = $(a, * &(a, * B)+;(uz * li)(u, * P)-(I& @)(a, * cr2)) (32b) 

in terms of unit vectors l?, P (e.g. R = R/R). For the gaussian kernels where the 

replacement 

b/r + exp ( -x2r2) 

is made in the orbital function F(r) of the interaction (see eq. (5)), the Wigner 

transforms will be renamed &c(R, P; ,y’), and the %$(R, P; ,y’) have the form 

7-l h 1 1 4X0 ‘i2 
~~W;X~)=-~--~J~ 13 

(>( 

13 

6(1+2~~b~)+~~b~ > 

3/2 

&(R P; x2), 

with 
(334 

g~(R,P;~~)=(4/0,)~‘~exp[-~(R/b)~-5(bP/h)~]cos[5(R~P)/h] 

I 

uco’+ t~“‘(R/b)~+ ~“‘(bP/h)~+u’“‘(R.P/h)tan[~(R.P/h)] C 

X vLS for LS 

v”‘(R/~)~; ~“‘(bP/h)~; u’“‘lRI IPl/h 
I 

T;T’;T”. 

(33b) 

For these gaussian kernels of simple qq mesonic exchange type, the coefficients 7, 

5, 5, Dw, and the potential constants u(O), vC2), u(‘), u(‘), uLs are given in table 1 as 

functions of the parameter K = x2bZ/( 1 +2,y2b2). Note that the long-range terms of 

the interaction (given by x2 + 0 contributions) are given by the M-type interaction 
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terms only; and in this limit the coefficients utof, u”) of the P-independent terms 
are of exchange type PJ7, i = 3 only; while in this limit z? gets contributions from 
both i = 1,2 and i = 3 exchange types. 

Finally, the Wigner transforms of the coupling kernels of simple color-singlet qq 
mesonic exchange type can be assembled by combining eqs. (2), (7), (26), (31)-(33), 
and (11). They have the form 

G,( R, P) = G$?( I?, P) + Gt;sf R, P)(L * S) 

+ GT,(R, P)S,,+ G;(R, P)S:,+ G%(R, PI.!?:, . (34) 

Their more explicit dependence on nucleon spin and isospin operators follows from 
the a,r-dependent terms of eq. (28b), to give 

G$=(R, P) = (al - u2)Ggs(R, P)+(o, * u~)(T, ’ T~)G@'(R, P) 

+[G$(R, P)+(a,~uJGC;;SS(R,P)] 

+ (q - ~2)[ GC?R, PI + (u, * cW%?(R, P)l , 

G$(R, P) = G;ll”‘(R, P)+(?., * T~)G$‘(R, P) , 

G&(R, P) = G$(R, P) + (7, * 72)GZ;f(R, P> + G$;;T(R, P) 

+ (7, - dGi$W, P> , (35) 

with similar relations for GG and G$ Eqs. (35) show that these have precisely the 
u,r dependence of the conventional meson exchange potentials. For the vector 
mesons, the central term contains both spin-independent terms, denoted by C, and 
spin-spin terms denoted by SS, following standard OBEP Ianguage. For the pseudo- 
scalar mesons the central term is of pure SS variety. The functions Gc(R, P) are 
given by 

G(t,ff(R, P) = r, i 2‘9” 
O=D,M i=, 

13 l/2 

6(1+2x2b*)fx2b2 
&&JR P; x2) 3 (36) 

where the gc are given by eq. (33) and table 1, and the X contain the u,?- 
independent factors of the X$$ of eq. (28) and additional a-dependent factors. 
With the shorthand notation 

(Y 55 [~~(oo)s~T3(oo)]s~3~~ ps,, , (37) 
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TABLE 1 

Coefficients for Wiper transforms of gaussian kernels 

M: 

P3,, i = 1 or 2 P3,, i = 3 

15(5+3K) 

130+3K 

12 

15x&(6+ K) 

130+3!r 

96&~ 

15 

26 

2(3 -4~) 

13(5+2~) 

4 

13 

15fi(6+~) 

26(5+2~) 

12J5 

13 

6Od? 

169 

4fi(3+22~) 

D: 

(130+3K)2 

16&(10+3~) _ 
(130+3K)2 

8hc(370+ 147~) - 
(130+3K)2 

24.h -- 
130+3K 

0 

0 

16& 

39(5+2~) 

32& 

13(5+2~) 

the 2 are defined through relations (a) and (b) below: 

(a) with p = 77 or 3-r: 

(b) with fl= w or p: 

641 
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In eqs. (39) the X,RjTj,i are the single-nucleon spin, isospin, color factors for the 

color-singlet (Y = /3& which are tabulated in table la of ref. ‘). 

The Gc(R, P) for these simple color-singlet (qq) exchange kernels can be 

expected to give a good measure for the long-range parts of our effective NN 

potentials. For low-energy NN scattering the Wigner transforms at P= 0 are of 

greatest interest. In this case T’ and T” tensor terms are zero and the remaining 

terms have the specific form 

Gc( R, 0) = asx2mc2 &(F)3’2exp [ --$:)‘I 

(40) 

with 

(“)T_ (“)ss 
f,- -f; 3 

f$v_$f;;'"". 

The functions f {*, f t" are given explicitly through relations (a)-(d) below: 

(a) for pseudoscalar meson spin-spin terms: 

f ys = 
c*,:,f(A, + B) 

(b) for vector-meson central terms: 

(“)C - 
f 0” - (c^,;,:+2c^,;):) ’ 

(c) for vector- meson spin-spin terms: 
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(d) for vector-meson LS terms: 

+ c^ &$A,,+$A, +vB) , 
o23& 

fiLs = tp;&(&AO+~A, -B) 

+~^,~&(A~+~A,+~B); 

A 
where the cps,, are defined in eq. (38), and 

Ao= (~)“‘16~h,(a), 

A, = (+$j)“‘&6h,(a), 

A2 = (%)“‘a JS[h(@)+i%,(a)l, 

B+$, 

with 

a = gg($‘( R/b)2 ) 

h,(a) =Jj 
J 

ferf (A), 

h,(a)=& ; 
N- 

zerf (&)-e-” , 1 
h2(~)=$[($)$jerf(&)-(l+$)e-0], 

where 

erf (x) =-j$ 
I 

X 
o dte-‘*, 

and the h, are defined such that h,(O) = 1. Note that the A,, terms contain a weak 

R-dependent falloff in the long-range limit whereas B is independent of R and 

arises from the x2 + 0 long-range terms discussed in connection with table 1. 

4. Comparison with conventional OBEP’s 

The Wigner transforms of the simple color-singlet qq exchange terms, specifically 

the Gc(R, 0) of eqs. (35) and (40), are identified as the effective meson exchange 
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potentials of our quark model of the two-nucleon system. Eqs. (35) show that these are 

in 1: 1 correspondence with conventional OBEP’s as far as their dependence on 

nucleon (a, - a*) and (I, - TJ factors are concerned. They also have the well-known 

characteristic features of OBEP’s with respect to the relative importance and signs of 

tensor- and spin-spin-type central terms. Specifically, the tensor force has the 

opposite sign for pseudoscalar and vector-meson exchange potentials whereas the 

spin-spin-type central terms all have the same sign. The simple qq exchange 

potentials corresponding to pseudoscalar meson exchange have only %-type central 

terms and no LS terms. In our quark model, the presence of both C and SS terms, 

as well as LS terms, for the qq exchange potentials corresponding to vector-meson 

exchange is related to the fact that these gain contributions from two types of 

spin-dependent terms, with SZ3 = 4 and t (note the difference between eqs. (39b) and 

(39a)). Figs. 7-11 show that the Gc are in general also in good quantitative 

agreement with the conventional one-meson exchange potentials VP” in the R 2 

1.2 fm range and have the general radial characteristics of the VPn over an even 

wider range. For the conventional meson exchange potentials we have chosen the 

on-shell, nonrelativistic meson potentials of Holinde and Mundelius 4), in P* = 0 

approximation, to be directly comparable to the G !$ evaluated at P = 0. Specifically, 

we have chosen the meson potentials, given in momentum representation, by eq. 

(2.25) of ref. “) for pseudoscalar mesons and by eq. (AS) of ref. “) for vector mesons. 

These are regularized by the momentum-dependent form factors of the coupling 

constants 

g(k2) = g(O) & ( > 
n 

(41) 

with dipole approximation, n = 1, for pseudoscalar mesons, and n = 5 for vector 

mesons, as suggested by Holinde ‘). A common cutoff parameter A = 1530 MeV has 

been used for all mesons “). The meson masses and coupling constants, (including 

the tensor to vector coupling ratio f NNp/gNNP), used to evaluate the VP”(R) are 

those of table 1 of ref. ‘). Since the quark-model parameters of ref. ‘) fit the 

experimental vector-meson coupling constants, in particular the combination 

(g NNp +fNNp), the Gc and VPR are essentially based on the same set of experimental 

numbers. The extreme short-range parts of the VPR are not shown in figs. 7-11, 

although in some cases, specifically the VPT, there are additional changes in sign 

at extreme short range which are not to be taken seriously with the above high-k* 

form-factor parameterization. 

Figs. 7-11 show a remarkable agreement between the long-range characteristics 

of Gpw” and VPR. The extreme long- range falloff of our central pion potential G$’ 

does not match the Yukawa tail of V”“; but this is to be expected from a quark 

model with gaussian OS internal wave functions. In addition, our quark-model pion 

tensor term is too weak. At R = 1.2 fm, GGT is approximately 4 of V”=. This is in 

agreement with the fact that the qNN coupling constant, gt,,, predicted by our 
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Fig. 11. Same as fig. 7, but for the spin-orbit potentials. 

model, is too weak by a factor of -i [see ref. ‘)I. With the exception of the long-range 

parts of the pion potentials, the Gr and VP0 are in remarkably good agreement 

for R 2 1.2 fm. In addition, they have the same qualitative characteristics over a 

much wider range. This can be seen for the central SS terms from figs. 8 and 9, 

although we note that the zeros of the Ge are pushed to larger R-values by 

0.2-0.3 fm relative to those of V P’s for /? = r] w and p. Fig. 7 shows that the most 

significant qualitative difference between the ‘qq exchange potentials Ge and the 

conventional meson exchange potentials VP” occurs in the spin-independent central 

part of the w-exchange potential. The steep repulsive rise in the central part of the 

conventional w-exchange potential in the R s 1 fm range is missing in the corre- 

sponding qq exchange potential. The latter changes sign, with a zero at -0.83 fm, 

and becomes attractive at extremely short range with a minimum of -583 MeV at 

R = 0. [This compares with a much steeper attractive minimum of - 1.2 GeV for the 

full “No” potential if all 25 exchange terms are included, cf. fig. 10 of ref. ‘).I It 

should be noted that a change of sign at -0.83 fm is common to all central potentials 

of simple color-singlet qq exchange type. This is related to the nature of the essentially 

common second-degree polynomial multiplier shared by all central Gg, so that 
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this is not a unique feature of the w-exchange term. In this connection it is also 

interesting to note that Holinde ‘) seeks the origin of the short-range repulsion of 

the “phenomenological o-potential” in the short-range repulsive term arising through 

the quark-gluon exchange mechanism of the (3q)-(3q) model, since only the outer- 

range parts of the meson exchange potentials are considered as theoretically “well 

founded”. Finally, it is interesting to note that phenomenological models, in which 

a short-range repulsive potential, derived from quark exchange kernels in a (3q)-(3q) 

model, is augmented by longer-range mesonic potentials, introduced into the model 

“by hand”, can fit the experimental NN scattering data only if the o-repulsion is 

“turned off”. [See ref. lo) as an example of such calculations.] 

Fig. 11 shows that the p and w LS potentials of the simple qq exchange type are 

in reasonable quantitative agreement with the conventional meson exchange poten- 

tials for R 2 0.8 fm. It is to be noted, in particular, that the LS attraction is of the 

same order of magnitude or even larger than the weak attractive LS potential 

generated by the (3q)-(3q) components of the two-nucleon system [see refs. “-‘3)]. 

Before definite conclusions can be drawn for the R < 0.8 fm region the full LS 

potentials must be calculated (including all 25 types of exchange terms). However, 

the results of fig. 11 indicate that the cross-terms in the quark exchange kernels, 

which arise from the coupling of the (3q)-(3q) components of the two-nucleon wave 

function to the (3q)-(3q)(qq) components, are of major importance for the LS 

potentials. Conclusions drawn from LS potentials derived from simple (3q)-(3q) 

models may therefore be open to question. It is interesting to note that LS potentials 

from simple (3q)-(3q) models have been combined with additional phenomenological 

LS potentials of meson-exchange type in a recent application 14). 

Since the short-range parts of conventional meson exchange potentials are very 

sensitive to the exact form of the high-momentum cutoff function in the assumed 

form factor of eq. (41), it is also of interest to note that our model predicts such 

form factors; see eq. (69) or ref. ‘). Although there are slight differences in the k* 

falloff for different mesons these are approximated very well (with better than 95% 

accuracy over the k = O-6 fm-’ range) by a simple gaussian falloff, exp (-0.047 k*), 

for all mesons. The nature of this falloff is of course related to the gaussian character 

of the internal wave functions of our model and again is not to be taken seriously 

for very high k2. Meson exchange potentials in which the form factor of eq. (41) is 

replaced by this simple gaussian have characteristics very similar to those of both 

the Gc and VP0 of figs. 7-11, inc u 1 ding a strong short-range repulsive WC term. 

However, the agreement between Gc and VP* in the R 2 1.2 fm range is best if 

the VP0 are evaluated with the experimentally-based form factors of ref. ‘) and eq. 

(41). 
Despite the good agreement between the Gc and VPR for R 2 1.2 fm and their 

similarities in the R - 1 fm region, it should be emphasized that there is much 

cancellation in this region between the various mesonic contributors to the effective 

NN potential in a particular NN channel. The simple color-singlet qq exchange 
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potentials can thus not be expected to be a good approximation in the R - 1 fm 

region where more complicated exchange processes already dominate the full NN 

potentials. Exchange terms of type P 36 P 37 with i = l-3, in particular, have been 

found to be important in this region. 

Finally, it may be interesting to compare the results of the present investigation 

and the philosophy underlying our model with that of other models in which meson 

fields are coupled to the quark degrees of freedom ‘) through a meson quark-current 

interaction with coupling constant determined by the PCAC relation. The work of 

Shimizu “) is of particular relevance for the present study. Shimizu studies the effect 

of quark antisymmetrization on the one-pion exchange potential derived from such 

a model. His long-range potential, of conventional (al - uJ(T, - TJ type, is qualita- 

tively similar to the GksS and V”” of fig. 8. However, he also predicts that quark 

antisymmetrization leads to a strong short-range spin, isospin-independent central 

repulsive component in the one pion exchange potential. Neither the simple qq 

exchange potential of pionic type nor the full NT potential of our model contains 

such terms. Fig. 9 of ref. ‘) shows that the full Nm potential, including all 25 of the 

possible exchange terms in the coupling kernel of NT (3q)(qq) type, shows a 

relatively strong attractive component as R + 0. Since it is the aim of the present 

quark model, with qq excitations explicitly incorporated into the model space, to 

treat the quark degrees of freedom in baryons and mesons on an equal footing, 

quark antisymmetrization effects are fully included. Such models should ultimately 

bridge the gap between models in which mesons are treated as separate entities and 

models in which both baryons and mesons are treated from a more fundamental 

viewpoint. 

5. Summary 

In a recent quark-model study of the NN interaction ‘), we explicitly incorporated 

the quark-antiquark excitations inherent in the quark-gluon interaction lagrangian 

into the model space to study the effects of such excitations on the NN interactions. 

The admixture of a specific (3q)(qq) component into the wave function of a single 

nucleon leads to important contributions to the quark exchange kernels of the 

two-nucleon system. When converted into effective potentials through a local- 

momentum approximation using the Wigner transforms of these kernels, these 

coupling terms lead to important short-range potentials whose net effect is to cancel 

much of the repulsive core height arising from the dominant (3q)-(3q) component 

of the two-nucleon wave function. The present investigation has focused on the 

long-range terms of these coupling kernels. It is shown that the long-range parts of 

the resultant potentials arise almost entirely through two of the 25 possible types 

of exchange terms. These two exchange terms correspond to a simple exchange of 

a qq pair between the two nucleons and contribute only through coupling terms for 

which the (3q) component has the quantum numbers of a nucleon and the (qq) 
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Fig. 12. OBEP’s, scalar mesons (a-meson, T=O; b-meson, T= 1). 

Fig. 13. Quark exchange diagrams generated by RPA-type off-shell terms of the Fermi-Breit quark-gluon 

interaction. 
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component the color-singlet character of a real pseudoscalar or vector meson. The 

potentials arising from these simple color-singlet qq exchanges have the characteris- 

tics of conventional one-meson exchange potentials as far as their dependence on 

nucleon (al - u2) and (pi * q) factors and their LS and tensor properties are con- 

cerned. They are also in remarkably good agreement with conventional OBEP’s in 

the R 2 1.2 fm range and have the same qualitative radial characteristics over an 

even wider range. The one exception is the spin-independent central term of the 

o-exchange potential. Although Yc and G!$ are in remarkably good agreement 

for R z= 1.2 fm the qq exchange potential does not have the steep short-range repulsive 

rise of the conventional w-exchange potential but becomes attractive at R < 0.8 fm. 

Since the quark model instead gains a repulsive core through the (3q)-(3q) com- 

ponents of the two-nucleon wave function, this must be considered a desirable 

feature of our model. 

In ref. ‘) it was also shown that the effective NN potentials gain a weak medium- 

range attractive part through the qq excitations. However, this attractive part is too 

weak to fit the low-energy S-wave phase shifts. In the conventional one-meson 

exchange potentials an important medium-range attraction is introduced through a 

a-potential. Fig. 12 shows the conventional meson-theory w- and S-potentials using 

the parameters of refs. 4*5) and the momentum-cutoff form factor of eq. (41), again 

with A = 1530 MeV and n = 1. The figure is included to show that the m-potential 

is vital for medium-range attraction in the conventional OBEP picture. Since the 

(qq) excitations are incorporated into the quark model in ref. ‘) through an improved 

wave function of an isolated nucleon, the qq excitations of the model do not include 

scalar mesons, and potentials of a-meson exchange type are so far missing in the 

quark model. However, besides the pseudoscalar and vector qq excitations inherent 

in the quark-gluon interaction lagrangian, there are additional (qq)(qq) excitations 

which can carry the quantum numbers of a u-meson. Such a-mesonic effects can 

thus be incorporated into our quark model of the NN interaction through the 

(qq)(qq) excitations generated by RPA-type off-shell terms in the Fermi-Breit 

quark-gluon interaction. Fig. 13, which is to be compared with fig. la, is included 

to show that such excitations can account for a-exchange effects. Preliminary 

calculations show that the aN coupling constants arising from such exchange terms 

are of the right order of magnitude. Details will be presented in a future study. 
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