
450 Nuclear Instruments and Methods in Physics Research A242 (1986) 450-454
North-Holland, Amsterdam

R E A L - T I M E M U L T I P A R A M E T E R P U L S E P R O C E S S I N G W I T H D E C I S I O N T A B L E S *

K. H U L L

EG&G Energy Measurements, Inc., Santa Barbara Operations, Goleta, California, USA

H. G R I F F I N

University of Michigan, Department of Chemistry, Ann Arbor, Michigan, USA

Decision tables offer several advantages over other real-time muhiparameter, data processing techniques. These include very high
collection rates, minimum number of computer instructions, rates independent of the number of conditions applied per parameter,
ease of adding or removing conditions during a session, and simplicity of implementation. Decisions table processing is important in
muhiparameter nuclear spectroscopy, coincidence experiments, multiparameter pulse processing (HgI 2 resolution enhancement, pulse
discrimination, timing spectroscopy), and other applications can be easily implemented.

1. Introduction

Multiparameter collection in real-time presents users
with a large number of problems. These include slow
collection rates, restrictions on the condition sets, in-
flexibility of conditions once set, and transportability
difficulties, to name a few. Collections using decision
table techniques solve most of these problems and allow
new applications to be tried in real time. During at-
tempts to improve the performance of mercuric iodide
used as gamma-ray spectrometers at E G & G Energy
Measurements, Inc. [1], the need to do on-line, real time
correction of two-parameter data rekindles the interest
in decision tables. In previous work [2] the problem of
collecting g a m m a - g a m m a coincidence data on a small
computer was tackled. It was found that in order to
allow moderate speed collections the amount of
processing time spent handling the data had to be
reduced. To do this the standard serial processing tech-
niques were replaced with a parallel approach that
involved the use of decision tables.

2. Decision table concept

The normal method of complex data processing in a
computer program is to check the parameters against
the determining conditions one at a time; that is, test if
the parameters meet the conditions for process one; if
not, try for process two; etc. This is called a decision

* This work was performed under the auspices of the U.S.
Department of Energy under Contract No. DE-AC08-
83NV10282.

0168-9002/86/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)

tree and is a serial process. Many problems imple-
mented this way can be implemented in a parallel
fashion called a decision table. This method decides
which process to execute in one (or nearly one) oper-
ation. To do this a table is created, where each location
contains an action to be taken in case this combination
of parameter values occurs. For instance, this action
may be a subroutine jump. Selection of one of the
actions is made by creating an index into this table.
This is often a major problem, since choosing the wrong
index generally results in a much larger table.

An example to illustrate this technique is for a
g a m m a - g a m m a coincidence experiment. In this hypo-
thetical experiment, it requires too much space to collect
the entire two-dimensional spectrum. Let us say we
want to record spectra from a gamma detector (B) in
coincidence with 100 windows on another detector (A).
The result will be 100 spectra - called gates - each in
coincidence with a different window. Coincidence events
give a pair of parameters (A, B). The collection process
involves taking a pair of data and deciding if they
belong in one of the windows. In this case then there are
101 possible decisions for what to do with this pair.
There are 100 possible spectra that it might be in, and
there is a possibility that it is not in any one of the
gates. The table can now be made and indexed by
parameter A. The table would be the length of parame-
ter A, say 4096 locations. In each of the slots in this
table would be one of the 101 possible decisions. Let us
take a more detailed look at the processing of a few
pairs of hypothetical data. Fig. 1 shows both the stan-
dard decision tree and the new table methods. In this
example, let us assume that gate 12 is defined by
parameter A values of 156 to 165 and that no gate is
defined for parameter A values of 154 to 155 and 166 to

K. Hull H. Griffin /Real-time multiparameterpulse processing 451

Standard New

l Get Data I

l
Cheek Condi t ions

<
No

No

e ~ Process
Gate 1

Process
Gate 2

Process
Gate I00

Buffer

Par Par
A B

155 739
164 257

Get Data [

I
~ Table Look-Up

Gate 2 Gate I00

Decision Table

Entry

154 Loop Exit
155 Loop Exit
156 Process Gate 12
157 Process Gate 12

163 Process Gate 12
164 Process Gate 12
165 Loop Exit

Fig. 1. Block diagram of two-parameter processing showing both standard decision tree and new decision table method.

166. A pair of da ta are retrieved from the buffer and
parameter A is found to be 155. With the serial method,
a series of 100 checks would be executed until no gate
was selected and the next pair tried. For the decision
table technique, the 155 entry in the decision table is
examined, causing execution of the loop exit and ex-
amina t ion of the next pair. For these data, parameter A
is found to be 164. With the serial method, after 12
checks the subrout ine for gate 12 is executed. In the
current approach the 164 entry is retrieved, which causes
execution of the gate 12 subroutine. For bo th tech-
niques the process is cont inued until all data in the
buffer are examined and processed. The decision table
method involves fewer steps and therefore would make
the processing faster.

This technique can be extended to cover many other
situations. A simple extension to the coincidence case is
to add a r andom coincidence, background correction
process. In this case more windows are set correspond-
ing to areas where there would not be any true coinci-
dences. When the parameter matches one of these
windows, a new background process is performed where
a decrement of the appropr ia te location in the selected
gate is done. This adds 100 more decisions but no new
gates. Another appl icat ion is for spectral enhancement ,

in which case a two-parameter collection is performed.
The collected spectrum needs to have two-dimensional
channel shifts done to correct for nonuniformit ies in
detector response; that is, the data at (14,26) may be
t ransla ted to (18,34), etc. This type of t ranslat ion can be
handled using a two-dimensional table where the cor-
rect address is stored at the original one; that is, in
location (14,26) an instruct ion to increment the location
(18,36) would be stored. The problem with this type of
implementa t ion is that the table gets quite large.

3. Implementation

The decision table process is usually implemented as
par t of the mul t iparameter device driver. This is gener-
ally par t of, or used by, a main program writ ten in a
high-level language. The main program may consist of a
series of subrout ines designed to set up the decision
table and handle the interactive dialog with the user
(allowing display of data, plotting, storage, and parame-
ter altering, for example). The decision table is applied
in the in terrupt handler to maximize data processing
rates. To main ta in high data throughput , the data are
usually collected in buffers using a D M A approach.

llI. MODELS AND DATA ANALYSIS

452 K. Hull, H. Griffin / Real- time multiparameter pulse processing

When the buffer is full, then the entire buffer is
processed. This is usually implemented using two buffers
such that while one is being processed the other is being
filled.

The decision table method has been implemented for
several systems [2,3]. In these cases, the decision table is
initialized during program startup by filling every slot
with a jump to the loop exit. The program then waits
for the user to respond interactively (to set the decision
table, start the collection, etc.). Defining the gates,
applying the conditions, or setting up of the decision
table just consists of placing a jump to a process routine
in one or more locations of the table. This means that
no programming changes are required to change or alter
conditions.

Implementation of the decision table process lends
itself directly to assembly language, which is often nec-
essary if speed is crucial. In the simplest case the
decision table would be just a dispatch table, a list of
addresses of the routines to be executed; an example is

shown in fig. 2. In this case the same gating example is
used as before. This shows a possible implementation
using an idealized assembly language. There is an ini-
tialization procedure (not shown), which would set the
initial buffer address and set the buffer count. There is
also a finish procedure (not shown) that would generally
create a smooth transition out of the device driver. The
average processing time is determined by the amount of
time to handle all events plus the initialization and
finish time divided by the number events processed. As
long as the buffer contains several hundred events, the
net processing time is only slightly increased by the
initialization and finishing parts. The decision proce-
dure starts by doing the look-up, which consists of
determining the address of the entry in the table. This is
accomplished by loading the indexing parameter into a
register and adding the table's beginning address to it.
The decision has now been determined and is carried
out by execution of the instruction located at this re-
sultant address. If the decision is to take no action, the

loop:: LOAD Reg Par A,Indirect
ADD Reg Decision offset

Execute Decision

*Get current parameter A

*Determine entry into Decision Table

* Several possible method exists, many processors have a execute
* instruction and can be implemented in one instruction

XCT Reg, Indirect

* On machines that do not have an execute, the operation is loaded and
* stored in the next available location and then executed

LOAD

STORE
Exec:: NOP

Reg~ Indirect

Reg Exec

*Get operation - would be a NOP for
* EXIT or a JUMP SUBroutine for a

gate process.

*Store it in next location
*Execute it.

LOOP EXIT

INC Par A
INC Par B
INC Count
CHECK Count
JUMP True Finish
JUMP False LOOP

Sample Gate Process

*Address next parameter A in buffer
*Address next parameter B in buffer
*Increment buffer count
*Check for last item in buffer
*Branch if done to finish routine
*Otherwise process next pulse

Gaten::LOAD Reg Par B,Indirect *Get parameter B
ADD Reg Offset N *Find current datum address
INC Reg, Indirect *Increment it
RETURN

Fig. 2. Processing part of the two-parameter collection driver with decision processesshown.

K. Hull H. Griffin / Real- time multiparameter pulse processing 453

instruct ion is a b ranch to the loop exit or often jus t a
no-operat ion instruction. The loop exit increments the
buffer address and the count, then checks the count for
the end of the buffer; if it is not finished, it b ranches
back to do more decisions; if it is done it branches to
the buffer finish (not shown). If the decision is a gate
process, this process jus t finds the correct location in
the correct slice (gate) and increments it. This is done
by simply adding the start address to parameter B and
increment ing the location defined by this address. For
this simplistic example, it takes eight instruct ions to
handle the exit case and 12 including the gate processing.
For typical processors and instruct ion time of 1 or 2 ~s
per instruct ion is common. This yields typical times of
about 10-20 /~s per case handled, or collection rates of
50 -100K pairs per second. If higher speed machines are
used, more complex processes can still be performed in
100 kts, thus keeping a min imum rate of at least 10K
mul t ipa ramete r pairs processed per second. If slower
micros are used, this simple coincidence process can still
be performed in 100/~s or less.

Implementa t ion in a higher level language is possible
but not r ecommended if speed is important . On some
computers the computed G O T O is implemented as a
dispatch table. If this type of computer is used, high
processing rates are still possible; one such example is
shown in fig. 3. In this case the table is a simple table of

indexes used in the computed G O T O statement. The
parameter A in this case is used as an index into the
decision table. The G O T O index is retrieved and the
computed G O T O executed. On machines that have
computed G O T O s implemented as table look-ups, this
can be quite fast (tens of microseconds) so that the total
t ime can still be less than 100 p.s. On slower machines,
it is possible to use other procedures to speed up the
process while still using all high-level language program-
ming. One technique uses the E X T E R N A L sta tement in
F O R T R A N to put the addresses of the decision process
subrout ines into a variable which can be called through
a d u m m y subrout ine call.

4. Other uses

An interesting example of the use of decision tables
is a further compression of the results and the space
necessary for the coincidence case. In the last example a
large amount of space was still needed for program
space and results (at least 40K values for the 100 slices
of 4096 channels each plus the program). This can be
compressed to just two values per coincidence combina-
tion: the gross coincidence s trength and the r andom
coincidence strength. The coincidence combina t ion is
all possible combina t ions for the number of peaks

c

100

INTEGER TABLE(Ien), PAR-A(Ienb), PAR-B(Ienb)

Table ks the decision table and is the length of parameter B.

In this example TABLE(i) can take on values of 0 - n where n
is the maximum gate number

TABLE ks defined as:
0 - EXIT

I - Process Gate I
N - Process Gate N

Initialization section not shown

DO I=I,NUM IN BUFF !Process buffer of data
GOTO(91,100,...),TABLE(PAR_A(1)) !Do look-up

process gate 1

Data(PAR_B(1), I) = Data(PAR_B(I), 1) + I
GOTO 91

c process gate 2

c process gate N

N00 Data(PAR B(1),N) = Data(PAR__B(1),N) + 1

91 ENDDO

Fig. 3. Example of FORTRAN implementation of decision table method using computed GOTOs.

IIl. MODELS AND DATA ANALYSIS

454 K. Hull, H. Griffin / Real-time multiparameter pulse processing

selected taken two at a time; that is, peak 1 with peak 1,
peak 1 with peak 2, etc. This means that for N peaks
defined, the space required for results would be N
squared plus N values, because there are (N 2 + N) / 2
combina t ions and two values per combinat ion . (The
extra N values are for error terms for the self-coinci-
dence cases, which can be eliminated.) The actual proc-
ess is done by performing an addi t ional decision table
look-up on the B parameter . This is, in the first oper-
a t ion we reduced the L 2 two-dimensional spectrum to a
length L one-dimensional spectrum. Now this one-di-
mensional spectrum is reduced in the same manne r to
one point, the coincidence strength. For the r andom
coincidence s t rength (background correction), instead of
decrement ing this the gross count, a separate location is
acquired. The implementa t ion only involves adding an
addi t ional table for the second detector. (Only one table
is required if bo th detectors have the same gain.) This
t ime though, the tables could be filled with zeros for no
action and a signed peak number : plus for gross coinci-
dence, minus for background. The processing would
involve checking for a zero in each look-up; one zero
and processing of tha t pair stops. To find the address to
increment , the pair of peak numbers are used as matr ix
address (i.e., say found peak 26 for parameter A and 8
for parameter B, then form the address 26,8). This
address is ordered so the row is the lowest value (from
26,8 to 3,26) for positive pairs. For background events
the row is ordered to be the highest. The only exception
is for negative pairs on the diagonal (- 1 , - 1; - 2 , - 2 ;
etc.), which have to be assigned to the extra N loca-
tions. Once the address is determined, all tha t is done is
to increment the value stored at this location. In this
way, in the same space (40K values) over 200 peaks
could be defined and collected simultaneously.

One last short example is a compression of the
spectral enhancemen t case. In that, it was stated that it
could be done with a two-dimensional table look-up.
This table gets very large fast. For a 1024-by-1024
channel spectrum it would require over a million values.
Therefore what can be done is to seek a new index
(computed from the parameter pair) that uses a com-
pressed table. For the spectral enhancement case it was
found that the correction was dependent on the depth

of interaction. By applying some addit ional ar i thmetic
steps to create a normalized depth parameter , the sort-
ing operat ion required only one table of 1024 values.
The difference was that with the megaword table only
one step was required to get the result; with the new
computed indexing parameter a 1024-word table was
required plus the addi t ion of a min imum one divided,
one multiply, one subtract , and a few shifts. Some speed
was sacrificed to save memory.

5. Conclusion

The basic idea of using decision tables has been
presented. Through their use, the number of steps neces-
sary to determine the correct processing procedure has
been reduced to nearly one for the two-parameter case.
For applicat ions of more than two parameters, the
method expands easily as n - 1 decision table for n-
parameter . An example of a three-parameter experi-
ment, using decision tables has been implemented [3]
for the case of a delayed coincidence experiment. For
these n-parameters cases, the steps required for the
decision then approaches n - 1. Also, it has been shown
that the decision table process is relatively easy to
implement in most languages. In assembly language it
only requires a few basic instruct ions found on any
common processor, making it relatively easy to trans-
port.

A large variety of applicat ions can be implemented
using this technique; the range is limited only by the
user 's creativity. All of these features make decision
tables a viable choice in solving a variety of collection
problems where the complexity of processing makes the
serial process too slow or cumbersome and may make
new techniques possible.

References

[1] A. Beyerle, V. Gerrish and K. Hull, these Proceeding (6th
Symp. on X- and Gamma-Ray Sources, Ann Arbor) Nucl.
Instr. and Meth. A242 (1986) 443.

[2] K. Hull, Thesis, University Microfilms (1979).
[3] E. Kao, Thesis, University Microfilms (1977).

