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ABSTRACT

Mutualism is part of many significant processes in nature. Mutualistic benefits arising
from modification of predator-prey interactions involve interactions of at least three
species. In this paper we investigate the homogeneous Neumann problem and Dirichlet
problem for a reaction-diffusion system of three species-—a predator, a mutualist-prey, and
a mutualist. The existence, uniqueness, and boundedness of the solution are established by
means of the comparison principle and the monotonicity method. For the Neumann
problem, we analyze the constant equilibrium solutions and their stability. For the Dirichlet
problem, we prove the global asymptotic stability of the trivial equilibrium solution.
Specifically, we study the existence and the asymptotic behavior of two nonconstant
equilibrium solutions. The main method used in studying of the stability is the spectral
analysis to the linearized operators. The O.D.E. problem for the same model was proposed
and studied in [13]. Through our results, we can see the influences of the diffusion
mechanism and the different boundary value conditions upon the asymptotic behavior of
the populations.

1. INTRODUCTION

Mutualism is part of many significant systems and processes, such as
mycorrhizal associations, nitrogen fixation, gut faunas and floras, endosym-
biotic photosynthesis, endozoic algae, etc. A interaction among organisms of
different species is called mutualistic if the presence of each species enhances
the per capita growth rate of the other.

Mutualistic benefits arising from modification of predator-prey or compe-
titive interactions involve interactions of at least three species. A mutualist
may affect a predator-prey interaction to the benefit of either the predator or
the prey, but the most common pattern is a mutualist deterring predation on
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a prey. For example, ants deter herbivores from feeding on plants and deter
predators from feeding on aphids, endozoic algae deter predators from
feeding on protozoans, and crustacea deter starfish from feeding on corals.

In [13], B. Rai, H. I. Freedman, and J. F. Addicott presented two models
of mutualism among three species and analyzed the conditions for bounded-
ness of solutions, the equilibria and their local stability, and the condition for
the existence of small amplitude periodic solutions. One of the two models
involves interaction among a predator (y), a mutualist-prey (x), and a
mutualist (). A special case examined in some detail by the authors of [13] is
the following O.D.E. problem:

du u
yull

"

PR

dx X Bxy

— = 1-— |- , 1.1
dt ax( K) 1+ mu (1.1)
dy cBx

— =yl -5+

dr. y( g 1+mu)’

where v, L./, a, K, 8, m, s, ¢ are all positive parameters, / and m being the
mutualism constants. The model (1.1) has the following features:

(1) The mutualist deters predation on the prey.

(2) The mutualist growth is of logistic type.

(3) The prey growth in the absence of predator is logistic and independent
of the mutualist, i.e., the prey is benefitted by the mutualist only when the
predator is present.

(4) Predation in the absence of mutualism is Lotka-Volterra predation.

It is known that the distributions of populations, in general, being
heterogeneous, depend not only on time, but also on the spatial positions in
the habitat. So it is natural and more precise to study the corresponding
P.D.E. problem.

In this paper, taking account of the diffusion mechanism, we consider the
corresponding nonlinear reaction-diffusion system

k]

du, u
— =dAu; + vy |l

dt Ly + luy

du, U, B“z“a . N
7=d2Au2+au2 1_?)_1+mu1’ in@xR*, (1.2)
du cBu

—3=dgAu}+u3 -S+ =

ar ’ 1+ mu,
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with initial condition

u(x,0)=uy(x), i=1,2,3, onf, (1.3)
and homogeneous Neumann boundary condition

du,
dn

=0, i=1,2,3, on I@ XR, (1.4)

or homogeneous Dirichlet boundary condition
u(x,0)=0, i=1,2,3, on @ XR™", (1.5)

where u,, u,, and u; represent the populations of mutualist, prey, and
predator with diffusion constants d,, d,, and d;, respectively; £ is a
bounded domain in R"; df is the boundary of Q; d/dn represents the
outward normal derivatives on dQ; and A is the Laplace operator. .

The homogeneous Neumann boundary value condition (1.4) is to be
interpreted as a “no flux” condition (i.e., there is no migration of any of the
populations across the boundary of their habitat), whereas the homogeneous
Dirichlet condition is to be considered as a condition under which none of
the three species can exist on the boundary of the habitat.

We establish the existence, uniqueness, and boundedness of the solution
for the both kinds of boundary value problems by means of the comparison
principle and the monotonicity method (e.g., [8, 9, 12, 15]). For the Neumann
problem, we analyze the constant equilibrium solutions and their asymptotic
stability. For the Dirichlet problem, we give the condition under which the
trivial equilibrium solution is asymptotically stable, i.e., all populations go to
extinction. Specifically, we study the existence and the asymptotic stability of
two nonconstant equilibrium solutions (the mutualist or the prey is alive
alone as time tends to infinity). The main method used in studying the
stability is the spectral analysis of the linearized operators [6-9, 11].

Comparing our results with those of [13], one can see clearly thg influences
of the diffusion mechanism and the different boundary value conditions
upon the asymptotic behavior of the populations.

For a detailed explanation of the ecological background of the problem,
the reader is referred to [13].

2. PRELIMINARIES

In this section we introduce the concept of upper and lower solutions as
well as the existence-comparison theorem, which will be very useful to us in
establishing the existence, uniqueness, and boundedness, and even in study-
ing the asymptotic behavior (in some cases), of the solutions.
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We first consider the more general system

du,

W - Ly =f1(“1a“2)»

du,

—(97_L2“2=f2(“1’“2’“3)v (2.1)
du

3
PV L3“3=f3(u1,“2»“3)

at

with boundary condition
du,
Blu]=a(x)y +,B,(x)—a— =h(x), i=1,2,3, ondQxR* (2.2)
n

and initial condition
u(x,0) =u,(x), i=1,2,3, on £, (2.3)

where L, is an uniformly elliptic operator in @, i =1,2,3.
Assume that «,, B;,, and u,, are smooth nonnegative functions with
u,, #0, a, + B, > 0, and that f; is continuously differentiable with respect to

its variables for u, >0, i, k=1,2,3. In addition, we require the following
assumptions on f;, i =1,2,3:

ad
_.fi 20’
du,
af, )
i >0, i<0, for u,>0, i=1,2,3, (2.4)
du, du,
) a
duy du,

which are natural in view of the ecological background of the predator-prey-
mutualist model and satisfied both by the reaction terms of (1.2) and by
those of a more general P.D.E. system corresponding to (2.1) of [13].

Now, we give the definition of the upper and lower solutions.

DEFINITION 2.1

Ordered smooth functions U = (%, %5, 4;) and U = (u;, u,, uy) in Qf are
called upper and lower solutions of (2.1)-(2.3), respectively, if they satisfy the
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following 1nequalities (2.5)-(2.7):

(l—‘l)z - Ly >f1(ﬁl, l_‘z)’

(), = Ly, > f,(y, 4y, 43),

(aB)r_ L3I‘3 >f3(ylsa29a3)a

(21),_L1L‘1<f1(21»!!2)» nQr. (29)

(u2), = Lyuy < fo(uy, 145, 05)

(u3),— Lyus < f5(0y, 45, 45)
Blw]>h(x)>B(u), =123, onS,, (2.6)
2,(x,0) > u;o(x) > u,(x,0), i=1,2,3, on £, (2.7)

where Q=8 Xx(0,T), S; =92 X(0,T], and T <o but can be arbitrarily
large. B
Suppose U and U exist. Denote

= {(u.u,, 1) ER*: p, <, <p;, i=1,2,3),
af,
M,=sup{l—f'.}, i=1,2,3,
= || 9y

where p; = inf, e o, #;(X, 1), p; =SUP,  eq, #:(x,1), i=1,2,3.
We construct the sequences { U*’} and {U* ’} withU® = and U = U
as follows:

for (x,1) € @, and

Blu®] =h(x)=B[u®], i=1,2,3, (x,1) €Sy,

(2.9)
u*(x,0) = u,(x) = u!F(x,0), i=1,2,3, xeQ.

By using standard techniques (e.g., see [12]), we can establish the following
existence-comparison theorem.
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THEOREM 2.1

Suppose that the assumptions (2.4) hold and that there exists a pair of upper
and lower solutions U= (u,,1,,%;) and U= (u,, u,,u;) satisfying u, <7,,
i=1,2,3. Then the sequences {E”‘)} and {g‘k’} obtained as above converge
monotonically from above and below, respectively, to a unique solution U =
(uy, uy, uy) of (2.1)—-(2.3) such that

w(x,t)y <u(x,t) <u(x,t), i=1,2,3, (x,1) €Q0;.

3. NEUMANN PROBLEM

In this section we study the homogeneous Neumann problem (1.2)-(1.4).

In view of Theorem 2.1, to obtain the existence and uniqueness of
solutions of (1.2)-(1.4), we need only find a pair of upper and lower solutions
of (1.2)-(1.4). We do it as follows. Consider the O.D.E. problem

u;<t>=yul(z>(1~ﬂ),

L, +IM

ws(1) = auz(t)(l— “2,((’) ) (3.1)

wi (1) = u; () = s + cBuy(1)],
u,(0) =&, = supu,,(x) >0, i=1,2,3,
Q

where M is a positive constant which will be chosen after we solve the second
equation of (3.1). We have first

uz(t)=1<[1+Kfi‘2e~w]l. (32)

u
Then, taking M =sup, ., ,u,(?) = max(K, it,), we have

(1 1
+| — - —
W, Lo+ IM

u (1) =[ e“]“ . (33)

Ly +IM

Thus
uy (1) =i, exp(j(;’[—s+ cBu, ()] dT).

Clearly, (0,0,0) and (u, (), u,(t), u5(t)) are a pair of lower and upper
solutions of (1.2)-(1.4). Hence we can use Theorem 2.1 for any 7> 0 and
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obtain
THEOREM 3.1
There exists a unique solution (u,(x,t), u5(x,1), u3(x, 1)) satisfying
O<u(x,t)y<u(e), i=1,23.
where u,(t) is the solution of (3.1), i =1,2,3.

We have established the global existence of the solution of (1.2)-(1.4).
Now, let us prove the global boundedness of the solution.
From (3.2) and (3.3), it is easy to see that
u,(x,1) <uy(t) <max(K,u,) =M,
w(x,1) <u(r) <smax(iy, Ly +IM).
Hence, it remains to prove the global boundedness of u;(x,t). Suppose that
€ is a bounded smooth domain where the Nirenberg-Gagliardo inequalities
[16] and the divergence theorem hold, and that u,,(x) € C*()N L*(Q),

i=1,2,3. With these assumptions we have the following two lemmas, which
will be proved in the Appendix.

LEMMA 3.1

Let U(x, 1) = (u;(x, 1), u)(x, 1), u5(x, 1)) be the solution of (1.2)—(1.4). If
there exists p, 1 < p < oo, such that |\us||,».q, is uniformly bounded for t > 0,
then ||us|| oq, is uniformly bounded for t >0 and q=p-2%, N=1,2,....

LEMMA 3.2

Let U(x,t)=(u(x,t),uy(x,t),us(x,t)) be the solution of (1.2)-(1.4).
Then ||u;ip1 q, is uniformly bounded for t > 0.

Thus, by induction, we have
THEOREM 3.2

The SOlution U(x) t) = (ul(xs t)» u2(x9 t)’ u3(x’ t)) Of (12)_(14) is uni-
Sformly bounded for (x,1) € X XR™*. In particular,

uy(x, 1) < max(K,#,),
w,(x,t) < max(iy, Ly +IM),
where
#,=supu,(x), i=1,2, M=max(K,1,).
9
Next, we analyze the asymptotic behavior of the three populations. We

first give a sufficient condition for the extinction of the predator population
Us.
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THEOREM 3.3

Let U(x,t)=(u(x,1),uy(x,1),u3(x,1)) be the solution of (1.2)-(1.4).
Suppose — s+ c¢BK /(1+ mLy) < 0. Then

lim (w(x,1),uy(x,t),u3(x,1)) = (L, + IK,K,0).
=

Proof. 'We construct the desired lower and upper solutions of (1.2)-(1.4)
as follows. Consider an O.D.E. system

a{(z)=yal(t)(1——z“(i)—),

Lo+ u,(1t)

(1) =aﬁz(t)(1~ (1) )

K
a;(:)=a3(1)(—s+%%),
y;(t)=yy1(t>(1—%;i‘f£—(5),

, _ u, (1) Buy(t)us(1)
(1) =amy (0 1- 2 | - B

0) =&, =supu,(x)>0, i=1,2,3,
Q

(
y,(O)=i¢,Eigfu,0(x)>O, i=1,2. (3.9

Obviously, (u, (1), u,(¢),0) and (%, (1), u,(1), u;(t)) are a pair of lower
and upper solutions of (1.2)-(1.4). Moreover

K-, !
O0<u,(t) <su(t) =K|14+——F e ™

u,
and
1 -1
u1(t)_[—€y’+/L—m*—() 7“”61’7]
2
~1
>[ée'7’+/lle - ”d'r] .
u o L,
Therefore

1 t Y -1
liminfu, () > lim V—e“”+f—e”"’”d'r = L,.
t—>% o L

t—o0 | Uy 0
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Set
cBK
E_s_1+L0m'
Then there exists T; > 0 such that
cBu,(t €
—'S+B—2(L<—— for >T,.
1+ mu,(t) 2
Thus
_ Ty cBuy(r) ' cBuy(7)
=3 —s+——————dr+ | | -s+————|dr},
u,(1) u3exp{j(‘)( s T— T . s T+ ma () T
and hence

€
Lim uy(x,1) < lim 4y(7) < lim 2, exp{constant——(t— To)} =0
t—oc t—>o t— o0 2

uniformly for x € &.
Now, let us determine the asymptotic behavior of the mutualist popula-
tion u,(x,t) and prey population u,(x,t). Compare

(0 = (0| 1- s |
o w())  Buy(1)uy(1) (3.5)
(1) = a0 1- 22| - HEDED

gi(0)=z'¢,=igfui0(x)>0, i=1,2,

with initial problem

ug(z)=a02(;)(1—”2§<’)). G
0,(0) = #,.
Note that
sup |u, (1) | < M <0
10
and

lim u,(7) = 0.
1> oc
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By using a theorem of Markus {10}, we have
tim [u,(r) - 0,(£)] = 0.
t— o0

On the other hand,

. K~—i, o
lim v,(t) = lim K|1+———e~*| =K.
t— o0 u

=0

Thus
lim u,(t) =K
{— 00
and hence
]. Y -1
lim ¥, () = lim v—efyt+f[——e*y(l-*r)d,r
f=eo t—oo | o Ly +Iuy(1)

fl

L,+IK.
The fact that

lim %,(¢) =K and lim u(t) =L, +/K
=00

{— 00

is obvious.
The proof of the theorem is complete.

We see that under conditions of Theorem 3.3, the predator population u,
goes to extinction, while populations u; and u, tend to constant states
L, + IK and K, respectively.

We furthermore consider the all possible constant equilibrium solutions of
(1.2)-(1.4), i.e., the solutions of

1 “ 0
YA T L v,

l‘z) Buyuy

auz(l——— -
1+ muy,

=0, 3.7

= (3.7)
s+ Bz 0

.| — =

} 1+ mu,
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All possible solutions of (3.7) [13] are given by

s o s
E()=(0’070)’ E1=(09K’0)* EZ:(O’C_,B,E(I—CBK))’ E3=(L0,0,0),

E (L +IK.K.0 e-l1 IsA sA aA SA
a=(Ly+IK,K, ), 5—( 0+£’;E’F(1_CBK))’
where A = cB(1+ mLy)/(cB — Ims).

In order to analyze the stability of these equilibria, ve rewrite (1.2) in the
form in the Banach space X =@ C*(2)N L*(Q):

i AU+ F(U 3.8
e — + .
- (v), (3.8
where
di+y A,
A= d, A+ « = A, , (3.9)
d,A—s A,
2
Y « Buyuy  cBuyuy
F(U)=|- ,——us— ], 3.1
() Lo+ lu, Ku2 1+ mu;, 1+ mu, (3.10)
au
D(A)=(UeX:—| =0;.
an |,

The linearizations of the right side of (3.8) about E;,i=0,1,...,5, respec-
tively, are

[ d,A+y
My(E,) = A+ a )
| d,A—s
-d1A+y
M (E) = d,A -« - BK ,
i d,A — s+ K
i dA+y 0 0
msm(1 s ) AA as s
M,(E,) = B cBK 2 cBK ¢
i P 1-— | d,a
"Bl K ( 'cBK) :
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dA—vy v/
M(E;) = d,A+d ,
dA—s
rd]A—y v/ 0
K
0  dA-d __ FPK
M E,) = 1+ m(Ly+IK)
¢BK
0 0 dA-s+—m
1+ m(L,+IK) ]
d,A—vy vl 0 |
msd sA dsA s
—1- dA-—- =
M E) = 19 cBK cBK ¢
a . sA ) sA 4
msB BK call— BK 3 |
Denote

P/(n’A) =det(n1_M)’
A, ={n:P(n,p)=0forsomepeca(A)}.

It is easy to show that [6, 8]

o(M)CA,, i=0,1,...,5,

where, e.g., 6(A) denotes the point spectrum of A with homogeneous
Neumann boundary condition. It is well known that a(A) is an infinite but
discrete set of simple real eigenvalues bounded from above, namely

O=pe>p > >p,> -

Obviously, none of E;, E,, E,, and E, is stable, since the corresponding
P.(n,u) (i =0,1,2,3) has at least one positive root for p, =0 € o(A). Since
dip<0forpeo(Ad), i=1,23, E, is linearly stable [15] if

cBK
§> (3.11)
1+m(L,+IK)
As shown in [13], Es exists if
14:7.4
(3.12)

S'<—.
1+ m(L,+IK)
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Let us analyze the spectrum of M, ( Es). Set
Pi=v+am*+am+a; for peo(A).

Then

asA
a1=—u(d1+d2+d3)+y+zﬁ<>0,

_I‘(dd2+d1d3+d2d3) #Y(d7+d3) # (d1+d)

as\ sA yim
+CBKY+ I_CB—I<) 1_2“[3_)“3’
asA asA
ay =~ wddydy + pPydydy + 4 BK B4 (BKYds

as SA
+ _(1” ﬁ)[ pd,cB + pdyimy + y(cB — Ims)].

Note that (3.12) implies 1 — sA /cBK > 0 and ¢ > Ims. So a; > 0 if

ydy > 0. (3.13)

A sA
CBdl— [m"T((l_CB—K)

Through a tedious calculation, we get that a,a, — a; > 0 if

52y (3.14)
and
as s
E(l—ﬁ)(%cﬂ dy[m)+2 (d1+d2+d)

+y(d,+d3)+(as>\)(d1+dz) >0. (3.15)

BK

By the Routh-Hurwitz criteria, E; is linearly stable if (3.12)-(3.15) hold.
We have proved

THEOREM 3.4
(i) None of E, E,, E,, and E; are stable.

(i) E, is linearly stable if (3.11) holds.
(i) Es is linearly stable if (3.12)-(3.15) hold.
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In the final part of this section, we study the global asymptotic stability of
E, and E,. Rewrite (1.2)-(1.4) as follows:

U
— =DAU + f(U)  in Q2xR",

a
U (3.16)
—=0 on dQ XR™,
an
U(x,0) =U,(x) >0, on {,
where
d, u(x,1)
D= d, , U=|uy(x.1)
ds uy(x.1)
U Uy Buyu,
= l-—— |, au,|1—— | — —,
f(U) Y“1( Lo+ lu, auk( K) 1+ mu,

cBu, "
Uyl — s+ .
; L+ muy,

From Theorem 3.2, it has been shown that the solution has a positively
invariant region [2] £ ¢ R", where X is a compact set. Let p= —p, > 0 be
the smallest nonzero eigenvalue of — A with homogeneous Neumann

boundary condition,

d=min{d,.d,,d,), M =max{|df,|:U€Z}, o=pd—M.

THEOREM 3.5(E. CONWAY, D. HOFF AND J. SMOLLER [3])

Assume ¢ >0, and U is a solution of (3.16) with Uy € K (KCR" is a
compuct set). Then there exist constants C,, i =1,2 such that

JUCx.t) = T() - < Cre ",

where

1
mes( 2)

U(t) = fQU(x,t) dx,
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satisfying
dU(1)

=f(U)+g(1),
(3.17)

U(0) = )fUO x) dx,

mes(ﬂ
and
|g(1) < Ce .

Now compare U(t) with the solution V'(¢) of

dV_
- =/,
V(0) = mes(Q)/UO x) dx.

By Markus’s theorem, it can be shown that

lim [V(¢)—U(1)|=0.

t—=oc

Combining the above results, we have
THEOREM 3.6

Suppose 0 > 0, Uy(x) € Z. Then

@) lim,_,  U(x,t)=(L,+ K, K,0) if (3.11) holds.

(i) lim,_, U(x,1) = (Ly + IsA/cB, sA/cB,(aX /B)1 — sA /cBK)) if
(3.12)-(3.15) hold.
4. DIRICHLET PROBLEM

In this section we discuss Dirichlet the problem (1.2), (1.3), (1.5). First, let
us construct a pair of lower and upper solutions to establish the existence and
uniqueness of solution of this problem.

Let A, be the principal eigenvalue of — A with homogeneous Dirichlet
boundary condition. Then we can construct a function §,(x) (5, 14], normal-
ized by sup, < g §,(x) =1, such that

Apy + Aoy <O, x e,
¥, > 0, x€Q.

(4.1)

Therefore, there exist constants M., i =1,2,3, such that

uo(x) S Mo(x), =123, xeQ. (42)
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Set

u(x,1) =Mﬁ)o(x)exp{(—dl)\(,+y)t},
Uy (x,1) = Mopy(x)exp{(—d,A, +a)r}, (x,1) €QXR" (4.3)
uy(x,1) = My (x)exp{(— dsAy — s+ cBK,) 1},
where K, = max{ K, M, }.
It is easy to check that, (0,0,0) and (u,, u,, u;) define a pair of lower and

upper solutions of (1.2), (1.3), and (1.5). In fact, if we rewrite (1.2) in the
form

du,
797 —d, Ay, =f1(u1,u2),

du,
Tt“—dzAu2=f2(ul,uz,u3), (x,1) €eQxR", (4.4)

? "d3AU3=f3(ulvu27u3)’

then, in view of (4.1), we have

dus, _

o =(—dsA,— s+ cBK))u,
> dAu; +(— s+ cBK))u,
>dyAuy +{(— s+ cBuy)u,

=dyAus + f(u), U, Uy), (x,1) €eQXR". (4.5)

Similarly, it can be shown that

du
a—;-dlA?q)fl(Hl,ﬂz), (x,1) €QXR", (4.6)
du,
ﬁ—dzADI>f2(ﬁl,ﬁ2,y3),(x,t)EQXR'. (4.7)

In addition, clearly, the following inequalities hold:

u,(x,0) > u,(x), i=1,2,3, x€Q, (4.8)
u(x,1)],>0, i=1,2,3. (4.9)
The inequalities (4.5)-(4.9) mean that (u, u,,u,) is an upper solution of

(1.2), (1.3), and (1.5) with (0,0,0) as the corresponding lower solution. So, by
using Theorem 2.1, we get immediately the following theorem:
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THEOREM 4.1

There exists the unique solution (u;(x,1), u,(x, 1), u5(x,t)) of the problem
(1.2), (1.3), (1.5) satisfying

O<u(x,t)<u(x,1), i=1,2,3, (x,1)eQxR",
where u,(x,1) (i =1,2,3) is defined by (4.3).

In view of the ecological origin of the model, we are interested in the
nonnegative solutions only. In fact, it is very easy to check that (1.2) has an
invariant region {(u;,u,,u;) €R>, u, >0, i=1,2,3). Now, we can show
that the solution is bounded from above as well.

Let T, < oo be an arbitrary constant. Suppose u,(x,t) attains its maxi-
mum at (X, ty) € & X(0,T;]. Then we have

du,(x9, 1)

o >0 and Au,(x,,7,) <0. (4.10)

In view of (4.10), the system (1.2) together with the nonnegativity of the
solution implies
O<u,(x,t) <K, (x,1)e@x(0,T,].
By the arbitrariness of T, we deduce
O<u(x,t) <K, (x,1)eQXR".
In the same way, we can prove
O<uy(x,t)sLy+IK, (x,1)eQxR".

Notice that (1.5) and the nonnegativity of the solution imply du, /dn{,q
<0, i=1,2,3. So we can use Lemmas 3.1 and 3.2 to prove that

O0<uy(x,t) <constant<oo, (x,7)EQXR*.
Thus, we get the following theorem concerning the boundedness of solution.
THEOREM 4.2

Let (u,(x,t),uy(x,t), u;(x,t)) be the solution of (1.2), (1.3), and (1.5).
Then

0<u(x,t) <max(L,+ K, i),
0<uy(x,1) <max(K,#,), (x,1) €2 xR,
0<u(x,1) <M<

where 1, = supg u4(x), U, = supq u,y(x), and M is a positive constant.
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Next, we study the asymptotic behavior of the solution. To begin with, we
discuss the asymptotic stability of the trivial equilibrium solution (0,0,0).

THEOREM 4.3
Let A, be the principal eigenvalue of — A with homogeneous Dirichlet
boundary condition. Assume
A=max{ —dA;+vy, —dA;+a} <0.
Then (0,0,0) is the only nonnegative equilibrium solution of (1.2), (1.3), and
(1.5). Moreover, it is globally asymptotically stable.

Proof. Let (uf(x),u¥(x),u¥(x)) be an arbitrary nonnegative equi-
librium solution, i.e.,

* * ui
dlAul + YUy l—m/ =0
U

I\ Buiui
dzAu2*+au’2"(1— )—*—‘*= ,
K 1+ muy} xeQ., (4.11)
cBu¥
dAuf +u¥| -5+ —————| =0,
T ’ 1+ muf

ulo=0, i=1,2.3.

This means that u%(x) is a nonnegative solution of the following linear
problem:

dyAu+b(x)u=0, xeq,

(4.12)
ulyg =0,

where b(x)=a—au¥/K—Bu¥/(1+ mu}). Since u*(x)>0 for i=1,2,3
and x € Q, it follows that

b(x) S a<dyA,, xe€f.

Therefore

{b(x)

7 :XEQ}OU(—A)zﬂ, (4.13)

where o(— 4A) denotes the point spectrum of — A with homogeneous
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Dirichlet boundary condition. (4.13) implies

b(x)

Aut + uz #0 forany xe€Q

2
whenever u% is not constant zero. Hence
u¥(x)=0, xeQ. (4.14)
It can be proved in the same way that

ur(x) =0, xeQ. (4.15)

Due to (4.14) and (4.15), we know from (4.11) that u¥(x) satisfies

diAuk —su¥ =0, x €9,
N (4.16)
u¥loq=0.
By using the maximum principle, we have
u¥t(x) =0, xeQ. (4.17)

Thus, (0,0,0) is the unique nonnegative equilibrium solution of (1.2), (1.3),
and (1.5).

In order to prove its asymptotic stability, let us construct an upper
solution with (0,0,0) as corresponding lower solution. Set

m(x,1)= Ml(’i)()exp{(—‘dlx()_'— Y)t}’
i,(x,1) =Mgyexp{(—d, g+ a)t}, (x,1) €QX[T),0), (4.18)
iy(x,t) = A/l3¢()exp{(—d3>\0fs+cBK2)t},

where ¢, and M, (i=1,2,3) are taken as in (4.1) and (4.2), K,=
M, exp{—d, A, + aT,}, and Tj is sufficiently large so that

)
cBKz—dﬂ\Oﬂsg—E <0. (4.19)

We can check that (0,0,0) and (%, &,, #;) defined by (4.18) consist of a pair
of lower and upper solutions of (1.2), (1.3), and (1.5).
Since A <0, we have from (4.19) and (4.18) that

lim sup &, =0, i=1,2,3,

=X xe@
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and hence

Hm sup u,(x,1) =0, i=1,2,3. (4.20)

=% ve
This completes the proof of Theorem 4.3.

If the habitat @ is large enough (hence A, is small enough), or the
diffusion of u; or u, is weak enough, that A > 0, then we will see that the
problem (1.2), (1.3), (1.5) admits some nonconstant equilibrium solutions as
well. In other words, bifurcations occur as A passes through zero from
negative to positive.

THEOREM 4.4

Assume —d\Ag+v>0 and —d,A,+ d <0. Then there exists a noncon-
stant equilibrium solution (uf(x),0,0) of (1.2), (1.3), and (1.5). Moreover, it
is asymptotically stable.

Proof. Consider the following Dirichlet problem for the semilinear el-
liptic equation:

dzAulﬂul(lVZ_:)):O’ red (421)
U] g0 =0.
Set
U (x) =My,(x). xeq, (4.22)
u (x) =epy(x), xeQ, (4.23)

where @, is taken as in (4.1); ¢, is the principal eigenfunction of — A with
homogeneous Dirichlet boundary condition; both of them are normalized by
supg @, =1 and sup, ¢, =1; and we have for the constants

Ly(—dX,+7v) Ly(—dAy+7v)
M>yr———— £ —.
Yming,, Y
Q

It is easy to check that u,(x) and u,(x) defined by (4.22) and (4.23) are the
upper and lower solutions in the sense of Theorem 10.3 of [15], respectively.
By using that theorem of [15], we know that there exists a nonconstant
solution uf(x) of (4.21) satisfying

0<uy(x)<uf(x)<u(x), xe. (4.24)

This means that U*(*) = (uf(x),0,0) is a nonconstant equilibrium solution
of (1.2), (1.3), and (1.5).
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To prove the stability of U*, we linearize the reaction terms of (1.2) at U*
and analyze the spectrum of the linearized operators. Rewrite (1.2) as an
evolution equation in the Banach space X = @; X, = ®;L*(2)N C*(Q) as in
Section 3:

U AU+ F(U
dt (),

where A and F(U) are as the same as (3.9) and (3.10), and
D(A4)={u€X, uln=0,44€l*(Q)}, =123
Linearizing F(U) at U* = (u{(x),0,0), we get
F(U+U*)=F(U*)+ BU+g(U),

where
g(U) =o(lIU]lx),

2yuf  lyup?

0

B= Ly L3
0 0 0
0 0 0

We need only analyze the spectrum of the operator = A + B [6, 7, 11].
The resolvent equation for % is

(A+B—-ul)U=V, pec, V=(“1,Uza03)T€X’

ie.,
2yuf Iyup?
17 L, M 2 0 U - by
0 Ay, —p 0 U U,
0 0 Ay —p || us Uy

for p € p(A4,)N p(A;), where p(A,) denotes the resolvent set of 4,, i = 2,3.
Hence

2yu lyur?
(AL’ 3 _I")“l I - 12 R(p,4;) 0 Uy
0 _ 0
U 0 R(p,A4,) 0 ) ’

Uz 0 0 R(F”AB) Us
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where R(p,A,) and R(p, A;) are the resolvent operators of 4, and 4,,
respectively. Set

2yuf
L,

A(p) =4~ - B,

R={p:pep(4,)np(4;), Ay is invertible in L*(Q)}.

We have the following four lemmas:

LEMMA 4.1

Zcp(U).

LEMMA 4.2

Let p € p(A,)N p(Ay), then A, (p) is invertible in L*(R) if and only if zero
is not an eigenvalue of A\(p).

LEMMA 4.3

There exist 8* € (0, 7/2) and v* > 0 such that
bl
S*s{péC:'arg(p,wLy*)IsE +0*} cX.

LEMMA 4.4
o(#)c{AeC:Red< —y*}.

Lemmas 3.1 and 3.2 are obvious [11]. Lemma 3.4 comes from Lemmas
3.1-3.3. The proof of Lemma 3.3 can be found in the Appendix.

We note that the linear stability of U* = (u;,0,0) is the straightforward
result of Lemma 4.4. Thus, we complete the proof of the theorem.

THEOREM 4.5

Assume d\ A, + y <0 and dyAy + a> 0. Then there exists a nonconstant
equilibrium solution U = (0, u,(x),0) of (1.2), (1.3), and (1.5). Let

2a
K*=max{Re>\:)\eo(A2—?&2)Ua(A3+CBZ42)}.
Then (0, #,(x),0) is linearly stable if K* <0 and is unstable if K* > Q.

Proof. We can prove the existence of the equilibrium solution (0, i, (x),0)
in the same way as we did in the proof of Theorem 4.4.
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Linearizing F(U) at U, we get

=F(U)+CU+g(U),

U)
0 0 0
2a
c=|0 - i, 0
0

K
0 B,
Set
Y =A4+C.
Then
A —p 0 0
¥ —-ul= 0 A 2e. 0
B 1Tk U — p
0 0 Ay +cBuy —p
Clearly, the point spectrum of ¥~ is
2a
o(V)=0(A1)U0(A2—?az)Uo(A3+cB~u3). (4.25)
On the other hand, by the assumption we have
o(A))c{AeC:RedA<d A, +7<0}. (4.26)

The conclusions on the linear stability and on the instability come from
(4.25) and (4.26).
The proof is complete.

5. DISCUSSION

We summarize and discuss our results as follows.

First, the solution exists uniquely and is bounded, regardless of the
diffusion mechanism and the kinds of boundary value conditions. This is
because of the biologically reasonable assumptions that the mutualist-prey u,
has a finite carrying capacity and that the mutualist u;, benefits u, only by
deterring the predation on u,.

Second, for the Neumann problem, as we see in Section 3, some results are
somewhat similar to those of the original O.D.E. problem {13]. For example,
for the extinction of the predator u,, the Neumann problem and the O.D.E.
problem have the same sufficient condition, i.e. (3.16) of [13]. This condition
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can be explained by the fact that the carrying capacity K of the prey u,
(with the given benefit of u,) is too small relative to the death rate s of the
predator u,. In addition, the constant equilibrium solutions £, F,,..., Es
are the same for the Neumann problem and the O.D.E. problem. We know
that the solutions of the O.D.E. problem can be considered independent of
spatial variables and hence satisfy the homogeneous Neumann boundary
condition automatically.

However, there are some evident differences between the Neumann prob-
lem and the O.D.E. problem. For example, as to the asymptotic stability of
E;, Theorem 3.4 says that in addition to (3.12) and (3.14) (i.e. (3.11) and
(3.15) of [13]), we need also (3.13) and (3.15), which can be considered as the
conditions that the diffusion constants have to satisfy.

We note that both Theorems 3.3 and 3.6 deal with global asymptotic
stability, but they are different. For example, the conditions of Theorems 3.3
and 3.6(i) are different, and neither of them implies the other, although both
concern the extinction of wu;. The inequality (3.11) of Theorem 3.6(i) is
weaker than — s + ¢8K /(1 + mL,) < 0 in Theorem 3.3, but Theorem 3.6(1)
requires another condition ¢ = ud — M > 0 as well, which can be written as
w> M/d or d > M/u. In the former case, one can view it as saying that p is
large and can interpret ¢ > 0 as saying that the habitat £ is small, since p is
inversely proportional to the squared diameter of £ [4]. In the latter case,
o > 0 can be looked upon as saying that the diffusion is strong relative to the
reaction terms. So, with small @ and large diffusion, it is reasonable to expect
that the transport process can almost be ignored. Therefore, the solutions
decay to the constant equilibrium states more easily and more quickly.

Similarly, we can observe differences between Theorems 3.4 and 3.6. The
former describes the local asymptotic stability of E, and E; in L’ norm,
while the latter states the global asymptotic stability of £, and Es in the
maximum norm, of course, where the additional condition ¢ > 0 is needed as
well.

Third, for the Dirichlet problem, the results are distinct from those of
either the O.D.E. problem or the Neumann problem.

We know that the trivial equilibrium solution (0,0,0) must be unstable for
the O.D.E. problem and the homogeneous Neumann problem. However,
since the homogeneous Dirichlet boundary condition means that none of the
three species can exist on the boundary of their habitat, the diffusion
mechanism is harmful to the existence of the populations. Obviously, the
predator can not be alive alone. So Theorem 4.3 says that all populations go
to extinction whenever both —d, A, +y and — d,A, + a are negative, e.g.,
both diffusions of 4, and u, are too strong, or their habitat is too small.

In order to avoid the extinction of all species, the habitat & must be large
enough (hence p be small enough) or the diffusion of u, or u, not be too
strong. Theorems 4.4 and 4.5 give two conditions under which u; or u, can
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be alive alone forever, respectively. It is easy to understand that any
equilibrium solutions for the Dirichlet problem cannot be nonzero constant
states which do not satisfy the homogeneous Dirichlet boundary condition.
The two equilibrium solutions described in Theorems 4.4 and 4.5 are positive
functions of spatial variables in Q. But, due to the homogeneous Dirichlet
boundary condition, the closer to the boundary, the smaller is the population
density of the stable states.

We note, as well, that the condition of Theorem 4.4 (ie., u; goes to a
stable positive state while u, and u; go to extinction as time tends to the
infinity) is weaker than that of Theorem 4.5 (i.e., u, is alive alone forever).
This is because the prey u, is fed on by the predator u;. while the existence
of the mutualist u, is not influenced directly by u;.

The study of general equilibrium solutions and their stability (i.e. the cases
of coexistence of two or all three species) under the Dirichlet boundary
condition is interesting. But, due to the difficulties of the corresponding
analysis, we do not deal with it here.

APPENDIX

The main lemmas cited in this paper are proved in this Appendix. The
reader is referred to [1] and [11].

Proof of Lemma 3.1. Suppose g > 2. Then

d du,
— 9 = ¢-1__ 7
" /;21{3 dx j;zqu3 % dx

cBu,
=/;2qd3u§’1Au3dx+/;zqug’(—s+ 1+mul) dx
4(q—1 5
\—ud_,f(Vuf{/l)“derq(-s+cBM)/u“’dx
q Q Q

where the constant M < co. By the Nirenberg-Gagliardo inequalities [16], we
have

2
wdx <el (vut’?) dx + Ce m( uq/ldx)
fprseaefout oo | [

for 0 < ¢<1, where m>n /2, C=C(£, m). Hence

e

272 4q-1)
7 3'/;2(Vu§’/2) dxs———fdﬁ*l/;)uf{dx

q

44q9-1)C
+Ld3£ ("'H)(fuf{/zdx) .
q Q
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Take &> 0 sufficiently small, such that

g1
qe

dy+g(—s+cBM)=-8<0.

Clearly, e < O(g " '). Thus

5

jt/u‘{dx 6[ 4dx + (qi,}?fl C(/Qu_‘{/:dx) )

and hence
[utdx < Cog™ wllfug, + € < oo,
Q

where €, and C, are some positive constants. We need to find a constant K
such that

””}”/."(Q) <K

forr>0and g=p-2%, N=1,2,....
If. for any ¢ = p-2",

sup Cy¢"" 1““3”[1/,‘/"'3(9) <G,

t>0

then
p - 2N
fu§ S dx <20,
Q

i.c., there cxists a constant K, independent of ¢, such that

[lusll 2™ < K

for t >0 and N =1,2,.... Otherwise,

, 1 1/
sl oY <(2C)) /q(q'” ' l) o sup [[usll, » =¥ !

120

N - m+1]2/¢
gl 4
<TI (¢ )2/'[( I ] suplfual,r.

i=10 =0

Since sup, ., ,||u4s][,» is bounded due to the assumption of the lemma and the
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fact that

Ij (2¢) 2/4[( ‘I)mﬂ]z'/q

2!

N-1 v [N- .
lees ] oo
(=0 i

‘,jl(m+l)/p

(m+1/p

c{fLfoer 1) ™) oo

the lemma is proved.

Proof of Lemma 3.2. From the system (1.2), we know that

8u2 du;, U,
5 + - % =cd Auzer3Au3-I—co<u2(1—;)—su3

<edy,Auy +dyAuy —s(cuy +uy) + P,

where P depends on sup,, ol|u;|l;<q,- Integrating the inequality on £ and
using boundary value condition (1.4), we have

X mes -
2 3

Therefore

sup/u3 dx < sup( f“z dx +fu3 dx) < const.
>0"R >0\ “Q

This proves the lemma.

Proof of Lemma 4.3. We know that
K*=max{ReX:A€0(A4,)Uo(4,)} <0. (A1)

By Lemma 4.2, we need only show that there exist 8* € (0,7/2) and
v* > 0 such that 4,(p) does not have zero as an eigenvalue whenever p € S*.

Let 5(p) be an arbitrary eigenvalue of 4,(p), ¢(p) be the corresponding
eigenfunction, ¢(p) > 0, and ||¢||,: =1. Put

=Rep, py=Imp,
m(p) =Ren(p), 7(p)=Imy(p).
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Then

A(pye(p)=n(p)e(n),
a(p) =(A(p)e(p). o(p))

=<(A1— Y:f)qo(n>,<p(u)> +<— !

If w(u),qv(u)> -k,

and hence
m(p) =<(A1— YLu: )w(#),w(u)> +< *%w(u),w(u)> ~
n(p) =—p,.

We know from (4.11) that u;f satisfies

yuft
(AI_T)“;::O’ XEQ,

v

(A2)
ufflyg = 0.
(A.2) means that the second order elliptic operator 4, — yu}/L, has the

positive eigenfunction uj(x) € H)(Q) with zero eigenvalue. It follows that
(11}

0

yul )
<(A1—T)xp,¢><0 forany € Hy(Q).

Thus,

Yu

*
1
m(u)<<— w(u),w(#)>—u1<0 forany g, >0.

L,

In view of 0, (0,p,) <0 and the continuous dependence of n(p) on p, we
know that there exist C*>0 and a*>0, —a*e€(K*0), such that
m {1y, ) < 0 whenever

pe{preC:ipep(4,)Np(4;),Repe(—a*,0), mp|<C*}.

We note that |1, (g, pt5)| = |2 > C* > 0 when |p,| > C*, so 4,(p) can-
not have zero as an eigenvalue if

p&{peC:pep(A4,)Np(A4;),Rep<—a*, Imp[<C*}.
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Taking

a*_

Y*
w) and y*e(0,a*),

0* (O,arctan
C*

we complete the proof of Lemma 4.3.

The author wishes to express his thanks to Professor J. Smoller und
Professor L. Hsiao for their encouragement and help.
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