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Abstract: A flexible manufacturing system (FMS) is an integrated system of computer numerically 
controlled (CNC) machine tools, each having an automatic tool interchange capability, and all connected 
by an automated material handling system. One or more computers control most real-time functions. 

Flexible manufacturing is realized to be an efficient alternative to conventional manufacturing that 
allows simultaneous machining of small to medium batches of a variety of part types. Parts can flow 
through the system in unit batch sizes. These systems typically machine five to forty different part types. 

In managing these systems, technological requirements indicate that several decisions must be made 
prior to system start-up. With these requirements in mind, previous research has defined a set of 
production planning problems, providing a conceptual framework to aid an FMS manager in setting up 
h is /her  system to enable efficient production. Several approaches have been taken to solve several of these 
problems and we describe those here. The main focus in this paper is on only two of these planning 
problems, the machine grouping and loading problems. In brief, the FMS machine grouping problem is to 
partition the m i machine tools of type i into g, groups to maximize expected production, subject to FMS 
technological and capacity constraints. Machines in a group are identically tooled and hence can perform 
the same operations during production. The FMS loading problem is to allocate operations and associated 
tooling of a selected set of part types among the machine groups, according to some appropriate (system 
dependent) loading objective, also subject to technological and capacity constraints. 

This paper ties some previous results together by suggesting a hierarchical approach to solve actual 
grouping and loading problems. Both problems are first defined at an aggregated level of detail and in the 
context of a queueing network model. At this level, much information is suppressed. However, the 
robustness of the model allows the application of the obtained theoretical results to a lower level in the 
hierarchy that considers all details of these problems. In addition, results obtained using the aggregate 
model can be used as input to the detailed models. Here, the grouping and loading problems are 
formulated in all detail as nonlinear integer programs, using all available and required information. The use 
of these models to solve realistic machine grouping and loading problems is then described. Finally, future 
research needs are suggested. 
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1. Introduction 

A flexible manufacturing system consists of a 
set of computer numerically controlled machine 
tools and auxiliary equipment (such as inspection, 
washing, and queueing stations) that are all con- 
nected by automated material handling. The main 
applications to date have been metal-cutting oper- 
ations, having mid-volume and batch production. 
Incoming castings for parts, either prismatic or 
rotational, are first fixtured and palletized, and 
then input onto the material handling system to be 
routed through the FMS for various machining, 
refixturing, and inspection operations. One or more 
computers, interconnected via some hierarchical 
control structure, coordinate most real-time func- 
tions. These include downloading the appropriate 
part programs to control the metal-cutting and 
metal-removing operations of the machine tools, 
as well as controlling part movements and cutting 
tool interchanges. Examples and descriptions of 
existing flexible systems can be found in Stecke 
(1977), Stecke and Solberg (1981b), Cavaill6 et al. 
(1981), Barash (1982), and Stecke and Browne 
(1985). 

Each machine tool has a limited-capacity tool 
magazine that stores all of the cutting tools re- 
quired to perform all operations that might be 
performed at that machine tool. The very quick, 
automated tool interchange capability implies that 
there is no need to consider a machine set-up time 
between consecutive operations to be performed at 
the same machine tool. In addition, a part cannot 
be routed to a particular machine tool unless it is 
one of the machine types capable of performing 
that part's next operation and all cutting tools 
necessary to perform that next operation have 
previously been loaded into the machine tool's tool 
magazine. 

These technological and computer requirements 
indicate a natural separation of the FMS manage- 
ment functions concerned with running the system 
into two distinct, but related, activities: first, the 
system has to b e '  set up' (cutting tools loaded . . . .  ) 
before production can start; then, the real-time, 
on-line control of part input, movement, and mac- 
hining can occur. This paper is concerned mainly 
with the first activity, that of setting up an FMS in 
a good way, to allow efficient manufacturing and 
to utilize the system's capacity. 

Managing an FMS can be more complicated 

than the management of a conventional manufac- 
turing system because there are many more 
manufacturing and routing options and other fac- 
tors to consider. The machine tools are quite 
versatile and several part types can be machined 
simultaneously. In addition, each individual part, 
even those of the same part type, can have several 
routes through the system. Parts do not have to be 
machined in batches. At the same time, the mac- 
hining process could and should be nearly as 
efficient as a well-balanced, automated transfer 
line. 

In its entirety, the FMS set-up problem is in- 
tractable. However, with efficient and flexible pro- 
duction in mind, the following FMS production 
planning problems have been defined (Stecke 
(1983a)): 

1. Part type selection: 
From a set of part types, each having production 
requirements, determine a subset for immediate 
and simultaneous processing. 

2. Machine grouping: 
Partition the machine tools of each machine type 
into machine groups such that each machine in a 
particular group is able to perform the same set of 
operations. 

3. Production ratios: 
Determine the relative ratios at which the part 
types selected in problem (1) will be produced. 

4. Resource allocation: 
Allocate the limited numbers of pallets and fix- 
tures of each fixture type among the selected part 
types. 

5. Loading: 
Allocate the operations and associated cutting tools 
of the selected set of part types among the mac- 
hine groups subject to the technological and capac- 
ity constraints of the FMS. 

Unlike the very infrequent set-up of a transfer 
line (usually only during the design and layout of 
the line), the above planning decisions can be 
made often (say every one to three weeks). Recon- 
figuring the machines and reloading the magazines 
might occur, for example, whenever the produc- 
tion requirements are complete for some part type. 
(This would free up space in a tool magazine for 
other cutting tools.) Reloading is also required 
when a rush order arrives that needs to be ex- 
pedited or sometimes when a part type is to begin 
production. (Space may need to be found in a tool 
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magazine somehow, perhaps by reallocating oper- 
ations and reshuffling tool assignments.) Cutters 
might also be changed around if the part type mix 
is changed and sometimes when a breakdown oc- 
curs. 

To begin the planning process, production re- 
quirements are given for several of the part types 
that are produced on the FMS. These require- 
ments are determined either from customer orders 
or forecasted demand. The usual case is that all 
required part types cannot be produced simulta- 
neously on the system. There is not enough space 
in the tool magazines to hold all required cutting 
tools. Hence the part types have to be partitioned 
into batches, each of which is machined one at a 
time. Then the first planning problem (1) is to 
select the part types to be produced in the next 
batch, over some time period. Whitney and Gaul 
(1984) suggest a heuristic approach to select the 
part types for each batch. When one batch of 
selected part types is complete, the next begins. 

One method of determining the relative produc- 
tion ratios (problems (3) and (4)) at which the part 
types should be on the system can use the mean 
value analysis (MVA) technique which analyzes a 
queueing network model. See Cavaill6 and Dubois 
(1982) and Suri and Hildebrant (1984). A multiple 
class model is used to provide the steady state 
expected production for each of several part types. 
A complimentary model to use to help answer the 
same questions ((3) and (4)) is a Petri net. See 
Dubois and Stecke (1983). A Petri net is a de- 
terministic model that can also analyze some tran- 
sient and steady state effects. Both models account 
for the congestion as parts compete for the same 
limited resources (i.e., machine tools). MVA as- 
sumes random operation" times while a Petri net 
requires deterministic processing times. Use of both 
models would provide bounds on the requirements 
specifications to operate the FMS efficiently. 

The remainder of this paper focuses on a differ- 
ent two of these planning problems, the machine 
grouping problem (2) and the loading problem (5), 
at several levels of detail. The grouping problem is 
a different sort of problem because in the past, 
even for non-automated systems, each operation 
was usually assigned to one and only one machine 
tool. However, pooling machines into groups al- 
lows alternative routes for parts and can increase 
all system performance measures. The approach to 
solve the loading problem was usually to attempt 

to achieve the best balance of workload (oper- 
ations to be performed) among the machine tools. 

However, an FMS is an integrated system of 
very versatile CNC machine tools. It seemed de- 
sirable to devise new loading and scheduling poli- 
cies that could utilize the available flexibilities to 
the system's advantage so that machine utilization, 
production, and overall efficiency could increase. 
With these goals in mind, various FMS loading 
objectives and control strategies were developed 
and applied to data from an existing FMS, with 
interesting results. As measured by the production 
rate and machine utilizations, several objectives 
performed much better than that of balancing the 
workload, despite the fact that they produced 
highly unbalanced systems (Stecke (1977), Stecke 
and Solberg (1981b)). 

Such results encouraged subsequent research by 
the author and others (for example, see Kusiak 
(1983)) to investigate FMS grouping and loading 
problems. Various approaches, models, results, and 
solutions are coordinated in this paper. In the 
following section, the hierarchy of problems, mod- 
els, and solutions is presented. First, aggregate 
grouping and loading problems are defined and 
some previous results are reviewed. Then, similar 
information is provided for detailed grouping and 
loading problems. The interface between theoreti- 
cal results and solutions at the aggregate level and 
the detailed level models is also given in Section 2. 
The use of the aggregate level model and results 
and the detailed level models to solve realistic 
grouping and loading problems is described in 
Section 3. Suggestions for future research and 
further refinements are provided in Section 4. 

2. The hierarchy 

2.1. Aggregate and detailed level models 

At an aggregate level, a single class closed 
queueing network (CQN) model of multiple server 
queues (machines) is used to represent an FMS. 
This model requires only aggregate input require- 
ments to output average values (mean production 
rate and mean queue lengths, for example). 

This model is useful for several reasons. First, it 
considers congestion resulting when different parts 
are competing for the same machine tool. Second, 
CQN models have been shown to be robust, even 
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when they require distributional assumptions and 
queue disciplines quite different from the actual 
system distributions and queue disciplines. (See, 
for example, Giammo (1976), Lipsky and Church 
(1977), Rose (1976), Solberg (1977), and Suri 
(1983).) The observed robustness of steady-state 
results is surprising also because the model re- 
quires that most information be aggregated into 
average processing times and relative visit frequen- 
cies of the parts for each machine tool (or machine 
group). Within the framework of a CQN, the 
measure used here to evaluate solutions to the 
grouping and loading problems is the expected 
production rate. 

Then at the detailed level, the FMS grouping 
and loading problems are formulated in all detail 
as nonlinear mixed integer programs. This model 
is useful for several reasons. First, it allows consid- 
eration of all available FMS information, such as 
the actual processing time, cutting tools required, 
and tool slots required for each operation, while 
considering all relevant constraints. Second, it can 
result in an optimum solution. Third, heuristic 
approaches can be developed that are based on the 
MIPs. The measure used to evaluate solutions is 
the production rate. 

At each level, suppose that it has already been 
decided which part types (and also their relative 
production ratios) shall be machined simulta- 
neously over the next production period. Pallets 
and fixtures of each fixture type have also been 
allocated among the part types to result in revised 
relative production ratios. 

2.2. Aggregate problems and results 

The information that is suppressed at the ag- 
gregate level includes the actual deterministic op- 
eration times, cutting tools and tool slots required, 
and machine types required. It is assumed at the 
aggregate level using the CQN model, without loss 
of generality for the purpose here, that there is a 
single part type and a single machine type. Group- 
ing and loading are performed within each mac- 
hine type. The generalizations will be described. 
The aggregate grouping and loading problems are 
now defined. 

Aggregate grouping problem. Partition the m mac- 
hine tools into g machine groups to maximize 
expected production. 

Machine tools in the same machine group are 
said to be pooled, are identically tooled, and are 
therefore physically capable of performing the 
same set of operations during real-time control. 
Pooling, in conjunction with real-time, on-line 
control, implies that a part whose next operation 
requires one of these pooled machine tools need 
find only one machine free. As a result, many 
regular system performance measures can only 
improve, relative to a system with no pooling. 
Also, pooling machines provides redundancy in 
the case of machine breakdowns. 

Aggregate loading problem. Allocate a total, fixed 
amount of work among a system of (grouped) 
machines to maximize expected production. 

The workload assigned by parts to each mac- 
hine group i is proportional to the relative 
frequency of visits by parts to group i multiplied 
by the average processing time of an operation 
performed by a machine tool in group i. These 
parameters are very easy to calculate. Then the 
performance measure using the CQN model, the 
expected production, Pr(g, n; S, X), is defined as 
a function of g (the number of groups); n (the 
number of parts or pallets); S (a partition of a m 
machine tools into g groups)=[s  1, s 2 . . . . .  sg], 
where s~ is the number of machine tools in group 
i; and X (an allocation of work among the ma- 
chine groups)= Ix 1, x 2 . . . . .  xu], where x~ is the 
workload assigned to group i. (See Stecke and 
Solberg (1981a) for additional details.) The opti- 
mal S (the best grouping) and the optimal X (the 
best loading) are determined. 

Some previous mathematical programming re- 
sults are used in conjunction with the CQN model 
to solve these aggregate problems. First, symmetric 
functions (Berge (1963)) and symmetric mathe- 
matical programming (Greenberg and Pierskalla 
(1970)) are applied to obtain some theoretical re- 
sults concerning the optimality of balancing 
workloads (see Stecke and Morin (1985)). Then, 
CAN-Q (Solberg (1980)), a computer program that 
uses an efficient algorithm of Buzen (1971) to 
solve product-form CQNs to obtain steady-state 
measures, is used to provide some theoretical and 
operational results. The aggregate solutions that 
can be used (Stecke and Solberg (1985)) are now 
summarized. 

Aggregate grouping solution. All possible partitions 
of m machine tools into g groups are ordered 
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according to expected production• In particular, 
(i) Fewer groups are better; i.e., pool as much 

as possible• 
(ii) If constraints define that g groups of m 

machine tools are required, then the more un- 
balanced configuration provides the larger maxi- 
mum expected production• 

The mathematical statements of these results 
are now provided. The machine groups are ordered 
according to increasing size, that is, s~ ~< s 2 ~< • • - 
~< sg. Define: 

maximum Pr( g, n ;[ s I . . . . .  s g ], X)  
X 

to be the maximum expected production from the 
par t icular  conf igured system, where X = 
[x I . . . . .  xg] and S =  [s 1 . . . . .  sg]. 

Then for any integers, i and k > 0, we have 
that: 

(1) maximum P r ( g , n ; [ s  1 . . . . .  s i + k ,  
X 

. . . .  

is strictly less than 

maximum Pr( g, n ;I s l . . . . .  s i . . . . .  s g ], X )  ; 
X 

(2) P r ( g , n ; [ s ,  . . . . .  s i + k  . . . . .  s g - k ] , S )  

is strictly greater than 

P r ( g , n ; [ s ,  . . . . .  s g ] , S ) ;  

(3) maximum P r ( g , n ; [ s a  . . . . .  sj . . . . .  s g ] , X )  
X 

is strictly greater than 

maximum P r ( g , n ; [ s  I . . . . .  s i +  k ,  
X 

' ] x )  • . .~ S j ,  . . . , S g  , , 

for s i + k = s i + x + k . . . . .  - s): 

Aggregate  loading solution. The solution is a set of 
optimal allocation ratios, x*l,x*z,. . . ,xg,* or the 
theoretically best ratios at which the g groups 
should be assigned work so as to maximize the 
expected production of the FMS. In particular, 

1. If all groups contain the same number of 
machine tools, then a balanced workload per mac- 
hine is optimal. 

2. For a system of unequally sized machine 
groups (the better configuration), unbalancing the 

assigned workload per machine is optimal• In ad- 
dition, if a perfect ' unbalance' is not possible, then 
it is better to overload the larger group than 
otherwise• 

2.3. Detai led problems and  solutions 

The detailed problems consider the actual FMS 
factors and constraints such as tool magazine 
capacity, integrality of the decision variables, 
processing times, and machine type requirements• 
The cutting tools and tool slots required for each 
operations need to be known in order to use the 
additional available magazine storage capacity that 
is obtained from avoiding the unnecessary duplica- 
tion of cutting tool assignments as well as the tool 
slot overlap of some larger cutting tools. The de- 
tailed problems are now defined. 

Detai led  grouping problem• Partition the m ma- 
chines into g groups subject to technological and 
capacity constraints of the FMS so as to maximize 
expected production• 

Detai led  loading problem.  Allocate the operations 
and associated cutting tools of a selected set of 
part  types among the machine groups subject to 
the technological and capacity constraints of the 
FMS and according to some loading objective. 

These problems are formulated in all detail as 
nonlinear mixed integer programs (Stecke (1983a)). 
The solution procedures are now outlined in brief. 

Detai led grouping solution. First, a nonlinear 
mixed integer problem can be solved to find the 
minimum number  of machine tools of each ma- 
chine type i, g~, that are required to perform all 
operations of the chosen set of part types. Then 
the aggregate grouping solution is used to de- 
termine immediately the partition of the m ma- 
chine tools into g~ groups that theoretically maxi- 
mizes expected production subject to the FMS 
constraints. The solution to the nonlinear MIP  
also provides a feasible loading of operations and 
tools on each machine tool. 

Detai led loading solution• The solution is an 
assignment of the operations and associated tools 
to machine groups. Table 1 suggests six possible 
loading objectives, each applicable to different 
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Table 1 
Loading objectives 

1. Balance the assigned machine processing times. 
2. Minimize the number  of movements from machine to ma- 

chine, or equivalently, maximize the number  of consecutive 
operations on each machine. 

3. Balance the workload per machine for a system of groups of 
pooled machines of equal sizes. 

4. Unbalance the workload per machine for a system of groups 
of pooled machines of unequal sizes. 

5. Fill the tool magazines as densely as possible. 
6. Maximize the number  of operation assignments. 

types of flexible manufacturing systems. The ap- 
plicability of each depends on the particular 
manufacturing situation and problem specifics. 

Each objective in Table 1 defines a nonlinear 
integer problem that has been mathematically for- 
mulated. Situations in which each might be ap- 
plicable are described in Section 3. 

Several methods have been proposed to solve 
the nonlinear integer problems. First, since the 
nonlinear terms are products of 0-1 integer vari- 
ables, one method suggested to solve these prob- 
lems exactly involves manually linearizing the non- 
linear terms. Several linearization methods were 
examined and one was chosen to apply to data 
from an existing FMS. Several problems were 
solved in reasonable time (minutes) using a stan- 
dard MIP code. The solutions demonstrate the 
value of considering tool duplication and tool slot 
overlap to allow additional magazine storage 
capacity despite the consequential increase in the 
size of the linear integer programs (Stecke (1983a)). 
The need was recognized for a specialized, 
self-contained, more efficient, computerized al- 
gorithm to quickly retool an FMS as often as was 
required. 

Subsequently, an efficient branch and bound 
approach was suggested for a subset of the loading 
objectives of Table 1, in particular, the balancing 
objectives, with or without pooling (Berrada and 
Stecke (1983)). The branch and bound algorithm 
can solve most FMS loading problems in a rea- 
sonable amount of CPU time. However, for large 
loading problems, heuristics should be used to find 
good solutions. Whitney and Gaul (1984) provide 
a heuristic approach for a balancing loading objec- 
tive, while Stecke and Talbot (1983) suggest heur- 
istics for several of the loading objectives. 

3. Implementation 

Some the queueing network results can be ap- 
plied directly to the detailed problems. Otherwise, 
an aggregate level CQN problem is solved to pro- 
vide some of the input for the detailed formu- 
lations. Since the grouping problem naturally pre- 
cedes the loading problem in practice (operations 
are assigned to groups of machines), it is solved 
first in the suggested hierarchical procedure. It 
may be possible to solve the grouping and loading 
problems together. Alternatively, iteration between 
the two problems may be required to converge to 
good working solutions. 

Recall that for the part types under considera- 
tion for simultaneous machining, the machine type, 
tools and tool sizes, and processing time required 
for each operation are known. 

3.1. Realistic grouping problems 

The procedure to follow to solve real FMS 
grouping problems is now provided. 

Step 1. For each machine type, determine both 
the total operation time requirement and an upper 
bound on the total number of tool slots required. 
The latter is found by summing the number of tool 
slots required by all cutting tools for all operations 
that require that machine type. This number is an 
upper bound because neither tool duplication nor 
tool overlap is accounted for yet. Dividing the 
latter by the number of slots in each tool mag- 
azine, and rounding the fraction up, gives an up- 
per bound on the number of machine tools of each 
type needed to perform all required operations. 

(a) If each upper bound on the number of 
required machines of each machine type equals the 
minimum number of required machines of each 
machine type (gi), go to Step 2. (For each machine 
type, the factors necessary to determine whether 
the upper bound is minimum include: the number 
of slots in the remainder of the above quotient, the 
amount of cutting tool duplication, and even the 
number of large tools.) 

(b) For any upper bound that might be larger 
than the minimum number of machines for a 
machine type, say i, the nonlinear formulation for 
grouping (see Stecke (1983a)) can be applied to 
find the minimum number of required machines 
(g,). 
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Step 2. The aggregate grouping solution im- 
mediately provides the optimal partition of the m i 
machine tools of type i into g~ groups that maxi- 
mizes expected production. 

An additional, useful output from the first step 
is a candidate loading, which is a feasible assign- 
ment of the operations and cutting tools among 
the Egi machine groups that conforms to the 
maximal pooling constraints that are also found. 

3. 2. Realistic loading problems 

The aggregate loading solutions, obtained 
through the use of the CQN model, relate only to 
the first, third, and fourth objectives of Table 1, 
the balancing or unbalancing objectives. These 
three objectives are discussed shortly. We also 
describe how the aggregate results can be used and 
we describe procedures to use to provide solutions 
at the aggregate level; both serve as input to the 
detailed formulations dictated by these three ob- 
jectives. The nonlinear integer problems derived 
from objectives 2, 5, and 6 are also discussed. 
First, various situations in which each loading 
objective is applicable are described. 

3.2.1. Applicability of each loading objective 
The aggregate grouping solution indicates that 

it is best to pool as much as possible. In addition, 
if maximum pooling is not technologically feasible, 
the best partition of m machines into g groups is 
known. However, if many different cutting tools 
are needed to manufacture the current set of oper- 
ations, then perhaps no pooling is possible. At the 
same time, there may be enough spare storage 
capacity in some tool magazines to allow several 
operations to be assigned to more than one mac- 
hine tool. We call such multiple operation assign- 
ments: partialpooling. The motivation for the fifth 
and sixth objectives is that via some partial pool- 
ing, they allow an increase in system flexibility 
(even when no pooling of machines is possible) by 
providing alternative routes for at least some of 
the parts through the FMS. 

The second objective, to minimize movements, 
is very different from the others. The idea here is 
for a particular part to remain at its current mac- 
hine as long as that machine tool can perform the 
next consecutive operation(s), rather than to move 
it for the purpose of better balancing the machine 

workloads. By remaining on the same machine, 
unneccessary travel time (to a next reqaired mac- 
hine) and waiting time (for the potentially busy 
next machine to become free) are saved. This 
objective can be seen to be applicable when travel 
time is long relative to processing time and also 
when the material handling system is a bottleneck. 
In addition, it has previously been demonstrated 
that minimizing movements proved better than 
balancing when both objectives were applied using 
data from an existing FMS. In this case, the 
transporters did not slow down the operation, 
travel time was short relative to operation time, 
and often travel could occur while the next mac- 
hine was completing its current operation. Mini- 
mizing movements was shown to be superior even 
though the resultant system was highly unbalanced 
and there was no pooling (Stecke (1977)). In gen- 
eral, additional system performance benefits can 
also be realized when the objective of minimizing 
movements is applied in conjunction with pooling 
objectives. 

3.2.2. Relationship between the aggregate and de- 
tailed loading problems 

There is a relationship between the two aggre- 
gate and detailed levels for both the balancing 
objectives, 1 and 3, and the unbalancing objective, 
4. If the aggregate grouping solution is a balanced 
configuration of groups, then a balanced loading 
per machine is also optimal. Then the loading 
problem is solved by using the nonlinear formula- 
tion associated with objective 1 or 3. This nonlin- 
ear integer formulation for balancing can be solved 
either by linearizing (see Stecke (1983a)) or by 
branch and bound (see Berrada and Stecke (1983)) 
for optimal solution methods. For very large prob- 
lems, heuristics can be used (see Stecke and Talbot 
(1983) and Whitney and Gaul (1984)). 

If the aggregate grouping solution is an unbal- 
anced configuration, then the optimal allocation 
ratios, x*, must be determined before the unbal- 
ancing loading objective 4 can be applied. The 
determination of the optimal allocation ratios is 
now described. To simplify notation, it can be 
assumed without loss of generality that there is 
only one machine type, since the algorithm is 
applied identically for each machine type. Simi- 
larly, it is assumed without loss of generality that 
there are n identical parts or pallets in the system. 
If n has not yet been determined, the algorithm 
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can be applied once, for a specified, relevant range 
of n, to also help determine the appropriate num- 
ber of pallets that should be in the system. In 
general, the problem is to determine the minimum 
number of pallets (in-process inventory) required 
to maintain desired production ratios. See 
Shanthikumar and Stecke (1986). 

In the following, since the configuration of 
machine tools into groups is unbalanced, s i 4: s j, 
for some i and j.  

Algorithm to determine the optimal allocation ratios 

1. Order the g machine groups so that s I ~< s 2 
~< . . -  ~<sg. 

2. A balanced allocation is X = [s 1, s 2 . . . . .  sg]. 
For each i, the 'direction' (either less than, greater 
than, or equal to si) of each optimal allocation 
ratio, x*, is known (Stecke and Solberg (1985)). 
Then, if the middle machine tool (m/2 )  is in 
group i, a reasonable initial starting point in the 
search for the optimal ratios is, for some e > 0, 

Ix 1 . . . . .  x g ] =  [s 1 - ( 1  - i ) e  . . . . .  s , _ , - e ,  s,, 

s,+ a + e , s i + z + 2 e  . . . . .  s g + ( g - i ) e ] .  

3. Fix g - 2  of the x k. Vary x i and xj, i < j .  
The production function, Pr(g, n; S, X), is 
evaluated along the hyperplane 

g 

x i=  y'  x k -  x j=  K -  xj,  
k = l  

k4=i,j 

This indicates both a direction and magnitude of a 
possible change to use in the search for the opti- 
mal x,'s. This sensitivity information is used t o  
choose a different g - 2 of the x k to fix. Return to 
Step 3. Continue to search along different hy- 
perplanes until the sensitivity analysis indicates 
that the optimum allocation ratios, x*, have been 
determined. 

Since the production function, Pr(g, n; S, X), 
monotonically increases and then decreases as a 
function of X, it is possible to develop a computer 
program to search for the unique, optimal al- 
location ratios. See Stecke and Solberg (1981a, 
1985) and Stecke (1983b) for information on such 

properties of the production function. 

3.2.3. Aggregate results as input for the detailed 
loading models 

When the optimal allocation ratios, x*, are 
determined, they are used in the nonlinear objec- 
tive function formulated from the fourth loading 
objective, unbalancing. Each loading objective in 
Table 1 gives rise to a different nonlinear integer 
program. The mathematical formulations, given in 
Stecke (1983a), can be solved either using an avail- 
able mixed integer code (after linearizing) or di- 
rectly, which yields the optimal allocation of oper- 
ations and cutting tools among the machine groups 
of the flexible manufacturing system. If the ap- 
propriate loading objective is balancing, then the 
branch and bound algorithm (Berrada and Stecke 
(1983)) can be used. 

for a range of x i and xj, such that x i / s  i ~ [a, 1) 
and x J s j ~ ( k -  a, k -  11, for some fixed a < 1 
(i.e., a = 0.7). The maximum expected production 
on the hyperplane is found. Many production 
functions can be evaluated in seconds of CPU 
time by using a computer program that is a varia- 
tion of Solberg's CAN-Q (1980). (A listing of the 
adapted program can be found in Stecke and 
Solberg (1981a), which also provides several exam- 
ples that demonstrate the use of the program.) 

4. The optimal allocation ratios that produce 
the maximum expected production have been 
found for the particular hyperplane. The computer 
program also provides sensitivity information on 
the change in the expected production that would 
result from a change in a workload parameter. 

4. Future research 

At present, the Algorithm to find the optimal 
allocation ratios, which is described in Section 
3.2.2, is implemented by first running the com- 
puter program and then using the output to de- 
termine which variables to fix and vary subse- 
quently. However, it would be relatively straight- 
forward to close the loop and to automatically 
find these optimal ratios, by imbedding an ap- 
propriate search strategy into the closed queueing 
network program. 

The solution methodologies reported here are 
mostly optimum-producing. The nonlinear integer 
problems have been solved for real grouping and 
loading problems, defined from real data, on a 
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large computer system (CDC 6600). A standard 
mixed integer code was used. However, real-time 
FMS control requires very quick solutions to these 
planning problems. Much companies do not have 
a mixed integer code available. Also, these prob- 
lems would be solved often enough to warrent a 
special code that is self contained. Such a code 
does exist for a balancing loading objective, and is 
needed for the other loading objectives. 

Future research needs include the development 
of efficient heuristic algorithms that provide good 
solutions to FMS grouping and loading problems. 
This is especially true if larger flexible system are 
to be developed having more part numbers intro- 
duced. Some heuristics development has taken 
place, mostly for the balancing objective of the 
FMS loading problem. All of these procedures 
should be executable on minicomputers that are 
now available in essentially real-time. 

Additional research is also required to de- 
termine efficient means to solve a// of the plan- 
ning problems. Much of the software that exists to 
run these highly automated systems is not very 
good and is not very flexible. 
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