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ABSTRACT 

Boyd, J.P. and Moore, D.W., 1986. Summability methods for Hermite functions. Dyn. Atmos. 
Oceans, 10: 51-62. 

Many problems in equatorial oceanography can be analytically solved via series of 
Hermite functions, but unfortunately these expansions converge very poorly. In this note, we 
describe two simple tricks for accurately evaluating such series. The first, due to Moore, is to 
apply numerical weighting factors to the last four terms in the series. This is a special case of 
a more powerful technique known as the 'Euler-Abel '  method which is almost as easy to 
apply. Our numerical examples show that both methods are very effective. The Euler-Abel 
method gives an error which decreases exponentially fast as N, the number of terms retained 
in the truncated series, increases. Moore's method only reduced the error by a factor of 
0 ( 1 / N  2) in comparison to the original series, but this is more than enough for most practical 
purposes, and this trick is simpler and distributes the error more uniformly in latitude than 
the Euler-Abel transformation. A conservative rule-of-thumb is that both methods give errors 
too small to observe on a graph on the range l Y I ~< (1/3)  (2N + 1)1/2 where N is the number 
of terms in the Hermite series. 

1. INTRODUCTION 

T h e  n o r m a l  m o d e s  o f  a n  e q u a t o r i a l  o c e a n  c a n  b e  d e s c r i b e d  as  s u m s  o f  o n e  

o r  t w o  H e r m i t e  f u n c t i o n s  ( M o o r e  a n d  P h i l a n d e r ,  1976),  so it is h a r d l y  

s u r p r i s i n g  t h a t  i n f i n i t e  se r ies  o f  H e r m i t e  f u n c t i o n s  h a v e  p l a y e d  a m a j o r  ro l e  

in  a n a l y t i c a l  t h e o r i e s  o f  l o w - l a t i t u d e  d y n a m i c s .  M a n y  e x a m p l e s  a r e  g i v e n  in 

t h e  f o r t h c o m i n g  m o n o g r a p h  ( B o y d ,  1986).  

U n f o r t u n a t e l y ,  a s e r i o u s  p r o b l e m  w i t h  H e r m i t e  se r ies  is t h a t  w h e n e v e r  

e i t h e r  t he  f o r c i n g  d e c a y s  a l g e b r a i c a l l y  w i t h  l a t i t u d e  o r  w h e n  t h e r e  a r e  z o n a l  
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boundaries, the coefficients { a ,  } of the Hermite series decrease algebraically 
with n. Summability methods to improve the slow convergence of Hermite 
series are therefore helpful and sometimes essential in obtaining useful 
results without including hundreds or even thousands of terms. 

Moore (1968) had great success with an ' i terated averaging' process that 
we shall henceforth refer to simply as 'Moore 's  sum method'.  Unfortunately,  
his technique is not described even in his thesis, so this note is its first 
appearance in print. Nonetheless, his device has been used by a number of 
others who learned the trick through word of mouth. 

Moore's sum method has the advantage of great simplicity since it alters 
only the last four terms of the truncated series, but this implies the 
disadvantage that the improved sequence of partial sums still decreases only 
algebraically with n. For purposes of comparison, it is therefore useful to 
discuss a more complicated procedure, the 'Euler -Abel '  method, which in 
principle converges exponentially with N, where N is the highest term 
retained in the truncated series. 

In the rest of this note, we briefly describe these two methods in the next 
two sections, compare their numerical effectiveness for four representative 
Hermite series in section 4, explain the methods'  limitations, and summarize 
our conclusions. 

MOORE'S  SUM M E T H O D :  I T E R A T E D  A V E R A G I N G  

The authors have not been able to find any references to Moore's 
algorithm in the precise form in which he used it, but the basic idea is 
classical, and was stated succinctly by Morse and Feshbach (1953) in a 
discussion of the asymptotic series for the exponential integral. The key 
observation is that this expansion is an alternating series, i.e., successive 
terms are of opposite sign. An elementary theorem (Kaplan, 1952) states that 
the error in truncating an alternating series after N terms is bounded in 
absolute value by the first neglected term, JAn+ 1 ]. Another  way of stating 
the same theorem is that if we define the N-th partial sum via 

N 

Sx -= ~ A,, (2.1) 
n - 0  

then successive partial sums will alternately overshoot and undershoot the 
sum of the infinite series. It follows that a better sequence of approximations 
to the infinite sum can be obtained by the averaged partial sums T h defined 
by 

T u =--- ( S N _  1 + S N ) / 2  = SN_ I + ( 1 / 2 ) A  N ( 2 . 2 )  
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This averaging trick is useful for a wide range of alternating series. For 
series of the form 

A n = ( - 1 ) n + l [ 1 / n  2 + O(1/n3)]  (2.3) 

one can easily show with a pocket calculator that for large N 

I S -  SN] - ( 1 / 2 ) [ 1 / N  2] + O ( 1 / U  3) (2.4) 

so that weighting the last retained term in the series, as done in the sequence 
T N, eliminates the dominant  error term so that 

I S -  TuJ -- O ( 1 / U  3) (2.5) 

Thus, applying the averaging operation has increased the algebraic order of 
convergence by one so that the error is O ( 1 / N  3) instead of O(1 /N2) .  

Morse and Feshbach (1953) discussed only a single application of this 
idea. If the sequence T N is itself alternating, however, then further improve- 
ment to O ( 1 / N  4) can be obtained by averaging the averaged partial sums 
T N, i.e., by approximating the infinite sum S by the new sequence V N 
(TN-1 + TN) /2 .  Moore's algorithm iterates the simple averaging four times 
to obtain 

f ( y )  • M N (2.6) 

where 
N-4 

15 11 a a, t 
M N - -  Y'~ a , ~ n ( Y ) + y 6 a N - 3 ~ N - , ( Y ) +  ,6 N - 2 e N - 2 , Y )  

n=O 

+ (5/16)  a N_ , ~ N - ,  ( Y ) + (1/16)  a N ~N ( Y ) (2.7) 

where ~bn(y ) is the n-th normalized Hermite function. When the series 
contains only Hermite functions of even or odd subscript, which is often the 
case, then the weight factors are applied to the last four nan-zero terms of 
the Hermite series. 

When applied to a series like a n = ( - -1)n+l /n2 ,  the four-times-averaged 
sequence of partial sums has an error O(1/N6) ,  i.e., we have reduced the 
error by O ( I / N  4) in comparison to the original sum. Unfortunately,  the 
coefficients a n of most Hermite expansions have asymptotic expansions in 
inverse powers of the square root of n, so Moore's method normally 
improves the convergence of a Hermite series by O(1/N2) .  This is enough, 
however, to give quite impressive results as shown in section 5. 

EULER-ABEL SUMMATION METHOD 

It is possible to obtain a summability procedure which makes the error 
decrease exponentially rather than algebraically with N by using an ap- 
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proximation which weights all the terms of the truncated series, not just  the 
last four. This trick is actually a combinat ion of two separate ideas. 

The first was popularized by Abel, who pointed out that even if the series 
for an infinite sum S converges s lowly- -o r  perhaps does not converge at all 
- - t h e  series for the 'extended sum' 

S ( r ) -  ~_~ r"A, (3.1) 
n = 0  

must converge like a geometric series for all ]r I <  1 provided that the 
coefficients A,  are bounded by some algebraic function of n. If the limit 
exists, then Abel showed that S is the limit of S(r) as r ~ 1. 

As stated in mathematics texts like Hardy  (1949), for example, Abel 
summation is a useful theoretical idea of no practical usefulness whatsoever. 
It becomes valuable, however, as soon as we recognize that if the coefficients 
A,  are alternating, then the algebraic decrease of the coefficients with n 
implies that S(r) is singular at r = - 1 - - b u t  the sum we want is the value of 
S for the same absolute value of r, but  the opposite sign. To compute  S(1), 
we can therefore use any one of a number  of numerical techniques for 
evaluating a function on and beyond its circle of convergence. One possibil- 
ity is to form Pade approximants in r (Bender and Orszag, 1978) and then 
evaluate them at r = 1. This should work very well and give exponential 
convergence in N. 

A simpler procedure, however, is to use Euler's transformation, which is a 
change of variable that replaces r by a new variable ~ such that the 
singularity is moved to infinity in the ~-plane. The coefficients of the 
transformed series can be given in symbolic form as follows. Define the 
averaging operator  via 

6A, - (A,  + A , + l ) / 2  (3.2) 

(3.3) 
and the new variable ~ to be 

= 2 r / ( 1  + r)  (3.4) 

Then the sum S(r) can be expressed as a power series in ~ via (6 ° A 0 - A0) 

S ( r ) =  [ ( 2 - ~ ) / 2 ]  Y'~ [6nA0]~" (3.5) 
n = 0  

which at r = 1 - - t h e  only value we are actually interested in- -g ives  

S = (1 /2 )  ~ 8"A 0 (3.7) 
n = 0  
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Since the radius of convergence of (3.5) in ~" is > 1, it follows that (3.7) must 
converge like a geometric series. This in turn implies that the errors in the 
Euler partial sums defined by 

N 

eN- (i/2) E 8"A0 (3.8) 
n = 0  

must decrease exponentially with N. 
The coefficients in (3.8) can be easily computed by recursion. Initialize by 

setting 

a ,  = A n n = 0, 1 . . . .  N (3.9) 

and then successively compute 

j = 1 , 2  . . . .  N 

fin = (1/2)(c~n + an+l)  n = 0, 1 , . . .  N - j  (3.10) 

8JAo = fio (3.11) 

c% =/~n n = 0, 1 . . . .  N - j  (3.12) 

Proof of these results (with different notation) is given in Morse and 
Feshbach (1953). 

The interested reader can easily show that E 3 is identical with Moore's 
sum method applied to the same four terms. This in turn implies that 
regardless of how many terms are kept in the series, Moore's trick is identical 
with Euler's method applied to the sum ( S - S N _ 4 ) .  From the opposite 
perspective, it seems likely, although we have not bothered with a rigorous 
proof, that the Abel -Euler  method is equivalent to the averaging method 
when the number  of iterations of the averaging is equal to the total number  
of terms retained in the truncated series. Thus, Moore's algorithm and the 
Euler-Abel  procedure are very closely related. 

In many applications, the Hermite series contain only terms of even 
degree (for functions symmetric about the equator) or only odd degree. In 
such cases, we set 

A n - a2n~2n(Y ) [even] or A~ - a2n+l~2n+l(y ) [odd] (3.13) 

and apply the Euler-Abel  method as described above. 
The constant function f ( y ) - 1  is a useful example because its Abel 

extension (3.1) is 

f (  y ; r  ) = [2/(1  + r )] 1/Ze-(1/2)y2[(1-r)/(1 +r)] (3.14) 

(Cane and Sarachik, 1981). Applying Euler's transformation gives 
c 

f ( y ; g [ r l ) =  21/2e-('/2)Y2{(1- ~'/21'/2e (1/2>y2~ } (3.15) 



56 

The coefficients { a n } of f ( y ) =  1 decrease a s  rt - 1 / 4 .  One can show via the 
asymptotic expansions of the normalized Hermite functions (Boyd, 1986) 
that ~b2n(0 ) decreases a s  n - 1 / 4  also, so the expected accuracy of the ordinary 
partial sum S u is O ( N - 1 / 2 ) .  In startling contrast, the Euler sum of f ( y )  is 
simply the power series expansion of (3.15) evaluated for ~" = 1. Since the 
only singularity of f l y ; f )  is at ~" = 2, it follows that, ignoring algebraic 
factors in N, each term in the series in ~" will be only half as large as its 
predecessor. Taking 35 terms of the Euler series will give a 10 decimal place 
accuracy for y = 0! 

4. N U M E R I C A L  E X A M P L E S  

Table I lists the terms in the Hermite series for f ( y ) =  1 at y = 1 along 
with the terms of the corresponding Euler series and the errors in the partial 
sums S u of the original series, the partial s u m s  E N of the Euler series, and 
the sequence M N obtained via Moore's approximation. (Note that since this 

T A B L E  I 

Series  coef f i c ien t s  a n d  er rors  for  t he  H e r m i t e  e x p a n s i o n  o f  f ( y ) = - 1  for  y = 1. T h e  s e c o n d  

c o l u m n  g ives  the  t e r m s  of  the  d i rec t  s u m ,  A N = a2n~2n(1  ). T h e  th i rd  c o l u m n  g ives  the  

coe f f i c i en t s  o f  the  Eule r  t r a n s f o r m e d  series  ( w i t h o u t  the  overa l l  mu l t i p l i ca t i ve  fac to r  o f  1 / 2 ) .  

T h e  four th ,  f if th,  a n d  s ix th  c o l u m n s  give the  a b s o l u t e  e r rors  in the  pa r t i a l  s u m s  S x ,  the  Eule r  

pa r t i a l  sums  EN, a n d  M o o r e ' s  a p p r o x i m a t i o n s  M N. 

n A~ 3"A o e s e E E M 

0 0.8578 0 .8578 0 .1422 0.5711 

1 0 .4289 0.6433 - 0 .2866 0.2495 

2 - 0.5361 0 .2949 0.2495 0 .1020 

3 0 .4110 0 .1184 - 0 .1616 0 .0428 

4 - 0.2301 0 .0482 0.0685 0 .0188 

5 0 .0574 0.0206 0.0111 0.0085 

6 0.0817 0.0091 - 0 .0706 0 .0039 

7 - 0 .1793 0 .0042 0.1087 0 .0018 

8 0 .2362 0 .0019 - 0 .1274 8 .55E-4  

9 - 0 .2573 9 .00E-4  0 .1299 4 .05E-4  

10 0 .2496 4 .24E-4  - 0 .1197 1 .92E-4  

1 1  - 0.2202 2 .01E-4  0.1005 9.18E-5 

12 0 .1762 9.61E-5 - 0 .0756 4 .38E-5 

1 3  - 0.1236 4 .60E-5 0 .0480 2.08E-5 

14 0 .0679 2 .21E-5 - 0 .0199 9 .70E-6  

15 - 0 .0132 1.07E-5 - 0 .0067 4.37 E-6 

16 - 0.0371 5.15 E-6 0.0305 1 .79E-6 

17 0.0809 2 .50E-6 - 0 .0505 5 .45E-7 

18 - 0.1165 1 .21E-6 0.0661 - 6 .25E-8 

0.0428 

- 0 .0053 

0 .0017 

- 7 .33E-4  

3 .58E-4  

- 1 . 8 1  E-4 

8.36E-5 

- 3 .06E-5 

- 1.84E-6 

1.81E-5 

- 2.84E-5 

3.08E-5 

- 3 .26E-5 

2 .96E-5 

- 2 .81E-5 

2.32E-5 
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function is symmetric about the equator, S N includes all Hermite functions 
up to and including $ 2 N ( Y ) ' )  Because we have moved away from the 
equator, the original series is not strictly alternating, but the sign does 
change every one or two terms, and both methods give tremendous improve- 
ment over direct summation. As expected, the terms of the Euler series are 
decreasing like N-  t/2 (1/2) U. 

The lowest Moore approximation, M3, is equal to E 3, but as N increases, 
the Moore terms oscillate about the correct answer, which explains why 
additional iterations of the averaging process, as embodied in the Abel-Euler 
methods, improve the convergence still further for large N. The qualifier 
'large N '  has to be added because Moore's method gives smaller errors than 
the Euler method for 3 < N < 12. The relationship between the two summa- 
tion methods is reminiscent of Aesop's fable about the race between the 
tortoise and the hare: the averaging method starts out faster but is always 
overtaken in the end by the Euler-Abel algorithm as N---> ~ .  The slow 
decrease of the error for Moore's algorithm for N >  12 shows that the 
expected asymptotic behavior does eventually occur. 

We also examined the known Hermite series of the steady zonal current u, 
latitudinal flow u, and pressure p of the so-called 'Yoshida' jet (Yoshida, 
1959; Moore and Philander, 1977). These three fields decrease for large l Y] 
as 1/y 4, 1/7, and l / y  2, respectively, and one can prove that their Hermite 
coefficients a,  decrease algebraically with n a s  / , / - 9 / 4 ,  0 ( / 7  3 / 4 ) ~  and 
O(n-W4), respectively (Boyd, 1984). Figure 1 shows that for u, which decays 
most rapidly for l yl ,  it matters little whether a summability method is even 
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Fig. 1. The errors in the partial sums $20 (dotted line), Euler-Abel partial sums E20 (dashed 
line), and Moore's sequence M 20 (solid line) for the zonal velocity u of the steady component 
of the 'Yoshida jet'. (Note that because u(y) is symmetric about the equator, only the even 
Hermite terms up to and including +40 (Y) are retained in the truncation.) 
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used. Both the Moore and Abel -Euler  algorithms do give much better 
accuracy; for small l Y I, the error with N = 20 is less than the thickness of 
the curve for both. The ordinary partial sum $40, however, has an error of 
< 0.00005 and taking just the lowest term (that proportional to q~0[Y]) in 
fact gives an absolute error which is only 7% of the maximum value of the 
function. 

One striking feature of the graph is that the error of the Abel -Eule r  
method grows very rapidly for l Yl > 4. We can understand similar behavior 
for the Euler sums of f ( y )=  1 (not illustrated) by looking at (3.15): the 
Euler transformation involves a factor of exp[(1/2)y2~]. As l Yl increases, it 
is clear that more and more terms of the power series in ~ '--more terms in 
the Euler-transformed series for f ( y ) - - a r e  needed to obtain an accurate 
representation of the function. 

This flaw of non-uniformity in y, however, is actually a property of all 
Hermite expansions including both the original series and the Moore se- 
quence formed from it. The reason is that the n-th Hermite function decays 
exponentially (like exp [ - ( 1 / 2 ) y 2 ] )  beyond the ' turning points' given by 
l Y, I = (2n + 1) 1/2. It follows that if we truncate the series after N terms and 

then consider a value of y outside the turning points of all the modes 
included in the sum, we cannot possibly obtain a good approximation to a 
function which is only slowly decreasing with l Y I. Although barely visible in 
Fig. 1, the ripples in the error curves for the partial sums and for Moore's 
sequence grow with y, too, but at a slower rate than for the Euler error. 

The price that must be paid for the greater uniformity in y is poorer 
accuracy for small y. Figure 2 compares the errors for N = 20 (terms 
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Fig. 2. The errors in 820 (dotted line), E20 (dashed line), and M20 (solid line) for the 
north-south steady flow in the Yoshida jet for y ~< 6. 
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Fig. 3. The errors in E20 (dashed line) and M20 (solidline) for the north-south velocity v as 
in Fig. 2, but on the smaller interval y ~< 4. 

through ~b4l(Y)) on the interval ]y] ~< 6 for the nor th -sou th  velocity v, 
which is the most slowly converging series of Yoshida's solution. Figure 3 
compares just the two summability methods on the smaller interval ] y I ~< 4. 
The first graph shows that the ordinary partial sums give an error which is 
quite uniformly distributed in y over the interval s h o w n - - b u t  the approxi- 
mation is poor. The two summability methods, as shown in Fig. 3, give a 
superb approximation for small y (note the change in error scale from Fig. 
2), but the errors grow rapidly for large y. Moore's method does not give the 
exponential divergence with J y]  which is so evident for the Euler sum in Fig. 
2; the growth is slower for Moore's trick. It also does not give the exponen- 
tial accuracy of the Euler algorithm; Fig. 3 shows that the Euler approxima- 
tion is indistinguishable from the exact answer to within the thickness of the 
curve over most of the interval whereas the error in the Moore sequence is 
noticeable for { y] as small as 1.5, and has become very large on the scale of 
Fig. 3 for y = 4. 

5. LIMITATIONS OF SUMMABILITY METHODS AND ALTERNATIVES 

Both Moore's sequence and the Euler sum work best for strictly alternat- 
ing series; when applied to a series whose terms are all positive, they 
invariably increase rather than decrease the error. However, as noted by 
Wimp (1981): 'Only  weak methods (Cesaro summability, for example [which 
gives an error no better than O ( 1 / N )  for any sum] are regular for large 
classes of sequences'. In other words, no useful summability method works 
for all possible sums. However, Moore's method (and therefore its generali- 
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zation, the Euler-Abel transformation) have never been known to fail in 
equatorial oceanography. This is as much as one can ever hope to say. 

The acid test, of course, is to evaluate the same sum with different 
truncations and to accept the result only when the two closely agree. This is 
not only necessary because of the remote possibility that the summation 
method may not improve convergence, but also because Hermite expansions 
--however evaluated--do have this inherent nonuniformity in y. It is also 
impossible to predict in advance exactly what value of N is the minimum 
needed to give acceptable accuracy, so comparison of results for different N 
is essential. 

Anderson (1973) discussed an alternative to both summability methods: 
taking a running mean in y. The reason that this trick--which operates in 
coordinate space rather than in the space of Hermite coefficients--is also 
successful is evident in Fig. 2: the error in the partial sums is an oscillatory 
function in y with a wavenumber approximately equal to (2N + 1) 1/2, which 
is the local wavenumber of the N-th Hermite function. The running mean 
therefore damps out these wiggles in y quite effectively. Another perspective 
is provided by noting that a running mean or any form of artificial diffusion 
will most strongly damp the highest coefficients in a Fourier series of 
Hermite expansion while leaving the lower coefficients almost unchanged. 
Moore's method, which reduces the amplitude of the coefficients of just the 
four Hermite functions of highest degree, is clearly something along the 
same line. 

In general, however, the summability methods are better because the 
theory behind them is more rigorous and they do not introduce an artificial 
damping or smoothing, but instead are simply a short-cut to the e x a c t  sum 
of the infinite series. Since viscosity is included in most numerical models of 
the ocean, however, it is important to note that it will perform much the 
same function as the non-dissipative algorithms discussed here: eliminating 
the small scale ripples. 

6. CONCLUSIONS 

In this note, we have compared two summability methods for obtaining 
smooth, accurate solutions from slowly converging Hermite series. Moore's 
method, which weights the last four terms of the truncated series, is simple 
to apply and very effective. For both methods (and for the partial sums of 
the original series, too), the error grows rapidly with [y I, and both proce- 
dures give useless results when ]y] is too large in comparison to N, the 
number of Hermite terms retained in the truncation. The second advantage 
of Moore's method is that its error grows much more slowly with y than that 
for the Abel-Euler method. 
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The alternative procedure, which is based upon applying Euler's transfor- 
mation of a series to the Abel extension of the original sum, is more 
complicated, but the coefficients of the new series can be easily calculated 
through a double DO loop as described in section 3. The strength of the 
Abel -Euler  method is that the error decreases exponentially rather than 
algebraically fast with N as N increases for fixed y. The weakness is that 
Moore's method is more uniform in y. 

With the cautions noted in section 5 - - o n e  should always reevaluate the 
sum with a different number  of terms and c o m p a r e - - w e  offer an approxi- 
mate rule-of-thumb. As noted earlier, the Hermite functions become ex- 
ponential rather than oscillatory for l Y] >/(2N + 1) 1/2. This gives an upper 
bound on the interval over which the partial sum up to ~x will give even a 
crude approximation. For N = 40, the largest Hermite function included in 
the sums in Table I and Fig. 1, (2N + 1) 1/2 = 9. Both summation methods 
are accurate to within 15% (Euler) and 1% (Moore) for ]yl~< 6, for the 
examples shown in Figs. 1-3. Because of the nonuniformity in y, however, 
the summation methods are at least an order-of-magnitude more accurate on 
the smaller interval l Y[ ~< (1/3)  (2N + 1) 1/2, especially the Euler procedure. 
We therefore express our advice as a pair of rules: (6.1) for optimists and 
(6.2) for the more cautious. 

RULE-OF-THUMB: The Moore and Euler sums of the Hermite series up 
to and including I~N will be accurate for the range of y bounded by 

(1) ]y] ~< ( 2 / 3 ) ( 2 N  + 1) 1/2 [errors of a few per cent] (6.1) 

(2) ]y] <~(1/3)(2N+1) 1/2 [errors invisible on a graph] (6.2) 

even for sums whose coefficients are decreasing as small negative powers of 
n. 

We warn that we have not tested these guidelines for very large N. Since 
Moore's method gives fewer decimal places, but is at least crudely accurate 
for a wider range of y than Euler's method, one should probably use 
Moore's technique with (6.1) and the Euler algorithm with (6.2) or whenever 
high accuracy is more important  than graphing a large range in latitude. 

For both methods, N must increase as roughly the square of 1)'1 to 
maintain a good approximation at that latitude. Nonetheless, these summa- 
bility methods make it possible, using only a moderate number of terms, to 
accurately evaluate analytical solutions for equatorial flows even when the 
original Hermite series converges only conditionally. 
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