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ABSTRACT 

Mutualism is part of many significant processes in nature. Mutualistic benefits arising 

from modification of predator-prey interactions involve interactions of at least three 

species. In this paper we investigate the homogeneous Neumann problem and Dirichlet 

problem for a reaction-diffusion system of three species--a predator, a mutualist-prey, and 

a mutualist. The existence, uniqueness, and boundedness of the solution are established by 

means of the comparison principle and the monotonicity method. For the Neumann 

problem, we analyze the constant equilibrium solutions and their stability. For the Dirichlet 

problem, we prove the global asymptotic stability of the trivial equilibrium solution. 

Specifically, we study the existence and the asymptotic behavior of two nonconstant 

equilibrium solutions, The main method used in studying of the stability is the spectral 

analysis to the linearized operators, The O.D.E. problem for the same model was proposed 

and studied in [13]. Through our results, we can see the influences of the diffusion 

mechanism and the different boundary value conditions upon the asymptotic behavior of 

the populations. 

1. INTRODUCTION 

MutuaIism is part of many significant systems and processes, such as 
mycorrhizal associations, nitrogen fixation, gut faunas and floras, endosym- 
biotic photosynthesis, endozoic algae, etc. A interaction among organisms of 
different species is called mutualistic if the presence of each species enhances 
the per capita growth rate of the other. 

Mutualistic benefits arising from modification of predator-prey or compe- 
titive interactions involve interactions of at least three species. A mutualist 
may affect a predator-prey interaction to the benefit of either the predator or 
the prey, but the most common pattern is a mutualist deterring predation on 
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a prey. For example, ants deter herbivores from feeding on plants and deter 
predators from feeding on aphids, endozoic algae deter predators from 
feeding on protozoans, and crustacea deter starfish from feeding on corals. 

In [13], B. Rai, H. I. Freedman, and J. F. Addicott presented two models 
of mutualism among three species and analyzed the conditions for bounded- 
ness of solutions, the equilibria and their local stability, and the condition for 
the existence of small amplitude periodic solutions. One of the two models 
involves interaction among a predator (y), a mutualist-prey (x), and a 
mutualist (u). A special case examined in some detail by the authors of [13] is 
the following O.D.E. problem: 

(1.1) 

where y, L,, , I, a, K, /I, m, s, c are all positive parameters, I and m being the 
mutualism constants. The model (1.1) has the following features: 

(1) The mutualist deters predation on the prey. 
(2) The mutualist growth is of logistic type. 
(3) The prey growth in the absence of predator is logistic and independent 

of the mutualist, i.e., the prey is benefitted by the mutualist only when the 
predator is present. 

(4) Predation in the absence of mutualism is Lotka-Volterra predation. 

It is known that the distributions of populations, in general, being 
heterogeneous, depend not only on time, but also on the spatial positions in 
the habitat. So it is natural and more precise to study the corresponding 
P.D.E. problem. 

In this paper, taking account of the diffusion mechanism, we consider the 
corresponding nonlinear reaction-diffusion system 

au, 
p=d,Au,+yu, 
at 

8% 
-=d2Au2+au, 

at 
in Q XR+, (1.2) 

au, 
~ = d,Au, + uj 
at i 

-s+---- 
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with initial condition 

u,(x,O) =ulO(x), i=1,2,3, on 3, 
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(I.31 

and homogeneous Neumann boundary condition 

al4 
L = 0, 
an 

i =1,2,3, on as2 xlw+, (1.4) 

or homogeneous Dirichlet boundary condition 

u,(x,t) =O, i=1,2,3, on as2 XR+, (1.5) 

where ui, u2, and u3 represent the populations of mutualist, prey, and 
predator with diffusion constants d,, d,, and d,, respectively; 52 is a 
bounded domain in R”; Xl is the boundary of 3; a/an represents the 
outward normal derivatives on as2; and A is the Laplace operator. 

The homogeneous Neumann boundary value condition (1.4) is to be 
interpreted as a “no flux” condition (i.e., there is no migration of any of the 
populations across the boundary of their habitat), whereas the homogeneous 
Dirichlet condition is to be considered as a condition under which none of 
the three species can exist on the boundary of the habitat. 

We establish the existence, uniqueness, and boundedness of the solution 
for the both kinds of boundary value problems by means of the comparison 
principle and the monotonicity method (e.g., [8, 9, 12, 151). For the Neumann 
problem, we analyze the constant equilibrium solutions and their asymptotic 
stability. For the Dirichlet problem, we give the condition under which the 
trivial equilibrium solution is asymptotically stable, i.e., all populations go to 
extinction. Specifically, we study the existence and the asymptotic stability of 
two nonconstant equilibrium solutions (the mutualist or the prey is alive 
alone as time tends to infinity). The main method used in studying the 
stability is the spectral analysis of the linearized operators [6-9, 111. 

Comparing our results with those of [13], one can see clearly the influences 
of the diffusion mechanism and the different boundary value conditions 
upon the asymptotic behavior of the populations. 

For a detailed explanation of the ecological background of the problem, 
the reader is referred to [13]. 

2. PRELIMINARIES 

In this section we introduce the concept of upper and lower solutions as 
well as the existence-comparison theorem, which will be very useful to us in 
establishing the existence, uniqueness, and boundedness, and even in study- 
ing the asymptotic behavior (in some cases), of the solutions. 
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We first consider the more general system 
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(2.1) 

with boundary condition 

f4[u,l =~,(x)u,+p.(x)~=h,(x), i =1,2,3, on as2 xlw 

and initial condition 

+ (2.2) 

u,(x,O) = u,,j(x), i=I,2,3, on CZ, 

where L, is an uniformly elliptic operator in !J, i = 1,2,3. 

(2.3) 

Assume that OL,, p,, and u,,, are smooth nonnegative functions with 
u,,) f 0, cx, + fl, > 0, and that f, is continuously differentiable with respect to 
its variables for uL > 0, i, k = 1,2,3. In addition, we require the following 
assumptions on f,, i = 1,2,3: 

au, - 

af2 
i)u a07 

af2 
1 

,u~o, for ~,ao, i=1,2,3, (2.4) 
3 

af3 af3 
-GO, jpo 
au, 2 

which are natural in view of the ecological background of the predator-prey- 
mutualist model and satisfied both by the reaction terms of (1.2) and by 
those of a more general P.D.E. system corresponding to (2.1) of [13]. 

Now, we give the definition of the upper and lower solutions. 

DEFINITION 1.1 

Ordered smooth functions u = ( U1, Uz, U3) and 0 = (g,, _u,, _u3) in Qr are 
called upper and lower solutions of (2.1)-(2.3), respectively, if they satisfy the 
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following inequalities (2.5)-(2.7): 

(El), - L,U, a/-,(%,&), 

(“*), - L,% >fi(%,&.-Ul), 
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(G3),- L,k~f3(!!1~~,,~3)? 
(_Ul), - L,_ul ~!-l(_ul~U2)9 

in Q,, (2.5) 

(Lh), - L,!!, ~f*(-ul~-u2~~3) 
(L4, - L,u, ~f3(~l~-u*~!.!,) 

B,[G,] ah,(x) aB,(_u,), i=1,2,3, on S,, (2.6) 
&(x,0) 2 u,(,(x) >_u,(x,O), i=1,2,3, on 3, (2.7) 

where QT = ti X (0, T], S, = XI x (0, 7’1, and T < cc but can be arbitrarily 
large. 

Suppose r/ and g exist. Denote 

i =1,2,3, 

where_p,=inf,, ,)EQT~,(x,f), PL=SU~~x.r)EQ &(A[), i=L2,3. 
We construct’the sequences {UC”’ } and {;‘“I} with @O~ = L! and _Ucor =g 

as follows: 

for (x, t) E QT, and 

B,[ujA’] =h,(x)=B,[_ujk)], i=1,2,3, (x,t)~&, 

“I”‘( x,0) = u,o( x) = _ulk’( x,0), 
(2.9) 

i =1,2,3, XE9. 

By using standard techniques (e.g., see [12]), we can establish the following 
existence-comparison theorem. 
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THEOREM 2.1 

Suppose that the assumptions (2.4) hold and that there exists a pair of upper 
and lower solutions u = (ii,, iiz, iij) and _U = (_u, , g, , _u3) satisfying _u, Q ii,, 
i = 1,2,3. Then the sequences { u(k) } and {UC’ ’ } obtained as above converge 

monotonically from above and below, respectively, to a unique solution U = 

( ul, u2, u3) of (2.1)-(2.3) such that 

_u,(x,t)~u,(x,t)~~,(x,t), i =1,2,3, (x,t) EQT. 

3. NEUMANN PROBLEM 

In this section we study the homogeneous Neumann problem (1.2)-(1.4). 
In view of Theorem 2.1, to obtain the existence and uniqueness of 

solutions of (1.2)-( 1.4) we need only find a pair of upper and lower solutions 
of (1.2)-(1.4). We do it as follows. Consider the O.D.E. problem 

u;(t) =yu,(t) l- 
[ &iv 

u;(t)=“uz(t) l-+ : 
i u ct,j (3.1) 

u;(t)=U3(t)[-S+CPU*(t)], 
u,(O) = ii, = supu,,( x) > 0, i =1,2,3, 

D 

where M is a positive constant which will be chosen after we solve the second 
equation of (3.1). We have first 

u*(t) =K 
K- ic, -1 

1+----e - at 

& 1 (3.2) 

Then, taking M = sup, > a uz(t) = max(K, &), we have 

1 
__- emY’ 
L, + IM 1 I--‘. (3.3) 

Thus 

2+(t) =ii,exp (Jd[-s+cPu2(7)1 d7). 

Clearly, (O,O,O) and (ui (t), u2 (t), u3 (t)) are a pair of lower and upper 
solutions of (1.2)-(1.4). Hence we can use Theorem 2.1 for any T > 0 and 
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obtain 

THEOREM 3.1 

There exists a unique solution (u, (x, t), u2 (x, t), ug (x, t)) satisfying 

O<u,(x,t) <u,(t), i =1,2,3. 

where u,(t) is the solution of (3.1), i =1,2,3. 

We have established the global existence of the solution of (1.2)-(1.4). 
Now, let us prove the global boundedness of the solution. 

From (3.2) and (3.3), it is easy to see that 

uz(x,t) d u,(t) dmax(K,^u,) EM, 

u,(x,r) < ur(t> <max(ir,,L, +M). 

Hence, it remains to prove the global boundedness of u,(x, 1). Suppose that 
Q is a bounded smooth domain where the Nirenberg-Gagliardo inequalities 
[16] and the divergence theorem hold, and that ulO(x) E C’(Q)n L”(Q), 
i = 1,2,3. With these assumptions we have the following two lemmas, which 
will be proved in the Appendix. 

LEMMA 3.1 

Let I/(x, t) = (u,(x, t), u,(x, t), u~(x, t)) be the solution of (1.2)-(1.4). If 
there exists p, 1 <p < cc, such that (Ju~~[~~(~) is uniformly boundedfor t > 0, 
then Ilu3JILyCs2, isuniformlyboundedfort>O andq=p.2”, N=1,2,.... 

LEMMA 3.2 

Let U(x, t) = (u,(x, t), u,(x, t), u,(x, t)) be the solution of (1.2)-(1.4). 

Then IIu~IIL~~Q~ is uniformly bounded for t > 0. 

Thus, by induction, we have 

THEOREM 3.2 

The solution U(x, t) = (u,(x, t), u,(x, t), u,(x, t)) of (1.2)-(1.4) is uni- 
formly bounded for (x, t) E D x OB +. In particular, 

uz(x,t) Gm=(K,$), 

u,(x,t)bmax(ir,,L,+IM), 

where 

ir,=sup~,~(x), i=1,2, M=max(K,ic,). 
52 

Next, we analyze the asymptotic behavior of the three populations. We 
first give a sufficient condition for the extinction of the predator population 

u3. 
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TIIEOREM 3.3 

Let U(x, t) = (u,(x, t), u,(x, t), u3(x, t)) be the solution of (1.2)-(1.4). 
Suppose - s + cj3K/(l+ mL,,) < 0. Then 

lim (ul(x,t>,u2(x,t>,U3(X,t)) =(L,+K,K,o). 
1’53 

Proof. We construct the desired lower and upper solutions of (1.2)-(1.4) 
as follows. Consider an O.D.E. system 

q(t) =yU,(t) l- 
i 

u,(t) 
1 L,+/&(t) ’ 

ii;(t)=cYii,(t> l-+- ) 
( u @‘i 

q(t) =5x(t) -s+ 
i 

d%(t) 

1 1+mg,(t) ’ 

cd(t) =yL!,(t) l- L 

i 

3(t) 
0 

+lu (t) 7 

-2 i 

g;(t)=ag,(t) l-* - 
i u (t)l 

PL!2(t)%(t) 

lfmg,(t) ’ 

U,(O) = ii, = sLlpulo( x) > 0, i =1,2,3, 
Q 

g,(O) = ic, = i;fu,,( x) > 0, i =1,2. (3.4j 

Obviously, (gl(t),g2(t),0) and (ii,(t),ii2(t),ii3(t)) are a pair of lower 
and upper solutions of (1.2)-(1.4). Moreover 

1 
-1 

O<g,(t) <El(t) =K 

and 

1 
El(t) = yemY’+ 

J 
’ 

Y 

Ul 0 Lo+I_U2(7)e 

1 I Y 
> 

[ 
:e -Y’+ -e~Y”-T)d7 
U J 

0 Lo 

Therefore 

1 
liminf_u,( t) 2 lim 

[ 

-1 

;eeY’+ 
J 

tY 
-ePyc’+‘)d7 1 = L,,. 

r-30 ,+m u1 0 Lo 
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Set 
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Then there exists T, > 0 such that 

cPU,( t) E 

--s+ 1+q(t) ‘-7 
for t>T,. 

Thus 

$(t) =^u,exp / 
TO 

i i 

cP%( T) 
--s+ 

0 1+ W,(T) i i 
dr+ ’ J 

_ s + cBU,( 7) 
TO 1-r V,(T) 

and hence 

lim u,(x,t) < lim F+(t) $ lim ^u,exp constant-i(r-7;“) =0 
,-‘x r+CC f-m ( i 

uniformly for x E G?. 
Now, let us determine the asymptotic behavior of the mutualist popula- 

tion uI (x, t) and prey population u2( x, t). Compare 

!4(t> =Y_u,tt) l- L ( _u,tt> 
0 

+lu (t) 7 

-2 i 

&(l)=a_U2(t) l-+ - 
i u (7 

PU2(t)%(t) 

1-t m$(t) ’ 

g,(O) = ii, = infu,,( x) > 0, i =1,2, 
51 

with initial problem 

Note that 

and 

u;(t) =au,(t) l- -( ?&)I, 

Q(O) = iiz. 

supI_u,(l)lGM<cc 
t>0 

(3.5) 

(34 

lim UX( 2) = 0. 
r-cc 



226 

By using a theorem of Markus [lo], we have 
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lim Izj2(t)-u2(t)l=0. 
I--La2 

On the other hand, 

1 

-I 

lim vz(t)= lim K = K. 
t-30 t+cc 

Thus 

lim g,(b) = K 
t-CC 

and hence 

[ 

1 
lim 24,(t) = lim :emY’+ 

J 
' 

Y 
-1 

0 L,,+I_U2(rf 
mY(rmr)d7 

t-CC I'm u* 1 
= L, +IK. 

The fact that 

lim C*(t) = K and lim U1( t) = L, + IK 
r-m r-m 

is obvious. 
The proof of the theorem is complete 

We see that under conditions of Theorem 3.3, the predator population uj 
goes to extinction, while populations u, and u2 tend to constant states 
L,, + IK and K, respectively. 

We furthermore consider the all possible constant equilibrium solutions of 
(1.2)-(1.4), i.e., the solutions of 

i 

Ul 
YU, l-L+ =o, 

0 2 1 

au2 l-2 - 
i 1 

Pu2u3 
~ =o, 
1+ mu, 

(3.7) 

! 43u2 

u3 --s+---- 

1 

= 0. 
1+mu, 
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All possible solutions of (3.7) [13] are given by 

ISA sh ax 
E4 = (L, + IK, K,O), Lo+--,--,- 

cP 4 P 

where X = cb(l + mL,)/( cp - Ims). 
In order to analwe the stability of these equilibria, ve rewrite (1.2) in the 

form in the Banach space X = @:C*( 9) n L* (Sl): 

dU 
z=AU+ F(U), 

where 

The linearizations of the right side of (3.8) about E,, i = 0,l 
tively, are 

d,A+v 

W,( 4,) = d,A+a 

d,A-s 

d,A+v 

M,(E) = d,A-a -PK , 
d,A - s + c/3K 1 

3. 

(34 

1 

7 (3.9) 

A, 

(3.10) 

,5, respec- 
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w( E3) = 

Ml( 4) = 

d,A-y ~1 
d,A + d 

d,A-s 

d,A-Y vi 

SINING ZHENG 

0 

0 d,A-d 
PK _ 

l+m(L,+IK) 

0 0 d,A-s-t 
@K 

l+m(L,,+IK) 

Denote 

p,(s,A) =det(nI- M,), 

A,={~:P,(~,~)=0for~ome~~~(A)}. 

It is easy to show that [6, 81 

g(M) =A,, i=O,l 5, ,..., 

where, e.g., a(A) denotes the point spectrum of A with homogeneous 
Neumann boundary condition. It is well known that u(A) is an infinite but 
discrete set of simple real eigenvalues bounded from above, namely 

0 = p. > p, > . > j.l,, > . . 

Obviously, none of E,, E, , E, , and E, is stable, since the corresponding 
P,(n, p) (i = 0,1,2,3) has at least one positive root for cl0 = 0 E a( A). Since 
d,p < 0 for p E u(A), i =1,2,3, E4 is linearly stable [15] if 

C$K 

S’l+m(L,+IK) 

As shown in [13], E, exists if 

(3.11) 

S-C 
CPK 

l+m(L,,+IK)‘ 
(3.12) 
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Let us analyze the spectrum of M,( E,). Set 

Ps = q3 -C a,$ + a,q + a3 for pEo(A). 

Then 

a, = - p( d, + d2 + d,) + y + ~ > 0, 
CPK 

ash ash 
a3 = - p3d,d,d3 + p’yd,d, + p2pd,d3 - /.p 

4K C$K 
vd, 

[-CLd,cp+~d,Imv+u(cp-I~)]. 

Note that (3.12) implies 1 - sX/c$K > 0 and cp > Ims. So cl3 > 0 if 

Through a tedious calculation, we get that ulu2 - u3 > 0 if 

S>Y 

and 

229 

(3.13) 

(3.14) 

” l- 

4 i I gK (d3cB-4ylm)+2~ ashy(d,+d2+d,) 

+v’(dz+d3)+ (d, + d3) 2 0. (3.15) 

By the Routh-Hurwitz criteria, E, is linearly stable if (3.12)-(3.15) hold. 
We have proved 

7’llEOREM 3.4 

(i) None of EC,, E,, E,, and Ej ure stable. 

(ii) E4 is linearly stable if (3.11) holds. 

(iii) E, is linearly stable if (3.12)-(3.15) hold. 
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In the final part of this section, we study the global asymptotic stability of 
E4 and E,. Rewrite (1.2))(1.4) as follows: 

au 
ar = DAlJ++(U) inQXlR++ 

au 
p= 
an 

0 on ai22xlw+, 
(3.16) 

u(x,o)=q,(x)>o, on 3, 

where 

From Theorem 3.2, it has been shown that the solution has a positively 
invariant region [2] Z c W", where Z is a compact set. Let p = ~ pi > 0 be 
the smallest nonzero eigenvalue of ~ A with homogeneous Neumann 
boundary condition, 

d=min(d,,dz,d,), M=max{]df,]:UEZ}, o=pd- M. 

7‘111:0~1:,u 3.3 (I:. CONUJA Y. D. HOFF AND J. SMOL_LER r-i], 

Assume u > 0, and U is a solution of (3.16) with Li,, E K (K CR” is u 

compuct set). Then there exist constants C,, i = 1,2 such that 

where 

1 
r/(t) =- 

J mes(3) Q 
U(x,t>dx, 
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satisfying 

d@ t) 
-=ff((i)+g(t), 

dt 

1 
U(O) = ~ 

s mes( 8) a 
cl,,(x) dx, 

and 

lg(t))GC,eC"'. 

Now compare u(t) with the solution V(t) of 

1 
V(0) = ~ 

J mes( fi) n 
4 

By Markus’s theorem, it can be shown that 

lim IV(t)-l/(t) 
I-cx 

Combining the above results, we have 

THEOREM 3.6 

Suppose u > 0, U,(x) E C. Then 

x) dx. 

= 0. 
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(3.17) 

6) lim,,, L/(x, t) = (L,, + IK, K,O) if (3.11) holds. 

(ii) lim, _ r I/(x, t) = (L, + ISA/@, sX/cj3,(ah,+)(l- sX,‘c$K)) if 
(3.12)-(3.15) hold. 

4. DIRICHLET PROBLEM 

In this section we discuss Dirichlet the problem (1.2), (1.3) (1.5). First, let 
us construct a pair of lower and upper solutions to establish the existence and 
uniqueness of solution of this problem. 

Let X,, be the principal eigenvalue of - A with homogeneous Dirichlet 
boundary condition. Then we can construct a function &(x) [5, 141, normal- 
ized by sup, E o Go(x) = 1, such that 

Therefore, there exist constants M,, i = 1,2,3, such that 

%0(X> d M,@,(x), i=1,2,3, xG2. (4.2) 
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Set 
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~,(~,t)=M~~~~(x)exp{(-d,h,,+~)t}, 
tiz(x,t) =M2@,1(x)exp{(-d,h,,+a)t}, (x,t) EfiXR+ (4.3) 

i&(x,2) =M,~,,(x)exp{(-d,X,,-s+cPK,)r}, 

where K, = max{ K. Ml}. 

It is easy to check that, (O,O,O) and (ii,, ii2, U3) define a pair of lower and 
upper solutions of (1.2) (1.3) and (1.5). In fact, if we rewrite (1.2) in the 

form 

au, 
---d,Au,=/-,(u,,uz), at 
au, 
---d2Auz=f>(u,, at U?,U3). (x,t> EQXR’, (4.4) 

au, 
---d,Au1=f3(uIru2,~)), 
at 

then, in view of (4.1), we have 

%=(-d,h,,-s+cBK,)E; 

>d,Au,+(-.s+c~K,)ti, 

>d,Au,+(-s+c&)E, 

=djAuj+fj(~tr&,&), (x,t) EOXR’. (4.5) 

Similarly, it can be shown that 

In addition, clearly, the following inequalities hold: 

q(x,O) a u,o(x>, ;=1,2,3, XE~, (4.8) 

u,( x, I)),, > 0, i =1,2,3. (4.9) 

The inequalities (4.5)-(4.9) mean that (U, Uz, Ej) is an upper solution of 
(1.2), (1.3) and (1.5) with (O,O,O) as the corresponding lower solution. So, by 
using Theorem 2.1, we get immediately the following theorem: 
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THEOREM 4.1 

There exists the unique solution (u, (x, t), u2( x, t), uj( x, t)) of the problem 

(1.2), (1.3), (1.5) sutisfying 

O<u,(x,t> Gq(x,t), i =1,2,3, (x,t) EQXR’, 

n,here U,(x, t) (i =1,2,3) is defined by (4.3). 

In view of the ecological origin of the model, we are interested in the 
nonnegative solutions only. In fact, it is very easy to check that (1.2) has an 
invariant region {( ui, u2, uj) E R3, u, 2 0, i =1,2,3}. Now, we can show 

that the solution is bounded from above as well. 
Let 7;) < cc be an arbitrary constant. Suppose uz(x, t) attains its maxi- 

mum at (x,,, to) E D x(0, T,]. Then we have 

%(%J~h) 
at 

20 and Auz(x,,t,,) GO. 

In view of (4.10), the system (1.2) together with the nonnegativity 
solution implies 

Ofu,(x,t) < K, (x,t) EQX(O,Tol. 

By the arbitrariness of T,, we deduce 

O<u,(x,r) 6 K, (x,t) EQXR’. 

In the same way, we can prove 

O<u,(x,t) <L,+IK, (x,t) EGXRBC. 

(4.10) 

of the 

Notice that (1.5) and the nonnegativity of the solution imply au, /c?Jz(,,, 
< 0, i =1,2,3. So we can use Lemmas 3.1 and 3.2 to prove that 

OGu,(x,t) <constantCoo, (x,2) EOXR’. 

Thus, we get the following theorem concerning the boundedness of solution. 

TffEOREM 4.2 

Let (u,(x, t), uz(x, t), u,(x, t)) he the solution of (1.2) (1.3), und (1.5). 
Then 

OGu,(x,t) Gmax(L,+IK,ic,), 

O~u,(x,t)~max(K,fi~), (x,t) EQXR’, 

O<u,(x,t) <k-ccc 

where ii, = sup, uia( x), C, = supa uzO( x), and k is a positioe constant. 
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Next, we study the asymptotic behavior of the solution. To begin with, we 
discuss the asymptotic stability of the trivial equilibrium solution (O,O,O). 

TffEOREM 3.3 

Let h,, he the principal eigenvalue of - A with homogeneous Dirichlet 

houndan, condition. Assume 

A = max{ ~ d,h,, + y, ~ d>X,, + a} < 0. 

Then (O,O,O) is the on& nonnegative equilibrium solution of (1.2) (1.3) und 

(1.5). Moreover, it is glohul!~ usymptoticul[~ stable. 

Proof. Let (u:(x), u!(x), u:(x)) be an arbitrary nonnegative equi- 
librium solution, i.e., 

u: 
d,Au;+au; 1-z -p= 

i i 

PGU o 

K l+mu,* ’ x E !a, (4.11) 

u,*lJn = 0, i =1,2.3. 

This means that u;(x) is a nonnegative solution of the following linear 
problem: 

d,Au + h(x) u = 0, XEQ, 

UldQ = 0. 

(4.12) 

where h(x)=a- aut/K-fiu:/(l+ mu:). Since U:(X) >O for i=1,2,3 

and x E Cl. it follows that 

Therefore 

where a( - A) denotes the point spectrum of - A with homogeneous 



REACTION-DIFFUSION SYSTEM OF MUTUALISM 235 

Dirichlet boundary condition. (4.13) implies 

A~;+h(x)ut+O forany xE3 
d, 

whenever UT is not constant zero. Hence 

uT( x) = 0, XGii. (4.14) 

It can be proved in the same way that 

u?(x) =o, XGC?. (4.15) 

Due to (4.14) and (4.15) we know from (4.11) that u:(x) satisfies 

d, Au; - su: = 0, XEi2, 

4 Ian = 0. 
(4.16) 

By using the maximum principle, we have 

u:(x) = 0, XE3. (4.17) 

Thus, (O,O,O) is the unique nonnegative equilibrium solution of (1.2), (1.3). 
and (1.5). 

In order to prove its asymptotic stability, let us construct an upper 
solution with (O,O,O) as corresponding lower solution. Set 

%(x,t) =M,~,,exp{(-d,X,,+u)t}, 
G2(x,t> =M,~,exp{(-d,h,+cr)t}, (x,t) EOX[T,,CO), (4.18) 

%(x,r) =M,~,exp{(-d,X,-s+cPK,)t}, 

where @,) and M, (i = 1,2,3) are taken as in (4.1) and (4.2). K, = 

M2 exp{ - dzX,, + (~7;) }, and 7;) is sufficiently large so that 

cPK, - d,X,, -s < - 5 < 0. (4.19) 

We can check that (O,O,O) and (“u, , iT+, i&) defined by (4.18) consist of a pair 
of lower and upper solutions of (1.2), (1.3) and (1.5). 

Since A < 0, we have from (4.19) and (4.18) that 

lim sup ti, = 0, i=1,2,3, 
t - 22 I E n 
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lim sup r~,(x,f) =O, i =1,2,3. (4.20) 
‘-cc Y‘ZQ 

This completes the proof of Theorem 4.3. 

If the habitat D is large enough (hence A,, is small enough), or the 
diffusion of ui or u1 is weak enough, that A > 0, then we will see that the 
problem (1.2), (1.3), (1.5) admits some nonconstant equilibrium solutions as 
well. In other words, bifurcations occur as A passes through zero from 
negative to positive. 

THEOREM 4.4 

Assume - d,X, + y > 0 and - dzh,, + d -C 0. Then there exists u noncon- 
stant equilibrium solution (uF(x),O,O) of (1.2). (1.3). und (1.5). Moreover, it 

is asymptotically stable. 

Proof. Consider the following Dirichlet problem for 
liptic equation: 

Set 

the semilinear el- 

(4.21) 

(4.22) 

(4.23) 

where (PO is taken as in (4.1); ‘p. is the principal eigenfunction of - A with 
homogeneous Dirichlet boundary condition; both of them are normalized by 
supa Go = 1 and sup, ‘p. = 1; and we have for the constants 

M> G,(-d,&,+y) 

ymF@, ’ 

E< &I(-d,&,+y) 
\ 

Y 

It is easy to check that U,(x) and g,(x) defined by (4.22) and (4.23) are the 
upper and lower solutions in the sense of Theorem 10.3 of [15], respectively. 
By using that theorem of [15], we know that there exists a nonconstant 
solution u:(x) of (4.21) satisfying 

o<_u,(x)~u:(x)~u~(x), x E 3. (4.24) 

This means that U*( *) = (uf(x),O,O) is a nonconstant equilibrium solution 
of (1.2), (1.3), and (1.5). 
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To prove the stability of U *, we linearize the reaction terms of (1.2) at U* 

and analyze the spectrum of the linearized operators. Rewrite (1.2) as an 
evolution equation in the Banach space X = @fX, = @zL2( 9) f~ C2( a) as in 
Section 3: 

dU 
dt = AU+ F(U), 

where A and F(U) are as the same as (3.9) and (3.10), and 

D(A,) = {vX,, ~,lan=O, 4+L2(Q2)), i =1,2,3. 

Linearizing F(U) at U* = ($(x),0,0), we get 

F(u+u*) =F(u*)+BU+g(U), 

where 

2Yu: 1p:2 
-___ ~ 

B= 

I 

LLl Lf, O 

0 0 0 
0 0 0 

We need only analyze the spectrum of the operator @ = A + B [6, 7, 111. 
The resolvent equation for @ is 

(A+ B-pI)U=V, PEG, V=(u,,u,,U3)TEx 

i.e., 

2Yu; ~ - 
Lo 
0 

0 

P 
ly14T2 

G 
A,-P 

0 

0 Ul Vl 

0 

lllll 

= 

U2 u2 

A,-II U3 u3 

for p E p(A,)n p(A3), where p(A,) denotes the resolvent set of A,, i = 2,3. 
Hence 

I 
ly $2 

- yyR(wG) 0 "1 

0 &A,) 0 

II 

“2 

0 0 R(PL,A,) “3 



238 SINING ZHENG 

where R ( p, A 2) and R (p, A 3) are the resolvent operators of A 2 and A,, 
respectively. Set 

2Y4 
AI(p) =&-L-P, 

0 

W= {p:p~t~(A~)f~p(A~), A, isinvertiblein L2(9)}. 

We have the following four lemmas: 

1.llMM4 4. I 

Let p~p(A,)np(A,), thenA, isinvertiblein L’(Q) ifandont’yifzero 
is not un eigenvalue of A,(p). 

ILMMA 42 

There exist 8* E (0, r/2) und y* > 0 such that 

S*= pE6::Iarg(y.+y*)/gq+s*) C.G?. 
1 

I.EMMA 4.4 

o(%)c{XEC:ReA<-y*}. 

Lemmas 3.1 and 3.2 are obvious [ll]. Lemma 3.4 comes from Lemmas 
3.1-3.3. The proof of Lemma 3.3 can be found in the Appendix. 

We note that the linear stability of U* = ( uf ,O,O) is the straightforward 
result of Lemma 4.4. Thus, we complete the proof of the theorem. 

THEOREM 4.5 

Assume d,X, + y < 0 and d,X, + a > 0. Then there exists u nonconstant 

equilibrium solution fi= (0, E,(x),O) of (1.2), (1.3), and (1.5). Let 

Then (0, E2 (x),0) is linearly stable if K* < 0 und is unstable if K* > 0. 

Proof. We can prove the existence of the equilibrium solution (0, t, (x),0) 
in the same way as we did in the proof of Theorem 4.4. 
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Linearizing F(LI) at fi, we get 
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Set 

Then 

F(U+fi) = F(fi)+CU+g(L’), 

TO 0 0 1 

V”=A+C. 

I 
201 

v-/d= 0 A,-ii+p 0 

0 0 A, + c/Gi2 -p 

Clearly, the point spectrum of Y is 

u(V) =u(A,)u uo(A,+c$L). 

On the other hand, by the assumption we have 

(4.25) 

(4.26) 

The conclusions on the linear stability and on the instability come from 
(4.25) and (4.26). 

The proof is complete. 

5. DISCUSSION 

We summarize and discuss our results as follows. 
First, the solution exists uniquely and is bounded, regardless of the 

diffusion mechanism and the kinds of boundary value conditions. This is 
because of the biologically reasonable assumptions that the mutualist-prey u1 
has a finite carrying capacity and that the mutualist ui benefits u2 only by 
deterring the predation on u2. 

Second, for the Neumann problem, as we see in Section 3, some results are 
somewhat similar to those of the original O.D.E. problem [13]. For example, 
for the extinction of the predator ul, the Neumann problem and the O.D.E. 
problem have the same sufficient condition, i.e. (3.16) of [13]. This condition 
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can be explained by the fact that the carrying capacity K of the prey U? 
(with the given benefit of ui) is too small relative to the death rate s of the 
predator u3. In addition, the constant equilibrium solutions E,, , E, , , E, 

are the same for the Neumann problem and the O.D.E. problem. We know 
that the solutions of the O.D.E. problem can be considered independent of 
spatial variables and hence satisfy the homogeneous Neumann boundary 
condition automatically. 

However, there are some evident differences between the Neumann prob- 
lem and the O.D.E. problem. For example, as to the asymptotic stability of 
E,, Theorem 3.4 says that in addition to (3.12) and (3.14) (i.e. (3.11) and 
(3.15) of [13]), we need also (3.13) and (3.15), which can be considered as the 
conditions that the diffusion constants have to satisfy. 

We note that both Theorems 3.3 and 3.6 deal with global asymptotic 
stability, but they are different. For example, the conditions of Theorems 3.3 
and 3.6(i) are different, and neither of them implies the other, although both 
concern the extinction of ul. The inequality (3.11) of Theorem 3.6(i) is 
weaker than - s + cPK/(l+ mL,,) -C 0 in Theorem 3.3, but Theorem 3.6(i) 
requires another condition a = kd - M > 0 as well, which can be written as 

P > M/d or d > M/p. In the former case, one can view it as saying that I_L is 
large and can interpret u > 0 as saying that the habitat Q is small, since TV is 
inversely proportional to the squared diameter of D [4]. In the latter case, 
CJ > 0 can be looked upon as saying that the diffusion is strong relative to the 
reaction terms. So, with small D and large diffusion, it is reasonable to expect 
that the transport process can almost be ignored. Therefore, the solutions 
decay to the constant equilibrium states more easily and more quickly. 

Similarly, we can observe differences between Theorems 3.4 and 3.6. The 
former describes the local asymptotic stability of Ed and E, in L” norm, 
while the latter states the global asymptotic stability of Ed and E5 in the 
maximum norm, of course, where the additional condition u > 0 is needed as 
well. 

Third, for the Dirichlet problem, the results are distinct from those of 
either the O.D.E. problem or the Neumann problem. 

We know that the trivial equilibrium solution (O,O,O) must be unstable for 
the O.D.E. problem and the homogeneous Neumann problem. However, 
since the homogeneous Dirichlet boundary condition means that none of the 
three species can exist on the boundary of their habitat, the diffusion 
mechanism is harmful to the existence of the populations. Obviously, the 
predator can not be alive alone. So Theorem 4.3 says that all populations go 
to extinction whenever both - d,X,, + y and - dzh,, + (Y are negative, e.g., 
both diffusions of U, and u2 are too strong, or their habitat is too small. 

In order to avoid the extinction of all species, the habitat D must be large 
enough (hence p be small enough) or the diffusion of ui or u2 not be too 
strong. Theorems 4.4 and 4.5 give two conditions under which ui or u7 can 
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be alive alone forever, respectively. It is easy to understand that any 
equilibrium solutions for the Dirichlet problem cannot be nonzero constant 
states which do not satisfy the homogeneous Dirichlet boundary condition. 
The two equilibrium solutions described in Theorems 4.4 and 4.5 are positive 
functions of spatial variables in Q. But, due to the homogeneous Dirichlet 
boundary condition, the closer to the boundary, the smaller is the population 
density of the stable states. 

We note, as well, that the condition of Theorem 4.4 (i.e., U, goes to a 
stable positive state while u2 and uj go to extinction as time tends to the 
infinity) is weaker than that of Theorem 4.5 (i.e., uL is alive alone forever). 

This is because the prey u? is fed on by the predator u3. while the existence 
of the mutualist U, is not influenced directly by uj. 

The study of general equilibrium solutions and their stability (i.e. the cases 
of coexistence of two or all three species) under the Dirichlet boundary 
condition is interesting. But, due to the difficulties of the corresponding 
analysis, we do not deal with it here. 

APPENDIX 

The main lemmas cited in this paper are proved in this Appendix. The 
reader is referred to [l] and [ll]. 

Proof of Lemmu 3.1. Suppose q > 2. Then 

dx 

where the constant M < cc, By the Nirenberg-Gagliardo inequalities [16], we 
have 

for 0 < E < 1, where m > n/2, C = C(Q, m). Hence 

4(q-l)C + 
4 

d3& ‘““1)(jny:i2 dxil_ 
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Take E > 0 sufficiently small, such that 
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4(Y-I) 
-------~d,+q(-s+c~M)=-6<0. 

4’ 

Clearly, F < 0( q ‘). Thus 

and hence 

where C, and C2 are some positive constants. We need to find a constant K 
such that 

for ra 0 and y=p.2”. N=1.2 ,... 
If. for any y = p .2’, 

then 

i.e., there exists a constant l?, independent of q, such that 

IIU3lll.” 2’ G 4 

for r>Oand N=1,2 ,_._. Otherwise, 

IIU711,,,’ L’ < (2C,)“Y( q”” ‘)‘%up~~U3~1,.” 2’ I 

I 2 0 

.v 1 

< ,JJ, (2Q2”” 
li 1 I 

; “I + l 2”4s”pJ,u~l ,,.‘. 
, > 0 

Since sup,, o lIuill,,,, is bounded due to the assumption of the lemma and the 
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fact that 

the lemma is proved. 

Proof of Lemma 3.2. From the system (1.2). we know that 

au, au, 
c- + __ = cd, Au, + d, Au, + cau2 

at at - su3 

Q cd, Au, + d, Au, - s( cu2 + uj) + P, 

where P depends on s~p,~~~~u~~\,~~~a~. Integrating the inequality on D and 
using boundary value condition (1.4), we have 

c J Q$dx+a%d x<-s[c~u2dx+~u,dxj+Pmes(Q). 

Therefore 

sup J r>o a 
u~dx~~~~l~~u2dx+b.idxj gconst. 

This proves the lemma. 

Proof of Lemma 4.3. We know that 

(A.1) 

By Lemma 4.2, we need only show that there exist f3* E (0, n/2) and 
y * > 0 such that zi (p) does not have zero as an eigenvalue whenever p E S * 

Let n(p) be an arbitrary eigenvalue of xi(p), rp (p) be the corresponding 
eigenfunction, (p(p) > 0, and ((~1)~,2 =l. Put 
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and hence 

We know from (4.11) that UT satisfies 

(A.4 

(A.2) means that the second order elliptic operator A, - yu:/L,, has the 
positive eigenfunction u:(x) E HA (iI) with zero eigenvalue. It follows that 

PI1 

Thus, 

In view of 77, (0, pz) < 0 and the continuous dependence of q(p) on p, we 
know that there exist C* > 0 and (Y* > 0, - a* E (K*,O), such that 

s,(P,,P~) < 0 whenever 

pi {CLEC:~LE(A2)np(A,),Re~E(--*,0), IImpI<C*}. 

We note that lq2(p,,pL2)l = (prl> C* > 0 when 1~~12 C*, so xi(p) can- 
not have zero as an eigenvalue if 
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Taking 
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i 

a* - Y* 
fI* fz 0,arctan ~ 

C* 
and y* l (0,a*), 

we complete the proof of Lemma 4.3. 

The author wishes to express his thanks to Professor J. Smaller und 
Professor L. Hsiao for their encouragement und help. 
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