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This paper is concerned with an introduction of a concept of adaptive grid design for finite element 
analysis by combining numerical grid-generation methods and adaptive finite element methods. 
Development of a finite model is considered as a design problem similar to structural optimization 
problems. 

1. Introduction 

After a quarter century of development finite element methods have reached that point of 
maturity at which nobody doubts their effectiveness and power to solve various kinds of 
engineering problems with a variety of aspects, both very theoretical and extremely practical. 
Based on the construction of theories of finite element methods duri,ng the 396Os, many 
general-purpose codes have been developed which are commercially available and have 
become standard means to analyze stresses, strains, deformations, velocity, and reactive forces 
of solid structures and machine components. Furthermore, due to the extensive advancement 
of computer hardware even these large-size finite element programs are executed not only by 
the so-called superminicomputers but also by the micro/personal computers such as the IBM 
PCs. Another very important new aspect in computer-aided engineering is the concept of 
networking of several levels of hardware which enables the linking of several software systems 
for computer-aided design and manufacturing. In this new context finite element methods are 
considered an extremely powerful means for analysis, and they have become part of a system 
of design/manufacturing activities. 

In this paper we will develop a theory of adaptive finite element grid-design methods for 
finite element approximations, which can assure that the approximated solution to a given 
problem is accurate enough to be adequate for quality control of products, and which is 
consistently applicable in the network environment for design/manufacturing activities. To this 
end we will study methods of numerical grid generation and adaptive finite elements in order 
to design a better finite element grid, in the sense that it reflects the solution characteristics, 
and to improve the accuracy of finite element approximations at the same time. The basic idea 
in the present approach is to set up the grid-generation problem as a design problem which is 
similar to the optimal design of structures. That is, starting from a given finite element grid 
which is already generated by the application of numerical grid-generation methods, the 
optimum grid will be obtained by a certain iterative manner following, for example, the 
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optimality-criteria method in structural optimization. This is only possible when an optimal 
grid-design problem is formulated mathematically and a necessary condition for optimality is 
obtained. It is certain that the formulation of a grid-design problem is not unique. For 
example, if a grid-design problem is defined to minimize the maximum value of the error of a 
finite element approximation, different choices of error measures yield different problems and 
possibly different optimal grids. Therefore, it will be very important to know various kinds of 
error measures of finite element approximations, which reflect the nature of the solution and 
the designer’s desire for analysis. 

The necessity of mixing numerical grid-generation and adaptive methods is also recognized 
through the present study. For example, for extremely large deformation analysis of metal 
forming, no matter how existing adaptive methods such as the r-, h-, and p-methods are 
applied, it is impossible to treat adequately finite element solutions at nonconvex corner 
points, where deformation is localized and material points turn their position from one 
boundary segment to another. In this case, we will have a negative determinant of either the 
deformation gradient or the Jacobian transformation matrix from the physical and iso- 
parametric finite element coordinate systems. A negative determinant may be avoided in very 
lucky cases, but the quality of finite element approximations is definitely poor at these points 
despite the application of adaptive methods. One of the methods is remeshing, that is, after a 
certain deformation a new finite element grid is defined to avoid very distorted finite elements 
for the updated Lagrangian approach, or to maintain a reasonably small error amount 
accumulated in certain specific finite elements for the total Lagrangian approach. For remesh- 
ing two aspects are important. An adequate measure must be introduced to decide whether 
remeshing is required and the logic for automatic remeshing must be defined for practical 
applications. 

It is noted that the present study largely owes to previous extensive and thorough studies 
on numerical grid-generation methods by Thompson [l] and Thompson et al. [2]; on finite 
element grid-optimization and adaptive methods given by Shephard [3], Babu8ka et al. [4], and 
Oliveira et al. [5]; and on adaptive methods for finite difference methods in Ghia and Ghia [6], 
although the spirit for synthesis of these studies is based on the memorial works f7,8] by 
Southwell in which many grid-generation methods as well as the origin of the h-adaptive 
method were already discussed. 

2. General procedure for adaptive grid design 

Roughly speaking, a procedure for grid design for finite element, finite difference, and 
boundary element methods can be defined by the following flow chart: 

Step 1. Geometric modeling of a given structure. 
Step 2. Modeling for mechanics. 
Step 3. Rough characterization of the solution. 
Step 4. Development of the initial grid. 
Step 5. FEM, FDM, BEM analysis. 
Step 6. Computation of error measures for adaption and remeshing. 
Step 7. Remeshing. 
Step 8. Adaptation, 
Step 9. Postprocedure. 
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The first step is geometric modeling of a given structure. Especially boundary segments and 
surfaces are represented by appropriate spline functions which will also be used in numerical 
grid generation. In many cases the boundary of a given structure is decomposed into several or 
many segments and surfaces so that they can be approximated by reasonably low-order spline 
or equivalent polynomial functions. 

Step 2, modeling for mechanics, involves the specification of loading and kinematical 
boundary conditions and material characterization. It is then necessary to develop an image of 
the solution in order to grasp the qualitative behavior of the solution of the problem setup in 
the first two procedures. Based on the nature of the imagined solution, the initial grid for 
analysis by finite element, finite difference, and boundary element methods must be defined 
using numerical grid-generation methods. 

According to Thompson et al. [2] numerical grid-generation methods can be classified into 
three groups: 

(1) conformal mapping methods; 
(2) differential equation (elliptic or hyperbolic type) methods; 
(3) algebraic methods. 
Conformal mapping methods are based on the flow net in a two-dimensional potential 

flowfield. That is, the families of curves of the stream function, 5 = constant, and the potential 
function, 7 = constant, form an orthogonal system, and when the intervals between con- 
secutive values of r and q are equal and sufficiently small, they form an orthogonal net. 
Elliptic differential equation methods are a generalization of conformal mapping methods in 
order to generate grids for complicated, possibly curved, domains. That is, since both stream 
and potential functions satisfy the Laplace equations 

-A[=O, -Av=O, (1) 

the physical coordinates (x, y) are determined by the second-order elliptic-type di~erential 
equations 

where V is the gradient operator in the physical coordinate system 

In this case, (5, r)) should be considered as the grid coordinates rather than the stream and 
potential functions. The existence of the terms D, P, and Q will provide the possibility to 
combine adaptive methods. Indeed, the analogy to heat-conduction problems yields that 
smaller grids are obtained in the portion where D, P, and/or 0 are larger than in other 
portions. Thus, the adaptation will be performed by adjusting either the amount of heat 
sources P and Q, or the heat conductivity D to generate the desired grids. One of the 
annoying tasks in this approach is to set up boundary conditions which define the boundary 
location in the physical coordinate system. To do this, as mentioned earlier, expressing the 
boundary segments by some spline functions is very helpful. 

Although the first and second approach are very similar, the third one is, relatively speaking, 
more independent from the others. Within this category, algebraic serendipity-mapping and 
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algebraic integer methods are the most popular for numerical grid generation. A number of 
engineers, especially, adopt the serendipity-mapping method to generate a finite element grid 
since the same serendipity mappings are applied to define the shape functions of the 
serendipity elements for finite element approximations. This method first decomposes a given 
structure into many blocks which can be identified with either triangular or quadrilateral 
serendipity elements. Each block, then, is decomposed into a given number of finite elements 
by specifying the number of grids and the grid gradient in each coordinate axis of the 
normalized coordinate system in the master element of the finite elements. More precisely, if 
(5,~) are the normalized coordinates for the square master element defined by the region 
((5; y): -1 < 5 < 1, -1 < 71 < l), then a rectangular net constructed in the master element is 
mapped into a block in the physical coordinate system by the algebraic transformations 

where (x,, y=) are the coordinates of the nodes characterizing a block, and N, are the shape 
functions of the serendipity element. This method is based on the simplest concept, although it 
needs very annoying work to maintain continuity along the interfaces of blocks forming a 
given domain, especially for very complicated structures. Furthermore, this approach may 
yield distorted grids. The algebraic integer method first spans either a triangular or rectangular 
net which covers a given domain completely. Every grid point identified by the integers (i, i) is 
labeled by the location index L, such that Lij = 1 if (& i) is inside the domain and 1;ij = 0 if (i, j) 
is on the outside. If all the grid points whose location indices are equal to one are 
accumulated, a zigzag domain is obtained which is contained in the given domain. Then the 
grid points on the edges of the zigzag domain are projected on the boundary of the original 
domain. This procedure may yield very distorted and irregular elements near the boundary, 
but these can be modified by applying grid-smoothing schemes. 

Now, after generating a grid, the next step is analysis by, for example, finite element 
methods. An approximated solution is computed. For the adaptive grid design which is 
introduced in this paper, we cannot terminate the execution of programs as usual. It is 
necessary to compute error measures that quantify the amount of error of the approximation, 
although the exact amount may not be computed. Using the computed error measures, it is 
determined whether remeshing and adapting grids are necessary to maintain the level of error 
in the approximation. The question is how error measures are defined for a given problem. To 
answer this question it must be noted that extensive work on this issue has been done by 
BabuSka and his co-workers, and that very clear ideas for error measures and indicators 
have been obtained. In this paper, despite some disagreement with Babuska’s and other 
mathematicians’ definitions of error indicators, we will compute an error measure based on the 
so-called interpolation error of the solution, which bounds the error of the finite element 
approximations from above. As far as our experience is concerned, this approach would not 
imply large disagreement with others on the adapted grids. More precisely, the adapted grids 
based on the interpolation error always yield improved solutions. 

If it is necessary to do, remeshing for large-deformation nonlinear or free boundary 
problems must be completely automatic. Otherwise, it is not attractive at all. A possible 
approach for automatic remeshing is the application of grid-generation methods such as 
elliptic differential equation and algebraic integer methods. Conformal mapping and algebraic 
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serendipity mapping methods may not be applicable for this purpose, since decomposed 
blocks must be assigned at the initial stage that does not contain any information on how grids 
will be distorted during the process of analysis. Even differential equation methods are 
considerably more difficult to apply, because the boundary segments must be set up at the 
initial stage. Algebraic integer methods seem the most promising for remeshing at this 
moment. 

The main process of the adaptive grid design is the application of adaptive methods based 
on the optimal grid-design problem defined by 

Minimize Maximum E, , 
by grid design e=l.....NE 

(4) 

where E, is an error measure of eth finite element and NE is the total number of elements in 
finite element approximations. So far, three adaptive methods have been introduced. The 
oldest one is the r-method that relocates nodes (that is, grid points) so that smaller-sized 
elements are accumulated at the portion where the approximation error is large. The total 
number of degrees of freedom and element connectivities are unchanged during this adap- 
tation. Only the nodal coordinates are changed. The h-method refines an element into several 
elements if it contains a large amount of error, that is, the total number of elements (and thus 
the total number of degrees of freedom) increases during this adaptation. Very refined finite 
elements will be generated around singular points. The p-method introduces higher-order 
polynomials for the shape functions of elements in which a relatively large amount of error is 
accumulated. If the error level is low in certain elements, low-order polynomials are sufficient 
for the shape functions. This method also increases the total number of degrees of freedom. 
Furthermore, this requires that finite element analysis programs be capable of handling 
various types of shape functions, whereas for the h-method a single choice of shape functions 
is sufficient for all the elements. By deciding which adaptation is applied, we redesign the 
initial grid so that an optimality condition to the optimization problem (4) 

E, = constant for e = 1,. . . , NE, (5) 

is more likely satisfied by the adapted grid. Then, if it is necessary to go back to the analysis 
again, we simply return to the analysis process and repeat this until a satisfactory ap- 
proximation is obtained. 

As described above the adaptive grid design is a combination of numerical grid-generation 
and adaptive finite element (or possibly finite difference and boundary element) methods. 
According to the approximated solution, the grid is adapted or remeshed completely in order 
to maintain or improve the accuracy of the solution. 

3. Numerical grid generations 

As shown in the previous section, numerical grid-generation methods can be classified into 
three groups: conformal mapping, differential equation, and algebraic methods as Thompson 
et al. [2] described in their very thorough survey on this issue for finite difference methods. In 
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this work, we will follow Thompson and review some grid-generation methods, especially 
toward adaptivity and automatic remeshing of a given irregular domain. It is certain that 
covering all available grid-generation methods is impossible. Here, we will present those we 
have already applied to solve linear and nonlinear mechanics problems at the University of 
Michigan. 

3.1. Conformal mapping methods 

These methods are based on the fact that the families of curves of the constant-stream and 
constant-potential functions form an orthogonal system, the so-called flow net in the potential 
flow field. If the flow net is identified with the grid for finite element approximations, this 
yields a means to generate a family of quadrilateral elements. The coordinates (6, 7) consisting 
of the stream and potential functions 5 and q, respectively, are identified with the grid 
coordinate system. For example, the conformal mapping 

w=t+iq=ar”, r=x+iy (6) 

is defined, where (x, y) are the coordinates in the physical coordinate system, and the grid 
coordinates are computed by the inverse relation 

r = x + iy = (w/a)1’n, i.e., x = (R/a)l’” cos(O/n) , y = (R/a)“” sin(O/n) , 

where R = d/p+ v2 and 0 = Arctan(t/r]). This mapping may provide grids for a portion of 
a given domain around a corner point. For example, for an L-shaped domain or a domain 
containing a crack inside, the conformal mapping (6) generates the grid shown in Fig. 1. It is 
clear that this grid represents a singular behavior near the corner point where the solution, in 
general, has a singularity, that is, elements of very small size are generated there. However, it 
is noted that the number of elements in the vicinity of a singular point is limited, for example, 
only one for iz = 2 and three for IZ = 4. This leaves a somewhat unsatisfactory feeling to the 
grid generated, although refined finite elements are obtained in the neighborhood of a singular 
point. This nature is quite different from the algebraic grid generation using the idea of 
serendipity transformation of finite element methods as shown later. Roughly speaking, if the 
number of grids in the circumference is specified, the algebraic serendipity-mapping method 
can produce very refined elements at a singular point. That is, the number of elements can be 
specified in the vicinity of a singular point, while the conformal mapping method automatically 
defines the number of elements at a singular point despite the arbitrariness of the total 
number of elements. 

As in [2], the conformal mapping method may be classified into two main subgroups: the 
series-transformation method and the Schwarz-Christoffel transformation method. The first 
one is nothing but a method that generates a grid using a linear combination of known 
conformal mappings. For example, Gnoffo [9] introduced a finite series expansion 

x=(-Bsinh~+Ccosh~)cos~-~A,e”Vcos(n~), 
n=2 

y = (B cash 7 - C sinh 7) sin 5 + 2 A,, en” sin(nv) . 
n=2 

(7) 
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I I I 
(a) 

ml (b) 

Fig. 1. An application of a conformal mapping for fracture mechanics. (a) Elastic thin plate subjected to a tension 
field. (b) Grid containing a crack. (c) Enlargement of the grid in the vicinity of a crack tip. 

By defining coefficients appropriately an arbitrary domain is discretized into finite elements. 
However, it is clear that a given complex structure may not be discretized by this method. In 
fluid mechanics, the domain boundary is often defined according to the analyst’s desire 
without destroying the nature of a given problem. But in solid and structural mechanics their 
configuration is a priori given and there is no chance to modify it. Thus this method may not 
be applicable for discretization of solids and structures in general. 

The Schwarz-Christoffel transformation method possesses more flexibility than the series- 
transformation method. It can generate grids for an arbitrary polygon, even for a curved 
domain after certain modifications. The application of this approach in solid mechanics can be 
found in the work by Brown and Hayhurst [lo] for fracture mechanics, whereas many 
applications for fluid mechanics can be found in [ll-131. Anderson [12] applied a third-order 
Runge-Kutta method to integrate the derivative form of the Schwarz-Christoffel trans- 
formation. 

3.2. Elliptic differential equation methods 

As a generalization of the conformal mapping method, the elliptic differential equation 
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method is the one most extensively studied so far. Noting that any conformal mapping satisfies 
the Laplace equation, which is a particular form of elliptic second-order differential equations, 
an extension to the use of elliptic differential equations is natural for grid generation. Indeed, 
Winslow [14] was the first to clearly state the use of elliptic equations to define a nonuniform 
triangular grid for an arbitrarily shaped region of a nonuniform material with a smoothly 
varying grid spacing. For the potential and stream functions 5 and 7, respectively, which are 
identified by the grid coordinates, the Laplace equations 

Ac$=O, Aq=O (8) 

are considered over each region with boundary conditions determined by the interface and 
boundary zoning. Winslow thought that “because of the well-known averaging property of 
solutions to Laplace’s equation, we might expect a mesh constructed in this way to be, in some 
sense, smooth.” Equations (8) are solved numerically by inverting them and writing them in 
terms of the physical coordinates x and y which are functions of 5 and 7. Using the relations 

rlx = -yJJ, qy = x,lJ, 5x = y,lJ, ty = -x,lJ, 

where J is the Jacobian defined by J = xfy, - x?yf, equations (8) can be transformed into the 
inverse Laplace equations 

L(x) = ax& - 2/3X& + yx,, = 0 , L(Y) = (YYff - WY,, + YY,, = 0 7 (10) 

under the assumption J # 0, see [14, Appendix]. Here 

a = x’,+y;, P = x,x, + YfY, > y=xg+y;. (11) 

Subscripts indicate partial derivatives, for example, xf = ax/@. Later, this idea was extended to 
control the spacing of the coordinate lines. Thompson et al. [15] modified the Laplace 
equations (8) by adding the source terms P and Q 

A5 = PK rl) 7 AT= Q(L 7). (12) 

Then (10) becomes 

L(x) = -J(Px, + Qx,) , L(Y) = -J(py, + QY,) . (13) 

Another type of modification for the spacing of grids is given again by Winslow [16]. 
Modifying the Laplace equations (8) by 

V(DV[)=O, V(DVq)=O, (14) 

introducing a function D([, q), the elliptic equations (10) for grid generation are changed to 

WI = - d/J(D,y, - D,y,)lD , L(y) = - I//JcD,x, - D,x,) . (15) 
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It is now clear that if the grid generation follows the equations 

V . (DQ) = P, V*(DVq)= Q, 

the transformed equations become 

L(x) = -J(Px, -t Qx,) - d\IJ(D,y, - D,y,)/D , 

(16) 

(17) \ , 
L(y) = -J(Py, f Qy,) - ~J(Dsxq - D&/D . 

Brackbill and S~tzmann [17] derived similar elliptic differential equations for grid generation 
by using variational methods. Their approach has a very strong advantage: the variational 
problem can be set up to minimize the global smoothness of the mapping measured by the 
integral 

together with constraints such as the orthogonality constraint 

vg*vT)=o (19) 

and the constant-area (or constant-volume for three-dimensional problems) variation 

J = constant. (20) 

It is easy to derive the same elliptic equations (10) as Euler’s equations of the minimization 
problem 

Min I (21) 

without constraints. Constraints may be imposed by applying penalty methods. 
It is clear that the extension of grid generation by elliptic differential equations to 

three-dimensional domains is very straightforward as Mastin and Thompson [18] demon- 
strated. A similar three-dimensional extension is given by Ghia and Ghia [193 using the 
cylindrical coordinate system. Another advantage of the present approach is that the concept 
of adaptivity to increase accuracy or to capture discontinuous lines/surfaces such as shock 
fronts, is easily applicable to the grid-generation method using elliptic equations. Many 
beautiful results of adaptive grid generation for finite difference methods in computational 
fluid mechanics can be found in the two proceedings edited by Thompson [l] and Ghia and 
Ghia [6]. However, it is not clear whether the adaptive methods described in these proceed- 
ings are related to some of the mathematical studies on numerical error analysis. The adaptive 
methods for finite elements, such as provided by BabuSka, have a rather complete theoretical 
background based on error analysis by either refinement of elements or increase of the 
degrees of polynomials for interpolation. The adaptive methods used in these two proceedings 
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seem to be more primitive. Roughly speaking, after finding the high-gradient portion of the 
pressure distribution, adaptation schemes are introduced by defining appropriately the source 
terms P and Q, or the function D in the elliptic equations stated above. It seems to be true 
that there is no established form for adaptation. Therefore, in this paper, it is intended to 
consider this elliptic differential equation method as just one of grid-generation methods 
independent of the adaptive methods discussed later. That is, grids generated by this method 
would be regarded as initial grids on which adaptive methods are applied while stress/flow 
analysis is performed. 

Difficulties in elliptic grid generation can be found when the boundary or interface 
condition is set up for solving the differential equations. If the outside boundary of a structure 
is already specified, the choice of boundary conditions is sometimes not quite obvious. This 
yields a possible unpopularity of the elliptic differential equation method for grid generation. 
For rather simple domains often found in fluid-mechanics problems, specification of the 
boundary condition may not be difficult. But, for example, the domain for heat-conduction 
analysis of the head part of a piston of an engine shown in Fig. 2 (in which the grid is obtained 

(b) 

Fig. 2. A grid generated by the algebraic integer method (by T. Kotil). (a) Piston of an engine. (b) Head part 
discretized into finite elements. 
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by the algebraic integer method discussed in the next subsection) would yield very difficultly to 
the definition of an adequate boundary condition for the elliptic differential equations. 
Furthermore, different boundary conditions yield different grids. This means that the method 
requires a high level of understanding and experience. Thus, the method of elliptic differential 
equations cannot be used as a general-purpose grid-generation method by less experienced 
engineers and students although, if the appropriate boundary conditions are specified, grids 
generated are rather artistic and beautiful. 

The elliptic differential equations in, e.g., (10) are first discretized by finite difference 
methods since the domain for the equations is, in general, regular. That is, the domain is 
rectangular, triangular, or circular. In any case, it is possible to set up a grid-generation 
domain simple enough for application of finite difference methods without any boundary 
adjustment/interpolation. For simplicity, let us assume that, in this paper, the domain for grid 
generation is rectangular. The first and second derivatives are approximated by the central 
difference scheme 

XE = (Xi+l.j - Xi-l.j)/2 At y x,6 = (Xi+l,j - 2Xi.j + Xi-1,j)l(At)’ , etc. 

Here, xi, j means the value of x at the point (i Al, i AT), A[ is the increment in the &direction, 
and Ar, is the increment in the q-direction. After the discretization of the elliptic differential 
equations, these discrete equations are then solved by an iterative method such as the 
successive overrelaxation (SOR) method. Since the differential equations are elliptic, con- 
vergence of the SOR method is, in general, assured. It is also noted that fast convergence of 
the iterative scheme applied is not required when the grids are reasonably smooth. Thus, the 
shortcoming of the SOR method that the speed of convergence becomes very slow near the 
solution, is no longer critical. In the SOR method the expected rapid convergence in the early 
stages of the iteration process will be almost sufficient to solve the discrete equations for grid 
generation. For (12) the SOR method becomes as follows: 

_$“2 = (1 - w)x;j + w{(A/E)i,j(Xy+l,j + Xy-:‘,j) 

- (B/E), j(XY+l, j+l - X:+1, j-1 - XL’_,, j+l + xT211, j-1) 

+ (C/E)i,j(x~j+l+ x;T21)+ (FIE)i,jl 9 

x;f’ = projection of x;f’” , 

where the superscript indicates the number of the iteration, and 

(yi, j 

Ai,j = $7 

F,j= Ji,j Pi,j 

- 
Qi.j - 

(22) 

(23) 

(24) 
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ntl 2 
YLi= XF+‘,l,j-Xi-1,j 

( 265 ) ( 

+ Y::r.i-Y:I,jj)2s 

2Ah5 

For y, a similar iterative scheme can be obtained. Here projection means that if either the 
orthogonality condition or the constant-volume condition is imposed, then the SOR method 
must be modified by applying the concept of projection to satisfy given constraints. 

Now let us look at several examples of grid generation by the elliptic differential equation 
method, The first example is the discretization of the left half of a notched thin elastic pla.te. 
Since stress singularity can be expected at the corner point of the notch, refined elements must 
be obtained in its neighborhood, as shown in Fig. 3. It is noted, however, that only one 
element is connected to the singular point, as was the case in the grid obtained by the 
conformal mapping method. Fig. 4 shows the grids computed by the elliptic differentia1 
equation method for an analysis of large-deformation elastic-plastic metal-forming processes. 
Since the deformation is extremely large, remeshing is performed at three stages. In each grid, 
since corner singularity is expected, very refined elements are set up near the corners. In the 
finite element approximation of the elastic-plastic deformation, rectangular elements are 
desirable in order to avoid the so-called locking phenomenon and to obtain soft enough 
results. Thus, the orthogonality condition of the grid is imposed in this example when possible. 
Note that, if exact orthogonality is required, the iterative scheme used by the SOR 
method may not converge. Thus, we only expect orthogonality when we can impose it. Fig. 5 

Fig. 3. A grid generated by the elliptic differential equation method (by H.C. Rodrigues). (a) Notched thin elastic 
plate. (b) Grid generated. 
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Cd) 

(a) - EE -. 

Fig. 4. Remeshed grids at three deformation stages by the elliptic differential equation method (by H.C. 
Rodrigues). (a) Domain of an extrusion process. (b) First remeshed grid. (c) Second remeshed grid. (d) Third 
remeshed grid. 

__--- 
,,-’ 

,’ 

/ 

(a) (b) 
Fig. 5. Grids generated for a reverse extrusion problem by the elliptic different equation method with different 
boundary conditions (by H.C. Rodrigues). (a) Grid with boundary condition 1. (b) Grid with boundary condition 2. 
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shows two different grids computed by using two different boundary conditions on the same 
domain for elastic-plastic analysis of a reverse extrusion process. This example clearly 
shows that different boundary conditions yield different grids. Furthermore, it is very difficult 
to judge which one is better than the other. This characteristic makes the elliptic differential 
equation method difficult to apply to automatic remeshing of a domain under large defor- 
mation in the analysis of metal-forming processes. Although the grids obtained are extremely 
smooth, this method may not be an appropriate general-purpose method. 

3.3. Algebraic methods 

Although there are many algebraic grid-generation methods, only two will be discussed in 
this paper. The first one is the algebraic serendipity-mapping method, and the other is the 
algebraic integer method. 

The algebraic serendipity-mapping method seems to be the oldest and the most popular 
among users of finite element methods in both areas of solid/structural mechanics and fluid 
mechanics. The basic idea is that a given structure is first decomposed into several blocks 
which will be identified with possibly curved-edge triangular or quadrilateral serendipity 
elements whose geometry can be characterized by the nodal points on their boundaries. Since 
any finite element can be generated by a mapping from the master element, its size is 
normalized by (- 1, 1) x (- 1, 1) in the coordinate system (5, T) for two-dimensional problems. 
Any point (x, y) in an element in the physical coordinate system can be mapped from the 
corresponding point (5, q) in the master element by the following algebraic equations 

Here (xp, ycl) are the coordinates of nodes in a serendipity element in the physical coordinate 
system, and iV,(& 7) are the shape functions of the serendipity element in the master element. 
The idea of setting up two coordinate systems for physical description and grid generation is 
similar to that of the elliptic differential equation method. But in this case no differential 
equations need to be solved to define grids. Mere performance of the algebraic mapping (25) 
provides the grid coordinates. Because of this, the resulting grids may not be very smooth. 
Anyhow, after producing grids in the master element, these grid points are transformed into 
the physical plane. The element connectivities of the finite elements generated in the master 
element are not even changed after the transformation to the physical plane. Defining a grid in 
the master element is an easy matter, since it is a square domain. 

This is a very simple method to generate grids, and thus, it is necessary to pay a certain cost. 
As mentioned above, the resulting grids may not be smooth. For a complex domain, we may 
need to introduce many serendipity blocks unless various higher-order serendipity master 
elements are applied. This leads to many input data which must be supplied by the users. A 
possible remedy is to apply grid-smoothing and boundary-projection schemes. A very popular 
grid smoothing can be obtained using the idea of Winslow [14]. If a node, say n, is shared with 
elements L$, a;, . . . , LIE;, then the coordinates (x,,, yn) are modified by 

xn = (Cw%)/~ w=, Y, = (CYcaWm)/C w,, 
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where (x,,, yCp) are the coordinates of the centroid of element EI, (Y = 1,2, . . . , N, and W, are 
weights appropriately defined for averaging. If w, = area of a:, then the repeated application 
of (26) yields almost a uniform grid. If refined elements are desired in a certain region, then 
larger values for the weighting factors wa must be given in the corresponding elements. It is also 
noted that after applying the smoothing scheme to the grid generated by the algebraic 
serendipity-mapping method, the smoothed grid becomes very similar to the one obtained by the 
elliptic differential equation method, because (26) is a very rough approximation of the discrete 
Laplacian. Fig. 6 presents a comparison between two grids generated by the elliptic method and 
the algebraic serendipity-mapping method with smoothing. 

Ib) 

(c) 

Fig. 6. Comparison between the grids obtained by the elliptic differential equation method and the algebraic 
serendipity mapping method with a smoothing scheme (by H.C. Rodrigues and T. Torigaki). (a) Grid obtained by 
the elliptic’differential equation method. (b) Grid obtained by the algebraic serendipity-mapping method. (c) Grid 
obtained after applying a smoothing scheme to (b). 
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A boundary-projection scheme is introduced to project nodes onto a given curve identified 
with, for example, a spline. As mentioned above, the algebraic serendipity-mapping method 
may require many input data to characterize curved blocks which would be identified with 
higher-order serendipity elements. To avoid this, we first approximately decompose a given 
complex curved domain by several straight-edge blocks, i.e., by four-node serendipity ele- 
ments. After generating a grid, nodes on the grid boundary are projected onto the originally 
curved boundary. A boundary-projection scheme can be found in [201. Fig. 7 gives an example 
of boundary projection. It is worthwhile to mention that the grid in Fig. 7 is obtained by a grid 
generator, ASGRID, which is based on the algebraic serendipity-mapping method with 
smoothing and boundary projection, suitable for IBM PCs. 

Because of the decomposition of a given domain into several blocks, this method may not 
be suitable for automatic remeshing for large-deformation analysis. In the process of defor- 
mation these blocks, defined at the initial undeformed configuration, may become nonconvex 
or too much distorted so that their shape yields an inadequate grid. This is the third 
shortcoming of the afgebraic serendipity-mapping method for adaptive grid generation. 

Now we will discuss the last grid-generation method, the algebraic integer method, based on 
the work by Thacker, Gonzalez, and Putfand 1201, that uses a triangular grid. The basic 
procedure of this method is as follows: 

Step 1. Define an integer net in which a given domain is contained. The net may be 
triangular or rectangular as shown in Fig. 8. Grid points in the net are identified with a pair of 
integers (i, j) which define the location. 

Step 2. Define the boundary of the domain and the interfaces of different materials by, for 
example, splines. 

Step 3. Determine a zigzag grid, which contains the given domain, by using the indices Li_, 
defined by 

Li./ = 
1, if point (i, i) is in the given domain , 

0, if point (i, i) is outside the domain . 
(27) 

Fig. 7. Boundary projection method. (a) Originally assumed square domain 

nodes to given curves. (c) Final grid after applying a smoothing scheme. 
(b) Boundary projection of boundary 
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(a) (!I) (cl 

Fig. 8. Basic processes of the algebraic integer method. (a) Set-up of a given domain on an integer net. (b) 
Elimination of unnecessary portion. (c) Boundary projection to the given boundary. 

This process automatically defines the grid points on the boundary. Then find nodes which 
represent the interfaces of different materials if necessary. 

Step 4. Project the grid points of the zigzag boundary and the interfaces onto the real 
boundaries by, for example, the bisection method. 

Step 5. Adapt and smooth the generated grid. Adaptation may be performed by coarsing or 
refining elements. Smoothing is done in a similar way as discussed above. 

Thacker et al. [20] give a fine example of grid generation by this algebraic integer method. 
The method Shephard [21] uses to generate grids may be considered as a variation of the one 
introduced by Thacker et al. Thacker’s method has the following advantages. 

(1) It is extremely general and extendable to three-dimensional problems as well as to the 
elliptic differential equation method and the algebraic serendipity-mapping method. However, 
it is not necessarily bothered with defining appropriate boundary conditions as is the elliptic 
differential equation method. Once the boundary and interface of a given body are defined by 
some representative nodes for the spline definition, this method can generate essentially 
uniform grids without any difficulty. Thus it is applicable, having automatic remeshing 
capabilities, for large-deformation analysis of metal-forming processes and for shape opti- 
mization of structures in which the domain is subjected to large remodeling during the process 
of optimization. Grid adaptation is also possible in this method. 

(2) The grids generated by this method are basically the same as the ones generated by 
other persons if the same number of grid points and spacing are used. In this sense, it is 
universal. 

One of the possible disadvantages is that this scheme requires many integers such as Li,j 
and (i,j) for defining grid points. Since many IF-statements are applied, the speed of grid 
generation may be slower. However, programs for this method are, at least for two- 
dimensional problems, considerably smaller. 

It is worthwhile to mention that this method provides the best grid for large-deformation 
elastic-plastic problems in which a plastic locking phenomenon can be observed for certain 
finite elements, such as 4CST elements (triangular elements generated by connecting the 
diagonals of quadrilaterals), since very uniform, almost rectangular, quadrilaterals can be 
generated by this method in the plastic zone. In shape-optimization problems, this method 
must be accompanied by smoothing schemes which imply almost orthogonal elements to the 
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boundary optimized. Otherwise, some oscillatory behavior can be observed in the design 
boundary, see [22]. 

In Fig. 9 several examples of grids generated by the algebraic integer method are given. 
These are obtained by using AIGRID developed for IBM PCs. Note that AIGRID can also be 
executed by other, larger computers, but it is intended that this method be implemented even 
in microcomputers. 

3.4. Additional f~~ctiu~s for grid generation 

In solids and structural mechanics, domains are, in general, quite complex. Thus, mere 
application of the grid-generation methods discussed above may not provide grids for finite 
element approximations. To overcome this difficulty, we need to introduce other functions to 
compensate the capability of the above grid-generation methods. A practical approach may be 
the combination of all the God-generation methods after decomposing a given domain into 
several blocks as in the method of algebraic serendipity mapping. Each subdivided block is 
then discretized into finite elements by applying an appropriate grid-generation method 
independently of other blocks. After this process, the next step is to connect disjoint blocks 
discretized into finite elements. A typical setting is shown in Fig. 10 in which two disjoint 
blocks must be connected. This can be done by applying a function to connect two blocks. If 
there are functions to shift the location of nodes, -to delete nodes and elements, to add nodes 
and elements, and to modify element connectivities, then the connection of two blocks would 

Fig. 9. Examples of grids obtained by the algebraic integer method (by T. Kotil). (a) Discretized domain for 
metal-cutting analysis. (b) An example of the metal-cutting process. (c) Right half of the rail road cross-section, 
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(a) (b) 

Fig. 10. Connection of two disjoint blocks. (a) Two disjoint blocks. (b) After connection. 

be easy. This must be done interactively, while users look at the disjoint blocks on a graphic 
terminal. If nodes can be projected onto a specified curve/surface, making holes with an 
arbitrary shape becomes easy. Shifting and rotation of a block are also useful as well as 
enlargement and reduction of the size of a block. A renumbering scheme that minimizes the 
bandwidth is also helpful. Many other functions can be introduced for grid generation. To 
develop a user-friendly grid-generation capability effort should be endless. 

4. Adaptive finite element methods 

It is now desirable to control the approximation error in the finite element methods. 
Therefore, BabuSka and his colleagues have introduced the concept of adaptive finite element 
methods which enable to predict the total amount of the finite element error and to provide 
information on how a finite element model must be refined to reduce the error to the level of a 
specified value. They have established various error indicators for both linear and nonlinear 
problems and have given a strong impact to practical engineers by showing how the mathemati- 
cal theory of finite element methods can be applied to solve engineering problems. Here, details 
of the mathematical theory of adaptive finite element methods are not discussed. These can be 
found in a series of papers published by BabuSka and his colleagues [23-271. We will describe 
how adaptive methods are implemented to solve problems based on the idea of structural 
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optimization. As stated in Section 2, adaptive methods are characterized by the optimal design 
problem 

Minimize (Max E,) , (28) 
grid design by 

r-, h-, p-methods 

e 

where E, is an error measure of finite element approximations in an finite element L$.; the 
r-method means the node-relocation method which moves the node toward the optimal 
location; the h-method means that after finding elements suffused by a large amount of error 
these are refined into much smaller elements; and the p-method introduces higher-order 
polynomials for the shape functions of elements containing a large amount of finite element 
approximation error. The necessary condition for the grid optimization problem (28) is 

Eh = constant for e = 1,. . . , NE, (29) 

where NE is the total number of elements. In the r- and p-method, NE is fixed, while it 
increases in the h-method. The most interesting question in the practical application of 
adaptive methods is how an appropriate error measure E, is defined in each finite element. 
Here, we basically follow to the discussion in [28-311. For simplicity, let us consider the 
solution of linear plane-elasticity finite element approximation problems which uses four-node 
quadrilateral isoparametric elements. More precisely, let us consider the problem 

UE v: a(u,v)=f(v), VE v,, (30) 
where 

V is the admissible set of displacements satisfying the essential boundary condition; the linear 
space V, is the corresponding homogeneous version; a(*, +) is the internal virtual work in a 
given structure; a,( -, *) is the corresponding value in each finite element; f( *) is the potential 
due to the applied body force f and the traction t on a part r of the boundary c?f2 of the 
structure a; fe( *) is the corresponding value in each finite element; and ~5’0~ is the boundary 
of an element 0,. Suppose that V, and V,, are the finite element approximations of V and V. 
using four-node quadrilateral elements. Then, the finite element approximation of (30) 
becomes 

Uh E v,: 4%~b)--f(eJ, zlhe vm. 
It follows from (30) and (32) that 

a(& - u, u,, - u) d a& -u, t),, - u) , ;v,, E v, I 

If the error of the finite element approximation is defined by 

(32) 

(33) 
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and if the interpolation error in Vh is defined by 

Er = u’a(u, - u, ut, - u) > 

where trl, is the interpolation of the solution U, then the approximation error of the finite 
element method is bounded by the interpolation error, that is, the following inequality holds: 

ieEl - (34) 

This suggests an error measure in each finite element fz, defined by 

the physical meaning of which is the square of twice of the strain energy in a finite element Ln, 
due to the difference of the true displacement and its finite element approximation. Note that 

El = 0 E~G~~MaxE,. (36) 
e e 

Now, the question is how the difference between the solution and its interpolation is estimated 
for the unknown solution. To do this, it is worthwhile to mention that only the first derivatives 
of the difference are required to compute the error measure defined in (35). 

Suppose that the second derivatives of all the components of the true displacement u are 
constant in each finite element. Their values need not be the same in different elements. Define 

A = d2WfdX2 , B = ~2wf~x~y 7 c = a2wfay2, 

Xf = cc, x2, x3, x3 I yt = (Yr7 3% Y31 Y4) 3 

X’ = WI, x2, x3, w 3 Y’ = {K, y2, ii/J, YJ 3 

if.dg = i(-1, 1, I, -I> t lL:= $(-I,-l,l,l), h’=a{l,-l,l,-r}, 
(37) 

JH = W/x)+ (h * x)q, JIZ = (L*y) + (h * y)q I 

Jzl=(L,*n)+(h*x)& Jiz = WY) + WY)67 J = JllJ22 - Jl2J21 , 

where (x,, yu) are the coordinates of the four corner nodes of a quadratic element in the 
physical coordinate system, and (X,, Y,) are four nodes inside of the element, say, the four 
nodes corresponding to the 2 x 2 Gaussian integration points in the master element. It is noted 
that if an element is a parallelogram, the terms Iz l x and h l y become identically zero, Under 
the assumption stated above, the first derivatives of the difference of the function w and its 
interpolation wh by the four-node quadrilateral element can be written as 

a(~, - w)lax = (I/J){-J&,A + 2JJ12B + J;2C)t + f,,(J;tA + 2J,,J,,B + J;2C)q 

+ 03 - 5% l Y& - 5h) + (I- r2&*y(-L + +)I 

a {h l x(AX + BY) + h l y(BX + CY)} 

+ I& - r12)(b - SW + q(1. - 4*x- LS + rlh)) 

.{~-xIt*y(AX+BY)+h*yk.y(BX+CY))], 
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a(~,, - w)/ay = (l/J)[-.J&,A + 2J,,J,,B + J&C)[ + J,,(J:,A + 2Jz,JzzB -I- J:zC& 

+ ((1 - $)A!+ l x(-L, + &)-t- (1 - [‘)Ls ‘ x& - qh)} 

+ {h . x(AX + BY) + h * y(BX + CY)} 

+ Ml- $)(-L + 0) + 54 - 52)(& - $2)) 

.{h-xh.x(AX+BY)+h.xh.y(BX+CY)}], (38) 

where (6,~) are the normalized coordinates in the master element. This means that if the 
second derivatives of the solution are known, the interpolation error can be expressed 
explicitly in terms of (5, v), Thus, the error measure defined above can be computed. If an 
element is a parallelogram, then the computation of the interpolation error becomes very 
simple since h .x = 0 and h -y = 0, that is, the last two lines are identically zero in each partial 
derivative. On the other hand, if a parallelogram is considerably distorted, then the terms in 
the second and third lines in the interpolation error become large in the region where large 
strain is expected, since (AX + BY) and other similar terms are basically strain components in 
an element. This suggests that regular refined finite elements must be set up in the neighbor- 
hood of singular points. Here regularity means that an element is close to a rectangle or 
parallelogram. Otherwise, the error contributions from the terms in the second and third lines 
would become quite large. This means that grids generated by conformal mappings are very 
appropriate. Similarly, grids generated by the elliptic differential equation method with the 
orthogonality condition and by the algebraic integer method are suitable in the sense that the 
contributions from the grid distortion and high strain (i.e., stress) can be restricted to be small 
enough. 

The last question in the evaluation of the error is how the second derivatives of the solution 
are estimated. One method is the application of the least-squares method to obtain continuous 
first derivatives of strain components from the ones computed from the finite element 
approximation at the Gauss integration points. Once the strain components are continuous, 
their derivatives can be obtained very easily using the routine to form element stiffness 
matrices. 

In this paper, let us define an error indicator which indicates the amount of finite element 
approximation error 

If EI becomes small enough, it may be possible to say that the approximation error is small 
enough. 

Fig. 11 and Table 1 show the distribution and the amount of error, respectively, for a model 
linear elasticity problem. Some finite elements are deliberately distorted in order to see the 
effect of the distortion. 

Now, let us briefly review the three adaptive methods, r-, h-, and p-methods, together with 
several applications. 

4.1. Node-relocation (r-) method 

This method has the longest history of all possible adaptive methods. Oliveira [32] studied 
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Fig. 11. Distribution of error measures in finite elements for an application of stress analysis of a fillet (by B. Koh). 
(a) Grid initially distorted on purpose. (b) Distribution of error measures. 

the optimal location problem of a grid by considering nodal coordinates and seeking variables 
as well as the function satisfying a boundary value problem. After this, studies by Turcke and 
McNeice [33], Felippa [34,35], Melosh and Marcal [36], and Shephard, Gallagher, and Abel 
[37] have been published. These are based on either the idea that the nodal points of a finite 
element model must be on the isothermal lines for heat-conduction problems, or the idea that 
each finite element must share an equal amount of the strain energy for linear elasticity 
problems. However, this approach does not yield the minimum amount of finite element 
approximation error, as shown by BabuSka. Furthermore, if a linear fracture-mechanics 
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Table 1 

Pointwise error value au/ax (X lo-‘) and integrated error measure in the upper 
boundary elements (j(ex,),il = absolute value of pointwise error of au/ax due to 
the line i in (38), E, = integrated error measure in each element) 

NE k&.31 

5 0.0 0.0 0.0 0.224 

10 0.0 0.0 0.0 0.354 
15 0.0 0.0 0.0 0.412 

20 0.0 0.0 0.0 0.253 

25 2.85 0.08 1.01 2.445 

30 0.25 0.59 2.81 3.656 

35 5.84 0.87 2.96 5.426 

40 0.02 0.19 0.29 0.326 
45 0.05 0.53 0.70 0.521 

50 0.002 0.013 0.02 0.017 

55 0.007 0.012 0.11 0.010 

60 0.015 0.031 0.17 0.020 

65 0.010 0.050 0.13 0.012 

70 0.165 0.062 0.255 0.117 

75 0.038 0.030 0.605 0.123 

problem involving a crack is solved using the idea of equal distribution of the strain energy in 
each finite element, this adaptive method implies that zero area elements be connected to the 
crack tip. That is, all the nodes around the crack tip move to the crack tip and finally they 
share the same coordinates. Another difficulty involved in this approach is to find a moving- 
grid scheme which would not destroy the convexity of finite elements and which is free from 
element collapse. 

For stationary heat-conduction problems and elastostic problems, the smoothing scheme 
(26) works reasonably well by taking the weights W, = EJarea of a,, where E, is an error 
measure of an element fiC. For one-dimensional problems, this smoothing scheme yields the 
satisfaction of the necessary condition, E, = constant, by repeated application. For two- 
dimensional problems, it can only be said that if all elements are rectangular and if the 
necessary condition is satisfied, the application of the smoothing scheme would not change 
the location of nodes by its application. That is, repeated application may not yield exact 
satisfaction of the necessary optimality condition for the grid-design problem. But it always 
reduces the maximum value of E, at the beginning and does converge to a fixed grid which is 
very close to the optimal one. It is noted, however, that the smoothing scheme changes the 
location of nodes of irregular grids even though the necessary optimality condition, E, = 
constant, is satisfied. This always allocates refined elements in the neighborhood of corner 
points whose domain angle is larger than 180 degrees, since the smoothing scheme is 
essentially an approximation of the discrete Laplacian. Because of this characteristic of 
smoothing, node relocation by (26) yields reasonable adaptivity for reducing the finite element 
error and for smoothing a given irregular grid, at the same time. 

As stated above, the error measure introduced here is the strain energy in an element due to 
the difference between the solution and its interpolation, but not the strain energy due to the finite 
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element solution as used in other works. This choice assures reduction of the finite element 
error defined in this paper. Only if an improved grid is expected containing less error than the 
original grid, then there are many other error measures. For example, the &norm of the 
gradient of the stress tensor in an element can be a good choice for an error measure as well as 
the &norm of the gradient of the von Mises equivalent stress. For large-deformation 
elastic-plastic analysis, the L,-norm of the total plastic strain (for necking problems) and the 
&norm of the gradient of the total plastic strain (for extrusion problems) are meaningful 
error measures, see [38]. For shape-optimization problems of linearly elastic structures the 
&-norm of the gradient of local criteria is applicable as an error measure for adaptation, see 

WI. 

4.2. Element refinement (h-) method 

The h-method, originally studied by BabuSka, is the method in which, after finding elements 
in which a large amount of error is accumulated, refinement is performed by subdividing these 
elements into much small ones. For example, a square domain is divided into four elements, 
and an adequate error measure is computed as given in Table 2. The average error 
measure is 0.04. In this case, if the third element is divided into four elements of 
equal size, then each element generated must share a quarter of the error measure, 
i.e, 0.025. Since the third element is refined, four nodes are added to the model. Thus, 
the second and the fourth elements must be divided into three triangular elements, see Fig. 12. 
This yields that a triangular element generated from the second element has an error measure 
of 0.007 and that a triangular element from the fourth element has error measure 0.01. 
Therefore, the average error measure becomes 0.015, and the maximum error measure is 
reduced to 0.025 from 0.10. Using the adapted grid, analysis is performed again to compute 
the error measure in each finite element, and the subdivision process of finite elements is 
repeated. The question is how to decide which elements must be refined. One method is to 
find elements whose error measure is larger than kE,,, where k is a scale factor and E,, is 
average error measure. Another way is to pick up elements whose error measure is larger 
than the M% of the maximum value of error measure in the whole domain, or M% elements 
will be refined. In any case, after the h-adaptation the necessary optimality condition is never 
satisfied, but the absolute value of the difference of the maximum and minimum error measure 
decreases considerably as well as the value of the maximum error measure. That is, at the limit 
of the h-adaptation the necessary optimality condition is satisfied, and furthermore, the 
amount of finite element approximation error becomes zero! 

Table 2 
h-method error measure 

Element Error measure Area 

1 0.01 0.25 
2 0.02 0.25 
3 0.10 0.25 
4 0.03 0.25 
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(3) (b) 

Fig. 12. An example of h-adaptation. (a) Original grid and distribution of the error measure. (b) Refined grid. 

(cl 

Fig. 13. Application of the r- and h-methods to fracture mechanics (by T. Torigaki). (a) Quarter part of a thin 
elastic plate containing a crack. (b) Grid obtained by the r-method. (c) Grid obtained by the h-method. 
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Fig. 13 shows an example of the application of the r- and h-methods to solve a tension 
problem of a thin linearly elastic plate with a crack subjected to the applied tensile traction at 
the end surfaces. Starting from the uniform grid for a quarter of the plate, the adapted grids 
obtained by the r- and h-methods are as shown in Fig. 13. It is clear that very refined grids are 
accumulated in the vicinity of the crack tip. Fig. 14 represents the distribution of the stress 
along the center line computed for the original, r-adapted, and h-adapted grids. The results for 
both adaptations are almost the same. This means that the r-method provides a result superior 
to the h-method in this problem, since the total number of degrees of freedom in the 
r-adapted grid is much less than in the h-adapted grid. Fig. 15 shows another application of 
the r- and h-adapted grid. Fig. 15 shows another application of the r- and h-methods to a 
problem of stress analysis of a gear tooth. Fig. 16 is an application to stress analysis of a thin 
shell structure. 

It is noted that the above methods are applicable not only to solids but also to flows. Several 
applications to flow problems are presented in [30,31]. Applications to free boundary 
problems of seepage flow and to shape-optimization problems are presented in [39] and [22] 
respectively. Extension to nonlinear problems, especially to metal-forming analysis can be 
found in [38,40] together with a remeshing method. 

4.3. Higher-order interpolation (p-) method 

This method is based on the idea that higher-order polynomials are applied to interpolate a 
function in the elements whose error measure is large. That is, the grid itself is not modified, 
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Fig. 14. Comparison of the stress distribution by the r- and h-methods. 
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Fig. 15. Application of the r- and h-methods to the stress analysis of a gear tooth (by T. Torigaki), (a) Original grid. 
(b) Grid obtained by the r-method. (c) Grid obtained by the h-method. (d) Contours of the equivalent stress for the 
grid obtained by the r-method. 

but the order of polynomials applied. This method have been studied mainly by Babuika, but 
also by Szab6 and Mehta [41], Zienkiewicz, Kelly, Gago, and BabuSka [42], and Oden et al. 
f43,44]. In this paper, we shall only present an example, solved by ourselves, of a heat- 
conduction problem (see Fig. 17). Both r- and p-method are applied at the same time to 

improve the result. For the p-method, only linear and quadratic polynomials are applied. It is 
certain that quadratic polynomials are assigned in the elements near the two singular points. 
The amount of increase in the maximum value of the heat flux was more than 56% in this 
case, although the mere application of the r-method implies only 28% increase. 



Fig. 16. Application of the h-method for shell stress analysis (by T. Torigaki). (a) Original grid. (b) Adapted grid. 
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Fig. 17. Application of the r- together with the p-method to a heat-conduction problem (by T. Kishimoto). (a) 
Temperature distribution on the adapted grid. (b) Heat-flux vectors on the original uniform grid. (c) Heat-flux 
vectors on the adapted grid. 
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5. Conclusion 
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We have introduced the concept of adaptive grid design which requires the combination of 
numerical grid-generation methods and adaptive finite element methods. Applications of this 
idea to real problems have been described in order to demonstrate its usefulness. For 
two-dimensional problems this is almost at the stage of completion, but for three-dimensional 
problems it will take considerably more work and time. 
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