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ABSTRACT: A simple method for the synthesis of irrational immittances J(Z(s)), based on 
infinite cascades of balanced symmetric lattices, is presented. This approach is applicable to both 
analog and digital implementations. The method is illustrated by physical realizations of J(L s), 
J( 1 /C s) and the irrational number Ja. As an obvious extension, a physical realization for the 
fractional-step delay z _ “* in a single-rate digital-filter structure is developed. Also, expressions 
for the input immittance of a truncated realization of J(Z(s)) and approximate realization of 
z- ‘I* are derived. 

I. Introduction 

Numerous detailed approaches have been discussed in the literature for the 
synthesis of irrational immittances in the form of infinite networks (l-3). This is due 
to the many applications of such network functions in areas like modelling of 
diffusion processes, compensation of servo-systems, termination of high-frequency 
cables, etc. For analysis, synthesis and implementation of such systems, the need 
often arises for a rational approximation of Z(s) which yields simple lumped 
network realizations with known component values. 

It should also be noted that a number of applications are found for the digital 
counterpart of s, namely the fractional-step delay operator z- 1/2, in areas such as 
two-dimensional fan filters for geoseismic data (4) and array beamforming (5). 
During the past two decades, a number of investigators have proposed different 
procedures for rational approximations of some irrational immittances through 
infinite networks. Networks have previously been constructed to simulate the 
operators Js, 4(1/s) (3) and the irrational number Ja where a is a positive number 
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greater than unity (a > 1) (6). Moreover, there now exists a rigorous theory for 
infinite electrical networks (7). 

This paper presents a unified approach to the synthesis and realization of 
irrational functions. While the similarity between the analog and digital realizations 
is indicated, the algorithms presented here are significant because of their simplicity 
and utility. Furthermore, the fidelity of the approximations can be made arbitrarily 
good without significant computational cost during the synthesis procedure. 

II. Derivation of the Algorithm 

We begin with a derivation of the algorithm for the synthesis of the one- 
dimensional continuous time immittance ,,/(Z(s)). Let Z(s) be a positive real (PR) 
function. Properties of such functions can be found in (8). It is our intention to 
present an algorithm for the expression of ,/(Z(s)) in terms of the rational function 

Z(s). To start, let us write 

&Z(s)) = 1 + z(s)- 1 
J(Z(s)) + 1 

which can alternatively be written as follows : 

1 
Z(S) = 1 + 

2 1 
. (2) 

as> - 1+ 1 +J(z(s>> 

This can be expanded to result in the following continued fraction expansion : 

Z(s) 
1 

= 1 + 
2 1 

Z(s)-1 + 1 
1+1+ 

2 1 ~ ~ 
Z(s)-1 + 1 +. 

Now, identify (2) by either the impedance 

1 
zi,(s) = ‘a(‘) + 9 1 

or by the admittance 

XII(s) 

220 

(4) 
I 

1 
Z,(s) + __ 

zin(s) 

1 
Y,(s)+ 2 1 * 

Y,e- Y,(s) + 1 

Y,(s) + __ 
yin(4 

(5) 
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z/n--, *a 
FIG. 1. An infinite cascade realization of the irrational immittance ,/(Z(s)). (a) An infinite 
ladder realization of the impedance ,/(Z(s)); (b) an infinite ladder realization of the 

admittance J( Y(s)) and (c) an infinite lattice realization of the immittance J(Z(s)). 

These immittances can be realized in infinite ladder forms as shown in Fig. l(a) and 
(b), respectively. Note that the T and rr sections in Fig. l(a) and (b) can be 
transformed to a lattice section as shown in Fig. l(c). This transformation will of 
course eliminate the unrealizability condition which may arise if Z,(s) > Z,(s) or 

Y,(s) ’ yb(s), 
Thus, the immittance function (3) can now easily be realized as an infinite cascade 

of balanced symmetric lattices with unit resistors in the parallel arms and rational 
immittances Z(s) or Y(s) in the cross arms, as illustrated in Fig. 2(a) and (b). It is 

(b) 

FIG. 2. An infinite cascade lattice realization of (a) the irrational impedance ~(Z(S)) and (b) 
the irrational admittance ,/( Y(S)). 
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obvious that convergence of (3) is required in practice in order to have a physically 
realizable structure. Therefore, truncation of the continued fraction expansion (3) at 
a suitable point is mandatory. This will result in a rational approximation of the 
irrational immittance J(Z(s)) which leads to a finite cascade lattice realization, 

Let Z,(s) = N,(s)/D,(s) denote the rational function obtained by truncating Eq. (3) 
at the (n + 1)th lattice, so that Z,(s) = co, and Z,(s) = (Z(s) + 1)/2 and so on. Then 
obviously we have 

-a4 = 
Z,-,(~)CZ(~)+11+2Z(~) 12 > 1 

2z,-,(s)+[Z(s)+ 11 ’ ’ 
(6) 

which gives the following recurrence relations : 

N,(s) = cm) + 11Nn I(S) + 2.wk I(4 (74 

D,(s) = [Z(s)+ l]o”p ,(s)+2N,_ l(S). (7b) 

Solving for N,(s) and D,(s), we get 

N,(s)-2[Z(s) + l]N,_ 1(s)+ [Z(s)+ 1]2N,_2(S) = 0 (8a) 

and 

R(s) = N,(J). (8b) 

Solving these difference equations with the respective initial conditions N, = 1, 
N, = Z(s)+ 1, and D, = 0, D, = 2, we get 

(9) 

For example, for Z(s) = s with n = 4, Eq. (9) can be written as 

Js N Z,(s) = 
s4 + 28s3 + 70s’ + 28s + 1 

8s3+56s2+56s+1 ’ 
(10) 

To show the fidelity of the approximation, the amplitude and phase plots of Js 
and those of Eq. (10) are depicted in Figs. 3 and 4, respectively. 

ZZZ. Realization 

The synthesis of the irrational inductor J(h) and irrational capacitor l/J(C s) 
using the method described in Section II is shown in Fig. 5(a) and (b), respectively. It 
should be noted that the synthesis of a more general irrational immittance Z(p) 
where p = Js is also possible. In this case, the synthesis of Z(p) is carried out using 
the Bott-Duffin method. Then the complete realization of Z(Js) is obtained by 
replacing every rational reactive element in the structure by irrational reactances as 
given by Eq. (3) and as depicted in Fig. 5. 

Note that the given algorithm along with Eq. (9) suggest a lattice realization 
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Frequency (rad /set) 

FIG. 3(a). Amplitude plot of Sqrt.(s). 
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FIG. 3(b). Phase plot of Sqrt.(s). 
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Frequency (rod/set) 

FIG. 4(a). Amplitude response of the approximation circuit for Sqrt.(s). 
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FIG. 4(b). Phase response of the approximation circuit for Sqrt.(s). 
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(a) 

(b) 

FIG. 5. An infinite cascade lattice realization of (a) the fractional operator J(Ls) and (b) the 
fractional operator l/J(Cs). 

scheme for irrational numbers ,/a, where a is any positive number (a > 0). In fact, we 
have shown this in the following example. 

Example 

Let a be any positive number. Then the irrational number ,/a can be 
approximated by the ratio of two rational numbers as 

(11) 

where n is taken to be large enough. 
Using the given algorithm, the irrational resistor ,,/a is realized as infinite cascades 

of symmetrical lattices with unit resistors in the parallel arms and rational resistors a 
in the cross-arms as illustrated in Fig. 6. This can be considered as a generalization 
and an alternative realization of a previously reported infinite ladder realization of 
Ja, where a > 1 (6). 

IV. Digital Simulation 

In this section a signal-flow graph realization of the continued fraction expansion 
of the fractional operator s * 1/2 is given. If digital simulations of these operators are 
desired, this realization can easily be transformed to the z-domain using the bilinear 
transformation : 

1 -z-l 
s+- 

1 +z-” 

Ja+y&tyyyffyyy~~~~. . . 
FIG. 6. Lattice realization of Ja. 
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FIG. 7. Signal-flow graph representation of the continued fraction expansion given by Eq. (3). 

FIG. 8. Digital simulation of the fractional operator 4s. 

To obtain the proper realization, note that the irrational immittance d(Z(s)) can 
be expanded into a continued fraction expansion, as given by Eq. (3) and as shown in 
Fig. 7, which may be realized as a leapfrog structure using the feedback nature of the 
continued fraction expansion of Eq. (3). Setting Z(s) = s, and applying the bilinear 
transformation (12), the resulting digital ladder simulation of ,,/s is as shown in Fig. 
8. 

Similar results can be obtained for the digital simulation of the fractional operator 
l/Js. In fact, replacing 2-r by --z-l in the structure of Fig. 8 yields the desired 
realization. Obviously, when the continued fraction expansion (3) is truncated, a 
rational function approximation of the fractional operator ,,/(( 1 -z _ ‘)/( 1+ z ‘)) is 
obtained which leads to a finite cascade ladder realization. 

V. Physical Realization of the Fractional-step Delay Operator z - ‘I2 

It is well known that 2-D fan filters can be designed by transforming a 1-D 
reference digital filter into a 2-D filter using the index transformation reported in (4) 
as : 

z = Jhzz). (13) 

In general, this transformation will result in a 2-D z-transfer function with the 
variables z1 and z2 having rational non-integer powers. In the case of the above 
transformation, terms such as z; “’ and z; w will appear in the 2-D z-transfer 
function, which makes implementation of the derived filter in the first quadrant 
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plane difficult. In this section, we extend the result of the previous section to realize 
the fractional-step delay operator z -- rjz so as to obviate this difficulty. 

Analogous to the continued fraction expansion of irrational functions discussed 
in Section II, note that the fractional operator J(G(z)) can be expressed as follows : 

G(z) - 1 

G(s) = * + 1 +J(G(z)) 

= l+ 
G(z) - 1 

2+ W-1 
2+ G(zkL 

2 + g(z) - 1 
Gy’ (14) 

Equation (14) can easily be implemented as an infinite cascade connection of 
symmetrical lattices as shown in Fig. 9. If G(z) is set to be the unit delay z-l, the 
lattice structure in Fig. 9 would result in physical realization of the fractional-step 
delay Z- l”. 

It is easily seen that a cascade connection of an infinite number of two-port lattice 
networks is not realistic. Let G,(z) = P,/Q,(z) denote the rational function obtained 
by truncating Eq. (14) at the (n+ 1)th lattice, so that G,(z) = 0, and G,(z) = G(z). 
Then, we can write : 

Solving (15) for P,(z) and Q”(Z), we obtain 

P,(z) - 2P, _ 1(~) -I- Cl- G(z)]P,, _ 2(z) = 0 (16a) 

and 

Qn(4 = f’,(z). (16b) 
Solving these difference equations with the respective initial conditions P,(z) = 0, 
P,(z) = G(z) and Q&z) = 1, Qr(z) = 1, we obtain the foIlowing formula for the nth 
convergent : 

n-l 

p=q=2 
for n odd 

and 

L 

y=g for n even. 

(17) 
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FIG. 9. Implementation of [G(z)]“* using a cascaded lattice structure. 

In our experience, we have obtained a good approximation of the fractional-step 
operator J(G(z)) with only a finite number of cascaded lattices. For example, letting 
G(z) = z-l with n = 8, from Eq. (17) we obtain 

Figure 10(a) shows the phase response of Eq. (18) obtained by cascading eight 
symmetrical lattices which is a very good approximation of z-l”. It should be noted 
that if the number of cascade sections is even, the phase response will.be closer to 
that of z- ‘I2 while the amplitude response will be an approximation to that of z- 1/2 
which is an all-pass function. If, however, the number of sections chosen is an odd 
number, then the transfer function of the,approximation will be an all-pass function 
which yields an amplitude response exactly the same as that of z- ‘j2 while the phase 
response will be an approximation to that of zP l” As an example, consider n to be . 
equal to seven, then we have 

~-l'~G,(z) = 
7z-‘+35zz2+21zz3+zP4 

(19) 

which is an all-pass function, Figure 1 l(a) and (b) shows the phase and amplitude 
response of G,(z), respectively. As can be seen from Fig. 1 l(a) and (b), the amplitude 
response of G7(z) is exactly the same as that of z-i’2 while the phase response is an 
approximation to that of z - ‘I2 Adding to the number of cascaded sections will . 
improve the closeness of the approximation to that of z-i”. As an example, the 
amplitude and phase plots of fourteen cascades are depicted in Fig. 12(a) and (b) 
which clearly shows the closeness of the amplitude approximation to that of z- 112. 

VI. Conclusions 

We have presented a general approach to the realization of irrational functions 
based on a continued fraction expansion, which applies equally well to analog and 
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Frequency (rod/set) 

FIG. 10(a). Phase plot of the approximation circuit for l/Sqrt.(z) with n even (n = 8). 
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FIG. 10(b). Amplitude plot of the approximation circuit for l/Sqrt.(z) with n even (n = 8). 
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FIG. 1 l(a). Phase plot of the approximation circuit for l/Sqrt.(z) with n odd (n = 7). 
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FIG. 1 l(b). Amplitude plot of the approximation circuit for l/Sqrt.(z) with n odd (n = 7). 
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FIG. 12(a). Amplitude plot of approximation circuit for for l/Sqrt.(z) with n = 14. 
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digital filters. A simple lattice structure for the synthesis of 4(2(s)) is given. 
Applications of the proposed structure to the synthesis of special cases of the 
irrational operator Js, and the irrational immittances J(Ls) and l/J(C s), and da 

(where a > 0), and the more general case of Z(J ) s are also given. Explicit formulas 
for truncated realizations are developed. Also, a multiplierless lattice realization for 
the fractional-step delay operator z- 112 is presented. The significance of such 
fractional-step delays in the design of 2-D fan filters is evident. The main advantage 
of the proposed realization for the fractional-step operator x- lj2 is that no sample- 
rate changes are required in the system, thereby yielding a computationally efficient 
system. 
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