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Previous results for stationary continuous-time processes concerning allocation of a fixed anaount of simulation effort across 
independent replications are extended both to stationary and certain non-stationary discrete-time processes. In particular, in 
the presence of positive autocorrelation, variance is reduced if more short replications are designed. The magnitude, however, 
of the variance reduction is not great as long as the computation budget is not tight, suggesting that a good strategy is to 
design for a moderate number of replications in any case, which also mitigates potential bias problems. 

simulation * variance* replication * budget constraint 

1. Introduction 

One of the principal drawbacks of using simu- 
lation to study the behavior of complex stochastic 
systems is that we obtain only estimates (as op- 
posed to exact values) of desired system character- 
istics. Such estimators are properly regarded as 
random variables (r.v.'s), whose degree of impreci- 
sion or uncertainty is typically measured by their 
variance. Accordingly, considerable effort has been 
devoted to finding techniques to reduce the vari- 
ance of such outpu t r.v. estimators, at litttle or no 
additional cost, in which case more precise results 
are obtained for the same simulation effort, or 
(equivalently) less effort is required to attain a 
desired precision. Many of these variance reduc- 

tion techniques (common random numbers, anti- 
thetic variates, and control variates, for example) 
manipulate the random number generator to in- 
duce certain correlations in the simulation output 
which then enter the variance formula, with ap- 
propriately signed coefficients, to reduce the vari- 
ance of the final estimator. Thus, some amount of 
internal modification of the simulation code itself 
is usually required to use such techniques. 

This paper examines a different method of 

variance reduction that is entirely external to the 
simulation program, affecting only the duration 
and number of independent replications of the 
simulation through the experimental design of the 
simulation study. Assuming a budget constraint 
given in terms of the total amount of simulation 
possible (expressed either as simulation clock time 
or as the number of discretely-indexed observa- 
tions), a decision must be made before the simula- 
tions are run as to the number of independent, 
identically initialized and terminated replications 
to make, and the duration of each. Gafarian and 
Ancker [2] considered monitoring a stationary 
continuous-time process with a positive, exponen- 
tially declining autocorrelation function during a 
simulation, and showed that it is better (in terms 
of variance of the time-integral output estimator) 
to break up the simulation effort into ' m a n y  short'  
runs, rather than ' a  few long' runs. This paper  
establishes similar results for discrete-time proces- 
ses, which are often more informative and easier 
to observe in simulation, that are either (a) sta- 
tionary with any form of positive autocorrelation 
function, or (b) non-stationary first-order autore- 
gressive (AR(1)) with positive multiplicative fac- 
tor; a counterexample, however, demonstrates that 
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the result does not hold for arbitrary non-sta- 
tionary discrete-time processes, even with positive 
autocorrelation. 

Section 2 treats stationary processes with arbi- 
trary positive autocorrelation function, and Sec- 
tion 3 shows that, while similar results do not in 
general hold for non-stationary processes, they are 
valid for positively correlated non-stationary 
AR(1) processes. In Section 4 some numerical 
quantification of the results is presented, and con- 
clusions and observations appear in Section 5. 

2. Stationary processes 

Let {X 1, X 2 . . . .  } be a covariance stationary 
process with E(Xi) =/.t and 3'1, = cov(X~, Xi+p). 
From a simulated realization Xi, )(2 . . . . .  X,,, of m 
consecutive observations from the process, X,. = 
E'[k~X~/m is an unbiased estimator of / , ,  with 

( ) var(X, , , )= 3,0+2 }-". ( 1 - p / m ) 3 " p  / m .  (1) 
p f f i l  

(Empty sums, such as (1) in the case m = 1, are 
taken throughout as 0.) Thus, if we make k inde- 
pendent replications of length m observations 
each, resulting in k independent realizations of 
X,,,, our final unbiased point estimator is X-;k .... the 
sample average of the k independent X,,,'s, which 
has variance equal to the expression in (1), divided 
by k. 

Suppose a budget constraint is imposed in the 
form of a limit n on the total number of X~'s that 
can be simulated, regardless of how these n ob- 
servations are allocated to replications. We must 
then decide, before simulating, on how many rep- 
lications k to make, each of length m - - n / k ,  
under the budget constraint. (It is assumed that n 
is divisible by k, a mild restriction since n will 
probably be relatively large. Also, we require the 
replications to be of equal length m to preserve 
the identically distributed nature of the within- 
replication averages, in order to allow application 
of statistical methods based on an identical-distri- 
bution assumption.) Since ~,,,, is unbiased for 
regardless of the choice of k and m, it is reasona- 
ble to focus on the_effect of the splitting of n into 
k times m on var(Xk,,); the following result shows 
that in the common case of positive autocovari- 
once, choosing many short replications is pre- 
ferable to choosing a few long replications. 

Proposition 1. For j = 1, 2 let kj be a positive 
integer dividing n, let mj = n / k  j ,  and assume that 
k~ < k 2. For a cooariance stationary process 
{Xi,.__.., X,,} with 3'1, > 0 for all p, we have 
var(X,,,,,,) > var(Xk:,,,,). 

Proof. For j = 1, 2 let 
m ;  - l 

gj = Y'. (1 - p / , , , j )  3',,, 
p = l  

so that var(Xk,,,,,) = (3'0 + 2g j ) /n .  Thus, it is 
enough to show that g~ > g2. Since nl I > m 2, 

tt! ~ -- 1 (11) 
gl -- g2= E P3'p 

D 1 2  D11 p ffi 1 

m I - 1 

p ~ m  2 \ " " l l  

which is clearly non-negative since the autocovari- 
once function is non-negative. [] 

Note that the assumption of non-negative auto- 
correlation was used only in the final step of the 
proof, and that non-negativity of (2) is necessary 
and sufficient for the result of the proposition to 
hold. If the 3','s could be negative (as can arise, 
for example, in inventory systems) then (2) could 
be negative, resulting in the opposition conclusion, 
i.e., that a few long replications are preferable to 
may short ones. Thus, some knowledge of the sign 
of the autocorrelations would appear to be helpful 
in designing the simulation experiment. 

3. Non-stationary processes 

Simulation of complex systems typically results 
in output stochastic processes which are non-sta- 
tionary, due to the often artificial nature of the 
initial conditions needed to start the simulation. 
This section establishes a result similar to Proposi- 
tion 1 for one useful class of such processes; the 
proof, however, is entirely different. 

Before establishing this, we demonstrate that 
the result of Proposition 1 does not hold in gen- 
eral for any discrete-parameter non-stationary 
process, even if positive autocovariance is as- 
sumed. For a general (possibly non-stationary) 
process___{ X I, X 2 . . . .  } let 3'ij = cov(X~, Xj) and 
define Xk,,, formally as in Section 2 (except now 

276 



Volume 4, Number 6 OPERATIONS RESEARCH LETTERS April 1986 

using the X~'s from the non-stationary process). In 
this case, 

var(~,,,,) = 4 k  ~ ~ 3',,, (3) 
n" i=1 j=l  

As a counterexample, let { X  l, 
multivariate normal with covari- 

where n = kin. 
X2 . . . . .  X6} be 
ance matrix 

4 3 1 
3 3 1 
1 1 2 y .=  
1 1 
1 1 
1 1 

1 1 1 
1 1 1 
1 1 1 

1 2 1 1 
1 1 2 1 
1 1 1 2 

Note that E is positive definite (so such a process 
exists), and that the correlations are all positive 
(but not stationary). Choosing n = 6 and, as be- 
fore, setting r e = n / k ,  (3) is equal to 1.056 if 
k = 2, but is 1.083 when k__ = 3; thus, increasing k 

I 

led to an increase in var( X,,,, ), contrary to Pro- 
position 1. 

One general class of non-stationary processes, 
however, does yield the result of Proposition 1. 
The AR(1) process is defined by the recursion 

x , =  + q,( x , _ ,  - + c, ,  

for i =  1,2 . . . . .  and the ci's are a sequence of 
uncorrelated r.v.'s with mean 0 and common vari- 
ance 02; we assume throughout that I~l < 1. This 
class of processes was introduced as a model for 
simulation output processes by Fishman [1] and 
investigated further by Turnquist and Sussman [4], 
and by Kelton and Law [3]. While making such an 
assumption certainly entails some amount of ap- 
proximation, the relatively simple form of the 
AR(1) process enables a more intensive analysis. 
Further, this process shares many important fea- 
tures with actual output processes from simula- 
tion, such as having an autocorrelation function 
that (at least asymptotically) declines exponen- 
tially; depending on the initial specification of X o, 
the process may or may not be stationary. 

If we make the additional assumption that the 
q 's  are normally distributed and that Xo is drawn 
from a normal distribution with mean tt and 
variance 0 2 / ( 1 -  (ib2), then the { Xi} process is 
stationary with mean O, variance 02/(1 - q~2), and 
lag-p autocovariance yp = q~p02/(1 -q~2); thus, the 
result of Proposition 1 would apply. If, however, 
we do not make these additional assumptions and 

let X 0 be deterministically specified, then the 
(X~) process is neither first- nor second-order 
stationary; for the rest of this section, we will 
assume that this is the case, and so Proposition 1 
would not apply. 

The conclusion of Proposition 1, however, still 
holds, as we show in the  remainder of this section. 
Defining X,,, and Xk,,, formally as in Section 2 
(except now using the X~'s from the non-sta- 
tionary AR(1) process), note first that from eq. (4) 
of [3], 

var( .~,,, ) = °2 
m (1 - ~)2 

( ~ ( 1 - ¢ " )  - -  - - ,  ~,,, ) 
× 1 )). 

(4) 
The following Lemma is stated for use in evaluat- 
ing the key expression appearing below in Pro- 
position 2. 

Lemma. For q a non-negative integer and any real 

Y, 
q 

(i) E ) 'P= ( 1 - y q + ' ) / ( 1 - y ) ,  
p=0 

q 
(ii) Y'. p y P - l = ( 1 - ( q +  l ) y q + q y q + l )  

p=O 

/ ( 1  - y ) " ,  
q 

(iii) E p 2 y p - 2 = (  1 + Y - ( q +  1)2y q '  
p=O 

+ (2q 2 + 2q - 1)y  q+l 

-y)'). 

Proof (i) follows from induction on q, and (ii) and 
(iii) are obtained by successively differentiating 
through (i) with respect to y. 13 

Proposition 2. Let n, k j, and mj be as in Proposi- 
tion 1. The_iT for any AR(1  ) process with t k > O, we 
have var( Xk,,,,, ) > var(Xk2,,,,). 

Proof. Dividing (4) by kj and rewriting yields 

var(ffk,,,,,) = c,(1 -c2g,, , ,) ,  

with c I = 02/ (n(1  - ~b)2), c2 -- ~/(1 - ~2), and g,,, 
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= (2(1 - ~"') + ep(1 - e/")Z)/m for any positive 
integer m; note that neither c~ nor c 2 depends on 
mj. Thus, it is enough to show that g,,h <-% g.,:, 
which would follow establishing that g., is non-in- 
creasing in m (since m I > m2). Noting that g, , , -  
g,,,+l >- 0 if and only if 

h,,, = 2 + ~ - 2(m + 1)~"' - 2~ ' '+l  + 2m4, '''+2 

+ (m + 1)¢ 2'"+1 -- mqb 2'''+3 

is non-negative, we use the relations in the Lemma 
to rewrite 

m -  1 h,,,=(1-q~)3 Z (3p+4)(p+l)q~ p 
2 

p = 0  

+ q;,, ~ ( _ p 2  _ (21n + 1)p 
p = O  

+ 3,n(,,,  + 1) )¢P) .  (5) 

Since ~ > 0 and the coefficients in (5) of ~P in the 
summations are always positive over the sums' 
respective ranges, we see that h , ,>  O, and the 
proof is complete. [] 

Again, the assumption of non-negative autoco- 
variance (,~ > 0 here) is critical for the result, and 
the opposite conclusion could be reached other- 
wise. In principle, one could investigate whether 
the conclusion of Proposition 2 holds for higher- 
order autoregressive processes, as well as for more 
general ARMA processes, by using methods simi- 
lar to those above; it seems, however, that the 
complexity involved would be formidable. 

4. Numerical illustration 

Propositions I and 2 establish inequalities about 
the variances resulting from alternative splitting of 
the simulation budget, but say nothing about the 
magnitude of the variance reduction obtained from 
choosing a larger value of k. In this section we use 
the AR(1) model (both stationary and non-sta- 
tionar_.y) to quantify the nature of the decrease in 
var(X,.,,,) as k increases, with n fixed. 

With the AR(1) process (with normal ¢~'s) ini- 
tialized by drawing X 0 from a normal distribution 
with mean # and variance o2 / (1 - ,~2) ,  the pro- 
cess is stationary with lag-p autocovariance Tp = 

@p@2/( 1 _ @z). Combining this with (1) results in 

var(~(s~] = o 2 m -  2 ~ -  m~ 2 + 2~ '''+1 

" '"" '  k, , ,2(1  + ¢ ) ( 1  - ¢ ) '  ' 

where the superscript (S) denotes stationary. 
On the other hand, if the AR(1) (with possibly 

non-normal q 's)  is initialized via a deterministic 
choice for X 0, we get from the expression for 
var(X,, ,)  in the proof of Proposition 2 that 

(¢,+, )2 
= ( N S )  - -  l# var( X~,,, ) = var( -,k,,,V(s'/~ - 02 

k, , , 2 (1  + , ) ( 1  - 

where the superscript (NS) denotes non-stationar- 
ity. As an aside, note that --(NS) -(s) var( X~,,, ) < var(X~,,,), 
evidently reflecting the lower variability induced 
by the deterministic initialization in the non-sta- 
tionary case. 

With o =  1, n fixed at 1000, 2000, 4000 and 
8000, and setting m = n / k ,  Figure 1 plots the 

standard deviations evar(~,s~)  (solid lines) and 
( N S )  ~/var( XL, , ) (dashed lines) as functions of k, for 

k < 125 and dividing n; ~ is taken as 0.90. The 
decrease in variance with k is evident in all cases, 
but is less marked for a more generous budget. In 
fact, for n not too small, the quantitative ad- 
vantage of splitting into many (high k) repli- 
cations appears to be only minor. (From plots not 
shown for other values of ,#, the size of n required 
for the preceding statement to hold is smaller for 
small ~, and vice versa.) This is signifi__eant in the 
non-stationary ease if we are using ~NS) -'k,,, as an 
estimator of ~; this estimator is biased for/z, and 
the bias increases with k (see [3]), so that choosing 
k small is attractive from this standpoint. In the 
stationary case, however, ~cs~ is unbiased for/.t, "~" k In 

and it appears advantageous to make a number of 
replications provided that it is neither expensive 
nor inconvenient to implement the multiple simu- 
lation initializations this would entail. 

Finally, Figure 1 displays a curious crossing of 
the dashed lines, for example, v"f fX ~Ns) ~ (n = __ a k 100,10  / 

1000) is less than --(NS) var(X~00a0) (n = 2000), so that 
the variance is larger with more total data. To 
explain this apparent paradox, recall that these 
simulations are initialized deterministically, and 
allowing them to run for m = 20 points (rather 
than m---10) extends further away from the de- 
terministic initialization, providing greater oppor- 
tunity for variation that in some cases more than 
offsets the increased information in the additional 
data. 
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6 ¸ 

x x ~  O 

Stationary 
Nonstationary . . . . . .  

25 50 75 100 125 
k 

=(NS} Fig. 1. ~/var( ~s,l/k )(solid lines) and Cvar( X~..,,/k )(dashed 
lines) as functions of k for AR(1) processes with o =1 and 

= 0.90. 

5. Conclusions 

This paper has focused on variability of esti- 
mators of means of positively autocorrelated dis- 
crete-parameter processes (or asymptotic means in 
the non-stationary case), and showed that splitting 
the budget into multiple replications is always 
preferable in the stationary case, may not be in 
the general non-stationary case, but is still prefer- 
able for the non-stationary AR(1) model consid- 
ered. Looking at the actual magnitudes, however, 
of the variance reductions obtained for both sta- 
tionary and non-stationary AR(1) processes, it 
appears that relatively little is to be gained by 
splitting into many short replications unless the 

budget is tight. Thus, especially in the non-sta- 
tionary case where bias may also be a concern, a 
moderate number (no more than, say, 25) of repli- 
cations should result in reasonably stable estima- 
tors and adequate degrees of freedom for efficient 
application of various statistical procedures, such 
as hypothesis testing about g or forming confi- 
dence intervals for g. A cost model incorporating 
both the cost of variance and the cost of eliminat- 
ing the biasing effects of such non-stationarity on 
point estimators could quantify the tradeoffs in- 
volved in the splitting of the budget into repli- 
cations. In any case, it appears that in automated 
procedures for run length determination, prefer- 
ence should be given to run length increase over 
increases beyond about 25 in the number of repli- 
cations to attain a desired precision in the output. 
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