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The problem of setting a Oxed width confidence interval for the mean of a normal 
distribution with unknown variance is considered. Several procedures are reviewed. 
An asymptotic lower bound for the expected sample size of any sequential sampling 
plan with the specified confidence coefficient is obtained as the width of the interval 
decreases to 0. 0 1986 Academic press, Inc. 

1. INTRODUCTION 

Beginning with Stein’s [9] two stage procedure, there has been substantial 
interest in the use of sequential methods to set a fixed width confidence 
interval for the mean of a distribution with unknown variance. This interest 
was stimulated by the fully sequential procedures of Anscombe [l] and 
Chow and Robbins [2] for the normal and non-parametric cases, and 
continues today. The recent work of Hall [5] and Finster [4] is especially 
noteworthy and may be consulted for further references. 

The emphasis of much of this work has been the construction of sequen- 
tial sampling plans for which the probability that the sample and popula- 
tion means differ by less than a prescribed h > 0 is large, at least of 
prescribed y, and the comparison of the expected sample sizes of such plans 
with the hypothetical fixed sample size which would be required if the 
variance were known. The plans effectively estimate the hypothetical fixed 
sample size as data accumulate and stop when the sample size exceeds the 
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estimate; and the comparisons take the form of limit theorems as h + 0 
with fixed y. Some of this work is reviewed in Section 2. 

While there is considerable research which studies specific sampling plans 
and compares them to the hypothetical fixed sample size plan, there is little 
research which seeks to find optimal procedures. Stein and Wald [lo] obtain 
a lower bound on the sample size needed for the case in which u is known; 
and the asymptotic expression for the expected sample size of the fully 
sequential procedure compares favorably with it; but it is not known 
whether this bound is the best possible for the case in which u is unknown, 

The main result of this paper is an inequality which relates the expected 
sample size of a sequential procedure to its coverage probabilities for the 
case of unknown u. From this inequality, the fully sequential sampling plan 
is shown to be the best possible up to terms which are small compared to 
the cost of a single observation. 

The paper is organized as follows: A brief account of previous research 
on the problem is given in Section 2. The main result and its corollary are 
stated in Section 3, and proved in Section 4. 

2. THE PROBLEM 

In this section the problem is stated, and several solutions are described. 
Of these, only (5) and (6) are needed below. The reader who is uninterested 
in the historical development of the problem may simply note their state- 
ment and proceed to the next section. For simplicity, only the one sample 
problem is described, though many of the ideas extend to more complicated 
designs. Also, second order asymptotics are emphasized, since the effect of 
optional stopping only appears in these terms. 

To be specific, let X,, X,, . . . denote independent normally distributed 
random variables with common unknown mean CL, - co < p -C co, and 
common unknown variance u2, and let 

x, = (x1 + -*- +x,)/n, n 2 1, 

and 

s,‘= 5 (4 - x,)‘/(n - l), n 2 2, 
i=l 

denote the sample means and variances. Further, let h > 0 denote the 
desired half width of the interval; let 0 < y < 1 denote the desired con- 
fidence coefficient; and let c denote the (1 + y)/2 quantile of the standard 
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normal distribution, 

2@(c) - 1 = y, (1) 

where @ denotes the standard normal distribution function. 
If the variance a* was known, then an elementary calculation shows that 

the interval 

I” = [X” - h, x, + h] 
covers p with probability at least y if n is a (non-random) integer for which 

n 2 N = N(h, u) = c2u2/h2. (2) 

So, N is the hypothetical fixed sample size which would be required if (I 
were known. Observe that N + 00 as h + 0 for each fixed u > 0. 

For the case in which (I is unknown, Stein’s [9] two-stage procedure takes 
an initial sample of size m 2 2 and then a second sample, if necessary, to 
bring the total sample size to 

s = sh = max{ m, [ cmv12S,f,/h2] + l}, 

where c, -i denotes the (1 + y)/2 quantile of the f distribution on m - 1 
degrees of freedom and [x] denotes the greatest integer which does not 
exceed X. It is easily seen that the distribution of s and the coverage 
probabilities depend on p, u and h only through N. Stein showed that 1, 
covers p with probability of at least y for all N > 0 and that EN(s) = 
NC; _ 1/c2 as h + 0. 

Observe that the two-stage procedure does not use the information from 
the second sample to estimate the variance and that the expected sample 
size is asymptotically bigger than N by a constant factor. The fully 
sequential procedures of Anscombe [l] and Chow and Robbins [2] avoid 
these problems. Again, let m denote an initial sample size and now let 
c,, n 2 m, denote any sequence for which 

c, = c[l + b/n + o(l/n)], asn+ 00, 

for some finite constant b. Define stopping times by 

7-7 h = inf{ n 2 m: n > cj$,f/h2) 

for h > 0. Then the distribution of T and the related coverage probabilities 
depend only on N; and if m 2 4, then the following relations hold as 
N-, 00: 

EN(~) = N + v + 2b - 2 + o(l) (5) 
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and 

P,{/.l E Is} = y + N-‘c+(c){E,(T - N) - (1 + c2)/2} + o(N-‘), 

where Y = .82 denotes a constant (an expected excess over the boundary in 
a non-linear renewal problem). Thus, if 

v + 2b - 2 = (1 + c2)/2, (6) 

then 

and 

EN(T) = N + (1 + c2)/2 + o(l) 

qv{P E I,> = Y + mN)> asN+co. 

These results appear in Anscombe [l], although without complete proofs. 
Such were provided by Woodroofe [ll], under the additional condition 
m 2 7. Starr [7] gives numerical calculations with which the asymptotics 
may be compared. Simons [6] and Starr and Woodroofe [8] give bounds 
which complement the asymptotic relations. The corollary in the next 
section shows that the expected sample size following (6) is best possible, 
subject to the conditions on the coverage probabilities. 

With Hall [5], interest returned to multistage procedures, which have the 
practical advantage of not requiring the data to be monitored continuously. 
Hall’s procedure takes an initial sample of size m, a second sample (if 
necessary) to bring the sample size to 

s = max{ m,[uc2S~/h2] + l}, 

where 0 -C u < 1, and then a third sample (if necessary) to bring the total 
sample size to 

t = max{ s, [c2S,2/h2 + (1 + c2)/2u - l/2] + l} 

As above, it is easily verified that the coverage probabilities and expected 
sample size depend only on u and p only through N. Hall showed that if 
m = m(h) + 00 at a suitable rate, then 

E,(t) = N + (1 + c2)/2u + o(l) 

and 

MCL E 4) = Y + dl/N), 

as h 4 0; and Hall’s results remain valid if u = u(h) + 1 as h -+ 0, 
sufficiently slowly. 
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3. THE THEOREM 

In the sequel r denotes a stopping time with respect to the sequence of 
sample variances. Thus, t is a positive integer or cc valued random variable 
for which t < cc w.p.1 for all u > 0 and the event {t = n } depends only on 
Si, k = 2,. . . , n for all n = 1,2,. . . . 

Let Y,, Y,, . . . denote the Helmert transformation 

for k = 1,2 ,... . Then Y, ,..., Y,-, are independent of x, for each n = 
2,3, . . . , and 

k-l 

Sk’ = 
i i 

c &* /(k - 1) 
i=l 

for all k = 2,3,. . . . It follows that the event { r = n } is independent of x, 
for all n = 2,3,.. . . Let 

Yh(C 0) = PO{ IX, - PI 5 h}. 

Then 

Yh(C 0) = E,{2Q(hfi) - I} 
follows easily for all u > 0 and all h > 0, by conditioning on the value of t. 
See, for example, Woodroofe ([12], Section 10.2). 

The key to relating the expected sample size and coverage probability of 
sequential sampling plans is to consider a decision problem in which the 
statistician selects a stopping time t (with respect to the sample variances) 
and loses the amount 

L,(t; u) = NK(f/iv), (7) 
where 

K(x) = 2ac -2[1 - @(CdX)] + x - [UC-*(1 - y) + 11, 

a = c/+(c), 

$ denotes the standard normal density, and 2@(c) - 1 = y, and x > 0. 
Here the first term in L,(t; u) represents the probability that 1, does not 
cover EL; the second term represents a cost of sampling; and the third, which 
does not depend on t, is included for normalization. 
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The risk function and average risk functional of a stopping time t are 
defined by 

dt; 0) = E,{ &tt; 0)) = NE,,{ K(W)} (8) 

and 

R,(t; 7r) = JgrnrJt; u) da(o) 

for u > 0, h > 0, and prior distributions rr on (0, cc) for which u* has a 
finite expectation. The following asymptotic solution to the decision prob- 
lem provides inequalities which relate the coverage probabilities and ex- 
pected sample size. 

THEOREM. If IT is any prior distribution on (0, co) having a twice continu- 
ously dt#krentiable density with compact support in (0, CQ), then 

liminf,,,inf,R,(t; 7r) 2 (1 + c*)/2, (9 

where the injimum extends over all stopping times (with respect to the sample 
variance sequence); moreover, if r = r,, denotes the fully sequential procedure 
(4) with m 2 4 and b as in (6) then 

lim h*oRJr; Tr) = (1 + c2)/2. (10) 

The proof of the theorem is presented in the next section. A simple 
corollary restates the asymptotic optimality in classical terms. 

COROLLARY. Let t = t,, h > 0, be any family of stopping times for which 

P,,{ Ix, - pI I h} 2 y + o(h*), (11) 

uniformly in u on compact subsets of (0, m) as h + 0. Then, for any compact 
subinterval J c (0,~) with non-empty interior, 

liFiffsup,,,E,,[t - N] 2 (1 + c*)/2. 02) 

Moreover, the limits exist and there is equality in (11) and (12) when t = r is 
the fully sequential procedure (4) with b as in (6) and m 2 4. 

Proof Suppose that (11) holds, but (12) fails for some compact subinter- 
val J with non-empty interior. Then there is a b < (1 + c*)/2 for which 
E,,(t - N) I b for all u E J, for all small h > 0. Consequently, if ~7 has 
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support J, then 

R,(t; 7r) I lrn{ a(1 - y)a2/h2 + (N + b) 

- [a(1 - y) + c$J2/h2}dm + o(1) 5 b + o(1) 

for all sufficiently small h, contradicting the theorem. This establishes the 
first assertion, and the second simply restates (5) and (6). 

4. THE PROOF 

The second assertion of the theorem, relation (lo), follows directly from 
(5) and (6). In the proof of the first, rr denotes a prior distribution with 
compact support in (0,oo); P denotes probability in the Bayesian model, 
where u has prior distribution rr and Y,, k = 1,2,. . . , are conditionally 
independent normally distributed random variables with mean 0 and vari- 
ance a2, given a; and E denotes expectation with respect to P. 

The first step in the proof is to observe that 

R,(c r) = E[L(t; a)] 

for stopping times t and h > 0. Thus, the problem of minimizing R,(t; T) 
with respect to rr is an optimal stopping problem. Such problems are 
admirably described in the monograph by Chow et al. [3]; and it follows 
from their Theorem 4.5.1’ that there is an optimal stopping time t = t( h, rr), 
one which minimizes R,,( t; a), for fixed s and h. 

The next step is to examine the loss function L,(n, a) = NK(n/N), 
defined in (7). Simple properties of K may be found from the derivatives 

and 

K’(x) = -(a/c~x)+(c,/x) + 1 

K”(x) = (ac/2~x)(l + 1/c2x)$(c~x) 

for x > 0. Thus, K is a convex function, since K”(x) > 0 for all x > 0. 
The minimum value of K may be found by solving the equation K’(x) = 0. 
The solution is x = 1, in view of the definition of a. Also, K(1) = 0 and 
K”(1) = (1 + c2)/2. 

For fixed ?r and h > 0, let t = t(h, m) denote the optimal stopping time. 
Then 

t/N -+ 1 in probability, as h --) 0. (13) 

To see this, let 7 denote the fully sequential procedure (4) with b as in (6) 
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and m 2 4. Then, by (6) (see also (10)) 

R,(t; 7r) I R&, 7r) = o(1) 

as h 4 0. Let u, > 0 denote the lower endpoint of the support of ~7. If 
6 > 0, then 

h2R,(t; 7r) 2 c2q+n( K(l - S), K(l + B)}P{ (t/N - l( > S} 

for all h > 0, so, P{ (t/N - 11 > S} --) 0 as h --f 0. This establishes (13), 
since S > 0 was arbitrary. 

Let a, and q denote the upper and lower endpoints of the support of n; 
let B, be the event, 

B, = {a, < h@/c < a,}, h > 0; 

and let 2K, = 2&(m) = min{K”(x): u;‘u~ I x I ~,-*a,‘}. Then P(B,) 
---, 1 as h + 0 by (13); and B, implies that K”(x) r 2K, for all x with 
Ix - 11 < it/N - 11, w.p.1 (P). so, 

R,(t; r) 2 Ko/ N(t/N - 1)2dP 
Bh 

= Koc2h-2 J ( u2 SU-~ - 1)2dP, 
Bh 

(14) 

where 

s = h2t/c2. 

Let 0=uV2; and let 9 denote the sigma-algebra generated by F, i = 
1 ,*.*, t. Then the conditional expectation of the integrand in (14) is 

E[C’(se - 1)219] 2 -Cov(e,l/e~.9)/E(e~~) 05) 

by a simple minimization (with respect to s). 
Now suppose that Q has a twice continuously differentiable density. Let p 

denote the (prior) density of 6; and let / denote the likelihood function 
given t and S: = y, say 

d(8) = 8(f-‘)‘2exp[-(t - i)ye/2] 

for B > 0. Then, letting C = C(t, y) denote a normalizing constant and 
letting 

e, = qep) = cl”ee(e)p(e) de 
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denote the conditional expectation of f3 given 9, the conditional covariance 
may be written 

-c0~(8,1/8~9) = -c($ - et) 5 - y e(e)p(e) de 
i 1 

where pr = p’/p, by a simple integration by parts. Now 8, -+ 0 in prob. by 
the Martingale Convergence Theorem; and E(p#B) + pr prob. for the 
same reason. So, 

(-t/2)c0v(e,i/ep) --) i (16) 

in prob. as h --, 0. Since this term is non-negative, t/N + 1 in prob., and 
P(B,) + 1 as h + 0, it follows from (14), (15), and (16), and Fatou’s 
Lemma that 

lim inf h+O&&; 4 2 x3. (17) 

To complete the proof, let E > 0 be given. Then there is a 6 > 1 for which 
K’(x) 2 (1 - E)K”(~) whenever l/S2 < x < a2; and there is a finite open 
cover of the support of 7~ by intervals whose upper and lower endpoints 
differ by a factor of at most S. Let k denote the number of intervals in this 
cover; let yi, i = 1,. . . , k, be a smooth partition of unity, subordinate to the 
cover; and let 

Then 

dTia yidr, i=l ,..., k. 

k 

77 = C a,v, 
i=l 

for some non-negative coefficient al,. . . , ak with unit sum. Now, by con- 
struction, 

2&(q) 2 (1 - &)K”(l), for i = l,..., k, 

and (17) is applicable to each q, i = 1,. . . , k, since each has a twice 
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continuously differentiable density. Now, 

inf,R,(t; 77) 2 i a,inf,R,(t; fl,); 
r=l 

for all h > 0, since R(t, m) is linear in 7~ for each fixed t; and 

lim inf, _ 0 inf,R,(t; 7r) 2 i 2ajK,(7r,) 2 (1 - &)K”(l) 
i=l 

by (17) applied to or,, i = 1,. . ., k. The theorem follows since E > 0 was 
arbitrary and K”(1) = (1 + c*)/2. 
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