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Decision tables offer several advantages over other real-time muhiparameter, data processing techniques. These include very high 
collection rates, minimum number of computer instructions, rates independent of the number of conditions applied per parameter, 
ease of adding or removing conditions during a session, and simplicity of implementation. Decisions table processing is important in 
muhiparameter nuclear spectroscopy, coincidence experiments, multiparameter pulse processing (HgI 2 resolution enhancement, pulse 
discrimination, timing spectroscopy), and other applications can be easily implemented. 

1. Introduction 

Multiparameter collection in real-time presents users 
with a large number of problems. These include slow 
collection rates, restrictions on the condition sets, in- 
flexibility of conditions once set, and transportability 
difficulties, to name a few. Collections using decision 
table techniques solve most of these problems and allow 
new applications to be tried in real time. During at- 
tempts to improve the performance of mercuric iodide 
used as gamma-ray spectrometers at E G & G  Energy 
Measurements,  Inc. [1], the need to do on-line, real time 
correction of two-parameter data rekindles the interest 
in decision tables. In previous work [2] the problem of 
collecting g a m m a - g a m m a  coincidence data on a small 
computer  was tackled. It was found that in order to 
allow moderate speed collections the amount  of 
processing time spent handling the data had to be 
reduced. To do this the standard serial processing tech- 
niques were replaced with a parallel approach that 
involved the use of decision tables. 

2. Decision table concept 

The normal method of complex data processing in a 
computer  program is to check the parameters against 
the determining conditions one at a time; that is, test if 
the parameters meet the conditions for process one; if 
not, try for process two; etc. This is called a decision 
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tree and is a serial process. Many problems imple- 
mented this way can be implemented in a parallel 
fashion called a decision table. This method decides 
which process to execute in one (or nearly one) oper- 
ation. To do this a table is created, where each location 
contains an action to be taken in case this combination 
of parameter values occurs. For instance, this action 
may be a subroutine jump. Selection of one of the 
actions is made by creating an index into this table. 
This is often a major problem, since choosing the wrong 
index generally results in a much larger table. 

An example to illustrate this technique is for a 
g a m m a - g a m m a  coincidence experiment. In this hypo- 
thetical experiment, it requires too much space to collect 
the entire two-dimensional spectrum. Let us say we 
want to record spectra from a gamma detector (B)  in 
coincidence with 100 windows on another detector (A). 
The result will be 100 spectra - called gates - each in 
coincidence with a different window. Coincidence events 
give a pair of parameters (A, B). The collection process 
involves taking a pair of data and deciding if they 
belong in one of the windows. In this case then there are 
101 possible decisions for what to do with this pair. 
There are 100 possible spectra that it might be in, and 
there is a possibility that it is not in any one of the 
gates. The table can now be made and indexed by 
parameter  A. The table would be the length of parame- 
ter A, say 4096 locations. In each of the slots in this 
table would be one of the 101 possible decisions. Let us 
take a more detailed look at the processing of a few 
pairs of hypothetical data. Fig. 1 shows both the stan- 
dard decision tree and the new table methods. In this 
example, let us assume that gate 12 is defined by 
parameter  A values of 156 to 165 and that no gate is 
defined for parameter A values of 154 to 155 and 166 to 
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Fig. 1. Block diagram of two-parameter processing showing both standard decision tree and new decision table method. 

166. A pair of da ta  are retrieved from the buffer  and 
parameter  A is found to be 155. With  the serial method,  
a series of 100 checks would be executed until  no gate 
was selected and the next pair  tried. For  the decision 
table technique, the 155 entry in the decision table is 
examined,  causing execution of the loop exit and  ex- 
amina t ion  of the next pair. For these data, parameter  A 
is found to be 164. With the serial method,  after 12 
checks the subrout ine  for gate 12 is executed. In the 
current  approach the 164 entry is retrieved, which causes 
execution of the gate 12 subroutine.  For  bo th  tech- 
niques the process is cont inued  until  all data  in the 
buffer  are examined and processed. The decision table 
method  involves fewer steps and therefore would make 
the processing faster. 

This technique can be extended to cover many  other  
situations. A simple extension to the coincidence case is 
to add a r andom coincidence, background  correction 
process. In this case more windows are set correspond-  
ing to areas where there would not  be any true coinci- 
dences. When  the parameter  matches one of these 
windows, a new background  process is performed where 
a decrement  of the appropr ia te  location in the selected 
gate is done. This adds 100 more decisions but  no  new 
gates. Another  appl icat ion is for spectral enhancement ,  

in which case a two-parameter  collection is performed. 
The collected spectrum needs to have two-dimensional  
channel  shifts done to correct for nonuniformit ies  in 
detector  response; that  is, the data  at (14,26) may be 
t ransla ted to (18,34), etc. This type of t ranslat ion can be 
handled  using a two-dimensional  table where the cor- 
rect address is stored at the original one; that  is, in 
location (14,26) an instruct ion to increment  the location 
(18,36) would be stored. The problem with this type of 
implementa t ion  is that  the table gets quite large. 

3. Implementation 

The decision table process is usually implemented as 
par t  of the mul t iparameter  device driver. This is gener- 
ally par t  of, or used by, a main program writ ten in a 
high-level language. The main  program may consist of a 
series of subrout ines  designed to set up the decision 
table  and  handle  the interactive dialog with the user 
(allowing display of data,  plotting, storage, and  parame-  
ter altering, for example). The decision table is applied 
in the in terrupt  handler  to maximize data  processing 
rates. To main ta in  high data  throughput ,  the data  are 
usually collected in buffers using a D M A  approach.  

llI. MODELS AND DATA ANALYSIS 
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When the buffer is full, then the entire buffer is 
processed. This is usually implemented using two buffers 
such that while one is being processed the other is being 
filled. 

The decision table method has been implemented for 
several systems [2,3]. In these cases, the decision table is 
initialized during program startup by filling every slot 
with a jump to the loop exit. The program then waits 
for the user to respond interactively (to set the decision 
table, start the collection, etc.). Defining the gates, 
applying the conditions, or setting up of the decision 
table just consists of placing a jump to a process routine 
in one or more locations of the table. This means that 
no programming changes are required to change or alter 
conditions. 

Implementation of the decision table process lends 
itself directly to assembly language, which is often nec- 
essary if speed is crucial. In the simplest case the 
decision table would be just a dispatch table, a list of 
addresses of the routines to be executed; an example is 

shown in fig. 2. In this case the same gating example is 
used as before. This shows a possible implementation 
using an idealized assembly language. There is an ini- 
tialization procedure (not shown), which would set the 
initial buffer address and set the buffer count. There is 
also a finish procedure (not shown) that would generally 
create a smooth transition out of the device driver. The 
average processing time is determined by the amount of 
time to handle all events plus the initialization and 
finish time divided by the number events processed. As 
long as the buffer contains several hundred events, the 
net processing time is only slightly increased by the 
initialization and finishing parts. The decision proce- 
dure starts by doing the look-up, which consists of 
determining the address of the entry in the table. This is 
accomplished by loading the indexing parameter into a 
register and adding the table's beginning address to it. 
The decision has now been determined and is carried 
out by execution of the instruction located at this re- 
sultant address. If the decision is to take no action, the 

loop:: LOAD Reg Par A,Indirect 
ADD Reg Decision offset 

Execute Decision 

*Get current parameter A 

*Determine entry into Decision Table 

* Several possible method exists, many processors have a execute 
* instruction and can be implemented in one instruction 

XCT Reg, Indirect 

* On machines that do not have an execute, the operation is loaded and 
* stored in the next available location and then executed 

LOAD 

STORE 
Exec:: NOP 

Reg~ Indirect 

Reg Exec 

*Get operation - would be a NOP for 
* EXIT or a JUMP SUBroutine for a 

gate process. 

*Store it in next location 
*Execute it. 

LOOP EXIT 

INC Par A 
INC Par B 
INC Count 
CHECK Count 
JUMP True Finish 
JUMP False LOOP 

Sample Gate Process 

*Address next parameter A in buffer 
*Address next parameter B in buffer 
*Increment buffer count 
*Check for last item in buffer 
*Branch if done to finish routine 
*Otherwise process next pulse 

Gaten::LOAD Reg Par B,Indirect *Get parameter B 
ADD Reg Offset N *Find current datum address 
INC Reg, Indirect *Increment it 
RETURN 

Fig. 2. Processing part of the two-parameter collection driver with decision processesshown. 
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instruct ion is a b ranch  to the loop exit or often jus t  a 
no-operat ion instruction.  The loop exit increments  the 
buffer  address and  the count,  then checks the count  for 
the end of the buffer;  if it is not  finished, it b ranches  
back to do more decisions; if it is done it branches  to 
the buffer  finish (not  shown). If the decision is a gate 
process, this process jus t  finds the correct location in 
the correct slice (gate) and increments  it. This is done 
by simply adding the start address to parameter  B and 
increment ing  the location defined by this address. For  
this simplistic example, it takes eight instruct ions to 
handle  the exit case and  12 including the gate processing. 
For  typical processors and instruct ion time of 1 or 2 ~s 
per  instruct ion is common.  This yields typical times of 
about  10-20 /~s per  case handled,  or collection rates of 
50 -100K pairs per  second. If higher speed machines  are 
used, more complex processes can still be performed in 
100 kts, thus keeping a min imum rate of at least 10K 
mul t ipa ramete r  pairs processed per  second. If slower 
micros are used, this simple coincidence process can still 
be performed in 100/~s or less. 

Implementa t ion  in a higher level language is possible 
but  not  r ecommended  if speed is important .  On some 
computers  the computed  G O T O  is implemented  as a 
dispatch table. If this type of computer  is used, high 
processing rates are still possible; one such example is 
shown in fig. 3. In this case the table is a simple table of 

indexes used in the computed  G O T O  statement.  The 
parameter  A in this case is used as an index into the 
decision table. The G O T O  index is retrieved and  the 
computed  G O T O  executed. On machines  that  have 
computed  G O T O s  implemented  as table look-ups, this 
can be quite fast (tens of microseconds) so that  the total 
t ime can still be less than 100 p.s. On slower machines,  
it is possible to use other  procedures  to speed up the 
process while still using all high-level language program- 
ming. One technique uses the E X T E R N A L  sta tement  in 
F O R T R A N  to put  the addresses of the decision process 
subrout ines  into a variable which can be called through 
a d u m m y  subrout ine  call. 

4. Other uses 

An interesting example of the use of decision tables 
is a further  compression of the results and  the space 
necessary for the coincidence case. In the last example a 
large amount  of space was still needed for program 
space and results (at least 40K values for the 100 slices 
of 4096 channels  each plus the program). This can be 
compressed to just  two values per coincidence combina-  
tion: the gross coincidence s trength and the r andom 
coincidence strength.  The coincidence combina t ion  is 
all possible combina t ions  for the number  of peaks 

c 

100 

INTEGER TABLE(Ien), PAR-A(Ienb), PAR-B(Ienb) 

Table ks the decision table and is the length of parameter B. 

In this example TABLE(i) can take on values of 0 - n where n 
is the maximum gate number 

TABLE ks defined as: 
0 - EXIT 

I - Process Gate I 
N - Process Gate N 

Initialization section not shown 

DO I=I,NUM IN BUFF !Process buffer of data 
GOTO(91,100,...),TABLE(PAR_A(1)) !Do look-up 

process gate 1 

Data(PAR_B(1), I) = Data(PAR_B(I), 1) + I 
GOTO 91 

c process gate 2 

c process gate N 

N00 Data(PAR B(1),N) = Data(PAR__B(1),N) + 1 

91 ENDDO 

Fig. 3. Example of FORTRAN implementation of decision table method using computed GOTOs. 

IIl. MODELS AND DATA ANALYSIS 
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selected taken two at a time; that  is, peak 1 with peak 1, 
peak 1 with peak 2, etc. This means that  for N peaks 
defined, the space required for results would be N 
squared plus N values, because there are ( N  2 + N ) / 2  
combina t ions  and two values per combinat ion .  (The 
extra N values are for error terms for the self-coinci- 
dence cases, which can be eliminated.)  The actual proc- 
ess is done by performing an  addi t ional  decision table 
look-up on the B parameter .  This is, in the first oper- 
a t ion we reduced the L 2 two-dimensional  spectrum to a 
length L one-dimensional  spectrum. Now this one-di- 
mensional  spectrum is reduced in the same manne r  to 
one point,  the coincidence strength. For the r andom 
coincidence s t rength (background correction), instead of 
decrement ing this the gross count, a separate location is 
acquired. The implementa t ion  only involves adding an 
addi t ional  table for the second detector. (Only one table 
is required if bo th  detectors have the same gain.) This 
t ime though, the tables could be filled with zeros for no 
action and a signed peak number :  plus for gross coinci- 
dence, minus  for background.  The processing would 
involve checking for a zero in each look-up; one zero 
and  processing of tha t  pair stops. To find the address to 
increment ,  the pair  of peak numbers  are used as matr ix  
address (i.e., say found peak 26 for parameter  A and 8 
for parameter  B, then form the address 26,8). This 
address is ordered so the row is the lowest value (from 
26,8 to 3,26) for positive pairs. For  background events 
the row is ordered to be the highest. The only exception 
is for negative pairs on the diagonal  ( - 1 , -  1; - 2 , - 2 ;  
etc.), which have to be assigned to the extra N loca- 
tions. Once the address is determined,  all tha t  is done is 
to increment  the value stored at this location. In this 
way, in the same space (40K values) over 200 peaks 
could be defined and  collected simultaneously. 

One last short  example is a compression of the 
spectral enhancemen t  case. In that,  it was stated that  it 
could be done with a two-dimensional  table look-up. 
This table gets very large fast. For  a 1024-by-1024 
channel  spectrum it would require over a million values. 
Therefore what  can be done is to seek a new index 
(computed  from the parameter  pair) that  uses a com- 
pressed table. For  the spectral enhancement  case it was 
found that the correction was dependent  on the depth  

of interaction. By applying some addit ional  ar i thmetic  
steps to create a normalized depth  parameter ,  the sort- 
ing operat ion required only one table of 1024 values. 
The difference was that  with the megaword table only 
one step was required to get the result; with the new 
computed  indexing parameter  a 1024-word table was 
required plus the addi t ion of a min imum one divided, 
one multiply, one subtract ,  and  a few shifts. Some speed 
was sacrificed to save memory. 

5. Conclusion 

The basic idea of using decision tables has been 
presented.  Through their use, the number  of steps neces- 
sary to determine the correct processing procedure has 
been reduced to nearly one for the two-parameter  case. 
For  applicat ions of more than two parameters,  the 
method  expands easily as n - 1  decision table for n- 
parameter .  An example of a three-parameter  experi- 
ment,  using decision tables has been implemented [3] 
for the case of a delayed coincidence experiment.  For 
these n-parameters  cases, the steps required for the 
decision then approaches  n - 1. Also, it has been shown 
that  the decision table process is relatively easy to 
implement  in most languages. In assembly language it 
only requires a few basic instruct ions found on any 
common  processor, making it relatively easy to trans- 
port.  

A large variety of applicat ions can be implemented 
using this technique;  the range is limited only by the 
user 's creativity. All of these features make decision 
tables a viable choice in solving a variety of collection 
problems where the complexity of processing makes the 
serial process too slow or cumbersome and may make 
new techniques possible. 
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