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Several examples of three-dimensional statistical models with multibody interactions and 
unusual symmetry properties are studied from a unified point of view. The symmetries of these 
theories are neither global nor local, but are something in between In the nomenclature of a 
recently proposed classification scheme, these theories have a symmetry index, n ~< 2, and so have 
no long-range order when the internal symmetry is continuous Duality properties and topological 
excitations of the theories are studied, and their phase diagrams are qualitatively discussed. 
Similarities between these three-dimensional semi-local theories and ordinary globally-symmetric 
theories in one and two dimensions are d~scussed. 

1. Introduction 

Recently, a scheme for the classification of  statistical systems possessing multibody 
interactions whose symmetries are more general than the usual global or local 
symmetries has been proposed [1] and has led to the identification of  a new symmetry 

index, n, for these theories. Just as the usual globally-symmetric statistical theories 
with continuous internal symmetries have a lower critical dimension, d = 2, systems 
with more general symmetries have a lower critical value for their associated 
symmetry index. A theorem was recently proved [2] which shows that, regardless 
of the dimensionality of  a system, theories with a U(1) symmetry with n ~<2 have 
no long-range order. Apart from the intrinsic theoretical interest embodied in these 
systems, statistical models with n = 2 (and other closely related models) are thought 
to be relevant to the description of certain aspects of liquid crystals and helical 
magnets. This paper is concerned with a fuller discussion of the marginal case; 
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n = 2. We will make a number of  general observations about n = 2 theories and 

study in some detail several n = 2 statistical theories in three dimensions. As sug- 

gested by the theorem of ref. [2], we shall find that these models have critical 

properties qualitatively similar to ordinary globally-symmetric statistical models in 
two dimensions. It is our intention that the study of these models at their lower 

critical value of  n be a first step in the systematic study of the critical properties of  
the rich set of  theories included in our classification scheme. 

In subsect. 2.1 we will define what is meant by an index-n symmetry in its simplest 

sense. In subsect. 2.2 we will describe the proof  of  the theorem which states that 

theories with a U(1) symmetry and n <~ 2 have no long-range order. In subsect. 2.3 

we will discuss an extension of the definition of index-n symmetries to a wider class 

of theories, and we will argue that the theorem of subsect. 2.2 applies to this larger 

class as well. Subsect. 2.4 contains some additional, miscellaneous comments. In 

sect. 3 we will analyze three closely related three-dimensional models, all of which 

have an n = 2 symmetry in the restricted sense of  subsect. 2.2 but which differ in 
detail. These models are quite simple and serve to clarify most of the general features 

of n = 2 symmetries. In particular, we shall discuss their properties under duality 

transformations and the relations between order and disorder variables. Next we 

present the results of Monte Carlo simulations of the ZN version of one of  these 

models. These simulations lend strong support to the general theoretical expectations 

for this class of  systems; in particular, they verify the prediction that the phase 

diagrams of n = 2 theories with a ZN symmetry are qualitatively quite similar to 

those of the d = 2 globally-symmetric, two-dimensional clock models [3]. Lastly, 

we shall briefly describe two somewhat more complex n = 2 theories which have 

been discussed in the literature [4-6] and which, in a sense, motivated much of the 

present work. These two theories are examples of the generalized n = 2 theories 

discussed in ref. [1]. 

We summarize our results in sect. 4 and conclude with some suggestions for 

further work. Finally, we show how to construct the hamiltonian formulation of 
one of our models in an appendix. 

2. Preliminaries 

2.1. INDEX-n SYMMETRIES 

The theories we will discuss in this paper will be statistical theories of a single 
field which is associated with the sites of a lattice. In this section we shall consider 

those theories which have a U(I)  internal symmetry with the site-associated spins 
given by s ( r ) = e  '~r~. For simplicity we will consider theories defined on a d- 
dimensional simple hypercubic lattice. The defining characteristic of our models is 
that they are described by hamiltonians which are invariant under the transformation 

$ ( x l , . . . ,  Xd)-." $ ( X l , . . . ,  Xd) + A (X,,+I . . . .  , Xd) . (2.1) 
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These theories will be said to possess a symmetry index equal to n. (Actually, most 
of  the results of  this paper  apply to a wider class of  theories. This generalization is 

defined in subsect. 2.3.) In fact, most of  the models we will encounter have a 
somewhat  more complex symmetry structure in which there may be more than one 
distinct semi-local symmetry (see, e.g., the theory defined in eq. (3.4) below). Such 
theories will be said to have a compound symmetry. 

As we have discussed elsewhere [ 1 ], the hamiltonians of  our models can be written 

in the form 

where the fp are functions of  a linear combination of  q(p) ~b's and the cpj are some 
set of  constant coefficients. The coordinate of  ~bj is x + r~. We will assume that there 
are no explicit long-range interactions, so that all I~1 are finite. For the sake of 
simplicity, we shall focus our attention on theories for which the interactions in 
(2.2) are defined on the k-dimensional (k ~< d) simplices of  the d-dimensional  lattice. 
For example,  nearest-neighbor interactions along links, four-body interactions 
around a plaquette, etc. Our results apply as well in more general cases. (See ref. 
[1] and the examples below.) 

2 2 ABSENCE OF L O N G - R A N G E  O R D E R  FOR n~<2 

It was recently shown [2] that theories with n = 1 or n = 2 symmetry indices do 
not have long-range order for any T >  0. Let us briefly review the main features of 
this result. The proof  is an extension of the Mermin-Wagner  theorem [7] and relies 
on the use of  a Bogoliubov inequality [8] to bound the square of  the magnetization 
from above. 

Consider a statistical theory with a hamiltonian as that given in (2.2) defined on 
a d-dimensional  hypercubic lattice. To analyze the symmetry structure of  such a 
theory we follow the general procedure used to prove the Mermin-Wagner  theorem 
by making use of  a Bogoliubov inequality, 

½/3({A, A*}) ([[C, H] ,  C*])/> I([C, A])[ 2 , (2.3) 

where a dagger stands for hermitian conjugation, and [ ,  ], {, } denote, respectively, 
a commuta tor  and an anticommutator.  (O) represents the thermal average of the 
operator  O at inverse temperature/3.  Calling the state of  the system defined by the 

set {&(x)} for all points, x, on the lattice, 14)(x)), we can define suitable operators 
,4 and C through their action on these states in such a way that (2.3) leads to an 
inequality bounding the magnetization. One such set of  operators is given by 

CkI•(X))  : I t ~ ( X ) -  ~(~ COS k ° x ) - [ - [ ~ ( x  ) - t ~ )  sin k .  x) ,  (2.4) 

Ak[qb(x)) = ~  cos k . y  sin 4~(Y)l~,(x)) +Y. sin k . y  sin &(y)l~2(x)) ,  (2.5) 
v y 
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I~,(x)>~ I~(x)+ 8~ cos k. x>, 
(2.6) 

Iqb2(x) ) - I&(x)+  8~b sin k - x ) .  

In the above expressions 8~b is a small constant field and k is a momentum vector 
in the first Brillouin zone. Consider the case n = 2. To study the possibility of  a 
spontaneous breaking of  the global symmetry, we consider a hamiltonian Ho(~b), 
invariant under  (2.1) with n = 2 and add a symmetry-breaking term in the form of 
an interaction with a constant, external magnetic field h: 

H = Ho(~b) - h 3~ cos th(x).  (2.7) 
x 

Now, if Ho(~b) is invariant under (2.1), it is easy to prove that it can be written in 
the form (2.2) with each of  the fp separately invariant under the same transformation, 
so that 

Ho(~) 

Assuming that the fp are expandable in a Taylor series about  the zero of their 
arguments,  use of  the above operators in (2.7) leads to an upper  bound for the 

square of  the magnetization, m, 

y Y~p ep + h m  ' (2.9) 

where N is the number  of  sites in the lattice, y is a positive number  which bounds 
the thermal average of f~ from above, and 

= cp, sin k .  r, . (2.10) ~ Y~ cp, cos  k .  r, + =~ 
. I = l  I 

Note that we are still dealing with a classical theory; bras and kets are row and 

column vectors in x space and operators are matrices which act on this space. 
We will now show that i f /40 is invariant under  the transformation 

4a(x ,  . . . .  , x a ) ~  dp(x ,  . . . . .  x a ) +  A ( x 3 ,  . . . , Xd) , (2.11) 

then the sum over k on the right-hand side of  (2.9) diverges in the thermodynamic 
limit as h -~ 0, thus implying that the magnetization vanishes in this limit. 

Since each of  the fp are separately invariant under (2.10), for each p the coefficients 
appearing in the arguments of  the fp (see (2.2)) satisfy 

Z cpj = 0 ,  (2.12) 
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where a represents the set of  all spin labels which lie in a given (xl, x2) plane. (In 

cont inuum notation this is equivalent to the statement that Ho depends on ~b only 
through 01~b and 02~b. This allows terms in Ho such as (03024,) 2, but not terms such 

as, for example,  (03~b)2.) 
Because ep = 0 for k ~ -  k2 = 0 the fact that it has a double Taylor expansion in 

powers of  k~ and k2 implies that, in general, 

ep = k2up(k) + kEvp(k) + klkEwp(k) , (2.13) 

where up, vp and wp are finite functions of  k. Consider a large lattice of  linear 
dimension L. Defining u(k)  = y ~p up(k), etc., and converting the sum over k in 

(2.9) into an integral leads to 

(2~)d/3 
m2~ < (2.14a) 

I a ( L , h ; m ) '  

where 

Id = | ddk[kEu+k2v+k,  kEw+hm] -1 • (2.14b) 
.11 /L 

Since ep >! 0 for each p, looking at the region of  integration where kl and k 2 a r e  

close to 1/L, it is clear that Id diverges at least as fast as In L in the limit as h-~0. 
Similarly, this integral will also diverge if the large-L limit is taken first. Thus, in 

the thermodynamic  limit m 2 - - ~ 0  a s  h ~ 0  and the system has no long-range order: 
The global symmetry cannot be spontaneously broken. Contrasting the above argu- 
ments with those used to prove the usual Mermin-Wagner  theorem shows clearly 
that the essential factor leading to the absence of  long-range order is not the 
dimensionality of  the system, but rather the dimensionality of  the support  over 

which the symmetry is global. It is trivial to apply the above arguments to prove 
that there is also no long-range order in an n = 1 theory. To do so, it is sufficient 
to notice that, when n = 1, ep can be written just as for n = 2 but with vp -- wp = 0. 
In this case the divergence of Ia in the thermodynamic  limit is at least linear. 

Not  only is the global symmetry unbroken for n - 2, but in fact, the full semi-local 
symmetry is also unbroken in this class of  theories. To demonstrate this, let us again 
concentrate on the n = 2 case; it is simple to construct a similar argument for n = 1. 

To test the possibility of  breaking the semi-local symmetry, we need to construct 
an operator  which will only break this symmetry, leaving other subsymmetries of 
the full n -- 2 symmetry,  particularly the global one, intact. With H0 invariant under 
(2.11), one can easily see that the relevant object to test is the two-point function 
defined by 

FM =cos  [~b(x) -  ~b(x+ M ) ] ,  (2.15) 

where M is some vector with a non-zero projection out of  the (xl, x2) plane. We 
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thus consider the hamiltonian 

H = Ho- h~ Y r~(x )  
x 

and compute 

(2.16) 

where 

AM (~b(y)) =- sin (~b(y) - ~b(y + M ) ) .  

It is now straightforward to compute (2.17). We find [2] 

m~< (27r)a/3 If ddk ~2( k ) ]-'  
4 LJa/L k2u(k)+k2v(k)+k~k2w(k)+~(k)h~m~ ' 

~:~(k) = 1 - c o s  k-  M .  (2.19) 

Since M has a component  out of  the (Xl, x2) plane, the numerator  of  the integrand 
in (2.19) does not vanish when kl = k2 -- 0. Because the integrand in (2.19) is positive, 
the analysis proceeds as for (2.15) and the divergences are similar. Thus, m 2 - -  0 

in the thermodynamic  limit and the full n = 2 symmetry is not spontaneously broken. 
Notice that it is essentially the same mechanism which is responsible for the 

absence of  spontaneous magnetization in both of  the cases we have analyzed: it is 
the same long-wavelength phonon excitations which prevent both the local as well 
as the semi-local symmetries from being broken. One can apply similar arguments 
to test for symmetry-breaking in other directions, and symmetry-breaking associated 
with higher mult ibody correlation functions in this and related theories. An example 
of  a theory in which the semi-local symmetry is related to a four-body correlation 
has been discussed in the literature [5] and will be briefly analyzed in the next 
subsection. 

Before proceeding to the next section, we make one important  extension of our 
theorem. For a theory with n = 1, the global symmetry cannot be spontaneously 
broken, whether the internal symmetry is continuous or discrete. As we shall show 
in sect. 3, this is because an n = 1 theory in d dimensions can be transformed into 
a set of  non-interacting systems in d - 1 dimensions in a manner  similar to the way 

t  217, 
As we did for the case of  global symmetry breaking, we will test the possibility 

of  breaking the semi-local symmetry by computing (2.17) using (2.16) and then 
taking the limit as h~  tends to zero. A non-vanishing value of  mM in this limit 
would signal the spontaneous breaking of the semi-local symmetry. To construct 
an upper  bound on m 2 ,  we again use a Bogoliubov inequality with Ck defined as 
in (2.6) but with 

mk[ t~(X))  = ~, (COS k "  y - c o s  k "  ( y  - M))A M (~b(y)) I ~ I ( X ) )  
Y 

+ E  (sin k - y - s i n  k. (y--M))AM(qb(y))l~2(X)), (2.18) 
Y 
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in which the one-dimensional Ising model can be rewritten as a set of  non-interacting 
spins. Here again we see how a system with a symmetry index n and d dimensions 
behaves qualitatively like an ordinary n-dimensional theory with global symmetry. 

2.3 GENERALIZATIONS OF INDEX-n SYMMETRIES 

The symmetries defined in (2.1) can be generalized in a natural and important 
way. The space-dependence of A in (2.1) can be expressed by saying that A is a 
function of  all d coordinates, but is constrained to satisfy 

A~A = A2A . . . . .  A,A = 0,  (2.20) 

where za, is a finite-difference operator in the x, direction. Such a set of  conditions 
can be generalized to 

01A = 02A . . . . .  O,,A = 0 ,  (2.21) 

where the (9, are a set of  n linearly independent difference (or, in continuum 
language, differential) operators. Theories constructed consistent with the conditions 
given in (2.21) will generally have interactions defined on lattice elements other 
than simple hypercubes. 

The class of  theories with such a suitably defined extended index-n symmetry is 
expected to share many of the properties of  theories with an ordinary index-n 
symmetry. Among the most important of these is the absence of  long-range order 
for n = 1 or 2. It is not difficult to see how this result generalizes to include these 
cases as well. Recall that we argued that, in the restricted case of  transformations 
of the type given in (2.11), all the terms in Ho depended on ~b only through 01~b 
and 02~b which implied that the inverse propagator in momentum space was 
necessarily of  the form given in (2.13). In much the same way, there are a large 
class of operators, O1 and 02 such that symmetry of /4o  under (2.21) implies that 
it can only depend on ~b through Ol~b and O2~b. This in turn implies a structure for 
ep similar to (2.13) but in which the role of  k~ and k~ will be taken by some other 
quadratic combination of  the momenta, reflecting the form of  the operators O1 and 
02. There will then be many cases in which a bound on the square of the magnetiz- 
ation (or some other n-point function), similar to those we obtained above, will 
indicate the absence of  symmetry-breaking. It would be worthwhile to discover the 
precise, general conditions on the O, required to lead to this conclusion. An example 
of an n = 2 theory invariant under a transformation of the form (2.21) which has 
no symmetry breaking [4] will be briefly discussed below. 

2.4. MISCELLANEOUS COMMENTS 

(i) It is clearly reasonable to believe that a result similar to the theorem of  subsect. 
2.2 can be proven in the case of  non-abelian symmetries, since one generally expects 
that disorder will come about more easily when the number of degrees of  freedom 
is increased. It is also clear that there may be exceptions to this simple intuitive 
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argument,  but, for an appropriately defined class of  non-abelian theories with n = 1 
or 2 it should be possible to prove an analogous theorem. 

(ii) It should be possible to construct theories, by a variety of  methods, with 
more than one field, and with semi-local symmetries of  the type we have discussed 
here. In this way, it should be possible to discuss the absence of symmetry-breaking 
in a wide variety of  theories ranging from simple d = 2 globally-symmetric theories 
to bona-fide locally-symmetric gauge theories in any dimension. With this approach 
one may be able to discuss both the Mermin-Wagner  theorem and Elitzur's theorem 
[9] in the same framework and probe for a deeper connection between them which 
is presently not apparent.  

(iii) Throughout  the above discussion we have been somewhat  cavalier about 
problems which might arise as a result of  boundary  conditions. It is clear that this 

is an important  point which has to be addressed. The relevance of boundary 
conditions becomes apparent  when one observes that a term in the hamiltonian of 
the form ~xO~b(x) O2(a(x) is invariant under (2.11) while a term such as 
~x ~b(x) 0102~b(x) is not. Clearly, a more precise statement of  our theorem and the 
conditions under  which it is valid must account properly for boundary effects. 
Boundary conditions are also clearly relevant in the context of  the representation 
of these theories in terms of their topological excitations, as we will see when we 
discuss specific models in the following section. In the case of  theories with an n = 1 
or 2 symmetry~ it frequently happens that the topological excitations interact through 
very long range potentials; logarithmic or even worse. In cases such as these, 
boundary conditions may introduce global, topological as well as energetic con- 
straints on the allowed configurations. 

3 .  S p e c i f i c  m o d e l s  

3.1. THREE SIMPLE MODELS WITH n~<2 

Most of  the relevant properties of theories with uncommon symmetries of the 
type we have been talking about can be encountered in very simple models. In this 
section we shall mention three such theories and enumerate their salient features. 

For clarity, the simplest of  these models will be discussed in some detail. 
Before plunging into a discussion of the models themselves, it is convenient to 

define an interaction term, It, associated with the 2 r sites of  an r-dimensional 
hypercube in a d-dimensional  hypercubic lattice with r<~ d. With the spins, s(r), 
defined on the lattice, we have 

L(i;  xl, x 2 , . . . ,  xr) -~ ½s(i)s*(i + ~l)s*(i + :c2) 

. . . s * ( i +  ~ , r ) s ( i+  :~l + ~ 2 ) s ( i +  ~l + ~3) 

• - . s  (*) i +  ~ + h . c . ,  
x 3 = 1  
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where i labels a lattice site and ~ is the unit vector in the j direction. The last factor 
in (3.1) is complex-conjugated if r is odd and is not when r is even. 

The first and simplest model we shall discuss is an index-2, three-dimensional 
theory, the so-called 2/24 model*. Its hamiltonian is given by 

H = OL 1 ~ I 1 ( i ;  Z) + a 2 ~ I2 ( t ;  X, y ) ,  (3.2) 
l ! 

where Ii a n d / 2  are defined by (3.1) and the spins, s(r), are U(1) (or Z, )  variables 
of the form 

s(r)  = e ''/'(r) . 

In the ZN case, the phase of s(r) takes the values 

2~ 
tb(r) =-~-p(r ) ,  p ( r )  = 0, 1 . . . .  , N - 1 .  

The interactions are thus a simple two-body term in the z-direction, and a four-body 
term along an elementary plaquette in the x - y  plane (see fig. 1). It is easy to see 
that this theory is invariant under 

6(x,  y, z) ~ ~b(x, y, z) + Al(X) + A2(y), 

where A1 and A2 are arbitrary functions of  their arguments. There are, therefore, 
two distinct n = 2 symmetries: H is invariant under a uniform rotation of all spins 
which lie in any given y - z  plane or in any given x - z  plane, because A,(x)+A2(y) 
is not an arbitrary function of x and y, the theory does not have an n = 1 symmetry. 

Let us rewrite (3.2) explicitly for the case of ZN spins: 

H=a[~Lcos A2p(r)+ ~. cos A4p(r) ] (3.3a) 

where 

2 7 7  
A2p(r ) =--- ~ - [ p ( r  + 2) - -p ( r ) ] ,  (3.3b) 

I f  

r 

+ (x2~ 
r+i ^ 

r r + x  

F]g. l. The hamilton]an of  eq. (3.3a) 

* This model is sometimes referred to as the February 24 model 
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2~r 
A4p(r) - -~-[ p (r) - p ( r +  ~) +p(r  - £+fi )  - p ( r  +f i ) ] ,  (3.3c) 

where ~, fi and £ represent unit vectors, and p = 0, 1 , . . . ,  N -  1. For simplicity, we 
have specialized our discussion to the case, a~ = a2 = a. The first sum in (3.2) is 
over links in the z-direction (L) and the second over all elementary plaquettes in 
each x-y  plane (P) of  the lattice. In what follows we assume the system is defined 
on a lattice with periodic boundary conditions. 

The theory defined by (3.3) is self-dual in the sense that its periodic gaussian or 
villain-like formulation is self-dual. Further, interactions of  the dual form of the 
full hamiltonian (3.3) are of  the same form as those appearing in (3.3). There are, 
in addition, higher harmonics of those interactions [10]. A generalization of this 
theory which included all such harmonics would be self-dual in the usual sense. 

To discuss the duality properties of (3.3) more completely, it is useful to study a 
periodic gaussian version of the model. The partition function for the periodic 
gaussian version of (3.3) is given by 

{p(r)=--oo} {Kp=--oo} {KL=--~O} 

where we have introduced the integer fields KL and Ke attached to links in the 
z-direction and to plaquettes in x -y  planes, respectively. For convenience, we have 
extended the sum over p(r) to go from -co  to oo. This introduces a uniform and 
harmless overcounting [11] which will not concern us here. 

To construct the dual of  (3.4)'we use the Poisson identities 

to obtain 

F[p(r)]= ~ Ifood~?8(~?-/)F(~7) 
p(r) =--oo l=--oo , 

I {  d ( )exp 
{fc(r)=-oo} {KL, Kp=--oo } -oo 

where the last sum (over S) is a sum over all sites of the lattice. In the above 
equation we have introduced an integer-valued field, K, located at the lattice sites. 
We now introduce continuous z-link and x -y  plaquette fields, ~'L and ~-~, In what 
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follows these will be associated with the sites of the dual lattice. Dropping irrelevant 
overall multiplicative (fl-dependent but field-independent) factors, we obtain 

+~p[-~,2+irp(a477-2rrKp)]+~2rriK(r)Tl(r)]. (3.6) 

To do the integral over 77, we first integrate (sum) by parts the terms 

E r,.&rl = - E  ~(r)&~'L(r-½), 
L L 

and 

Y~ ~ 4 , 7  = Y~ ~ ( r ) a , ~ ( r - ½ ( ~ + ~ ) ) .  
P P 

The integral over 77 can now be done, leading to a product of &function constraints 
of the form 

]1 812¢rK (r) - a2rL(r -½£) + a 4 r p ( r -  ½(a~ + J~))]. 
L 

To solve these constraints, we define a dual field, ~/,, at the sites of the dual lattice, 
1 ^ A A F= r+~(x+y+z), in such a way that 

1A N A A 

~-,.(r + ~z) = 2-7 a 4 ~ , ( ~ -  x - y)  + & N ,  

N 
rp(r +½(~+fi)) = ~ A2O(~- e) + 7LN, 

where -IL and Jp are integer fields located on the z-links and x-y plaquettes of the 
dual (shifted) lattice. We can replace the sums over rL and re by sums over $, a;t 
and Je [11]. The result, neglecting overall constants, is 

N 2 

+~, - (aEO+2~rjL)2-iNK~E4,(r-£) (3.7) ~, ~ ' 

where the sums over z-links (L) and x-y plaquettes (P) refer to the original lattice. 
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However, it is easy to see that 

. 2 ~ -  . 

'~ K L A 4 ~ b ( r - . I ~ -  I~) -t- E K r , ~ 2 t ~ ( / 7 - e ) - - ~  &(r)-~rn(r), 
L P 

m(~) =- -A2Kp + A4KL. (3.8) 

This allows us to refer all sums in (3.7) to the dual lattice, with the result 

Z = _ D~b exp 
,,(~)=-~ yL, yp =-~ 

+ ; ( A2~ -- 21r'JL)2 + ; 2 ~'im( r)~b( r) ] } s (3.9) 

where we have defined a new coupling,/3 -= N2/8~2/3. 
Using (3.9), one can prove the self-duality of this model by performing the 

summations over the m (~). Alternatively, integrating over ~b leads to a representation 
for the partition function in terms of  point-like degrees of freedom embodied in 
the integer-valued field m. Let us first discuss the self-dual nature of the model. We 
shall then discuss its topological excitations, 

Using the Poisson summation formula in (3.9) it is straightforward to prove that 
this version of  the theory is self-dual. The result of this calculation is just (3.4) with 
the difference that/3 has been replaced by /3  and that the degrees of freedom are 
now defined on the dual lattice. As we have mentioned before, we have chosen to 
deal with the periodic gaussian approximation to our theory for simplicity. Indeed, 
following essentially the same steps used to derive (3.9) from (3.4), one can manipu- 
late (3.3) to prove that that model is precisely self-dual. (That is, no extra harmonics 
of the interactions in H are generated by the duality transformation for N = 2, 3 
and 4.) This is entirely analogous to the structure found in the 2-dimensional ZN 
clock models. As is the case for those models, because of self-duality, if the theory 
has a single phase transition, the critical temperature must satisfy/3 =/3. That this 
is true is demonstrated by our numerical analysis of the model for N <~ 4 discussed 
in the next subsection. For N > 4 the model is not precisely self-dual, in that the 
dual theory includes harmonics of the original interactions as well, but its gaussian 
approximation, (3.4), is self-dual for all values of  N. In this case, the self-dual point 
is given by 13 =/~ = N/2zr. As our numerical analysis indicates, for N/> 5, the model 
(3.3) has two phase transitions*, one of which becomes essentially independent of 
N as N grows, and the other occurring at a temperature which approaches zero 

* In fact, one can rigorously show that this must  happen:  As is true for the d = 2 ZN clock models,  it 
is possible to derive a set o f  Gnttiths-like inequalities for certain n-point  correlation functions m our 
model (see ref. [5]). Using these inequahties,  one can deduce the existence of three phases for the 
perio&c gauss lan approximation of  the model It also follows from these ngorous  inequahties that 
the intermediate phase which appears between ordered and disordered ferromagnetic phases has  no 
long-range order, as expected from the general result which we proved m the last section 
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like N -2. This is consistent with the behavior expected for the self-dual gaussian 
version of  the model (3.4), and is qualitatively similar to the behavior found for the 
d = 2 clock models. It is important to stress the fact that self-duality of  (3.4) is not 
determined by the particular operators which define the interactions of  our model, 
nor does it have much to do with the spatial dimension or symmetry index of the 
model; indeed, there are three-dimensional n = 2 models which are not self-dual 
(an example will be briefly described below). The self-duality of our model follows 
from the fact that the theory has two distinct types of interactions for a single field: 
Any theory satisfying these conditions will be self-dual in the sense described above. 
(A general discussion of  this point can be found in ref. [12].) 

Let us now discuss the topological excitations of  the model. There are two types 
of  integer-valued objects in this theory which may loosely be thought of as topological 
in origin. One is associated with the discreteness of  the ZN symmetry and the other 
with its compactness. We are interested in studying the latter type, and to this end 
we will take the U(1) limit of (3.9). We can write 

Z =  ~ [ D~/, exp ( - H [ t p ] ) ,  (3.10) 
{ r e ( r ) }  ./ 

where 

Transforming H to momentum space and integrating over ¢ leads to a representation 
of  the model in terms of  point-like excitations represented by the field m: 

d3k 2 1 

where Zo summarizes the field-independent factors we have not been writing 
explicitly and the inverse propagator, D(k), is given by 

D(k) = 6 - 4  cos k x - 4  cos ky+4 cos kx cos k y - 2  cos kz. (3.13) 

D(k) has zeros inside the Brillouin zone, and so only those configurations in (3.12) 
for which D -1 is finite will contribute to Z. The zeros of D occur along the lines 

k x = k z = 0  for all ky e B,  

k v = k z = 0  for all kx e B,  (3.14) 

where B is the first Brillouin zone, [ - ~ ,  ~']. Excluding configurations for which D 
vanishes translates into a set of neutrality conditions for the charges re(r). These 
can easily be seen to be given by 

~.e'Yk, m(r)=O for any kx, 
r 

e'xk~m(r) = 0 for any ky. (3.15) 
r 
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These conditions identify the configurations which contribute to the partition func- 
tion as those for which the sum of topological charges, ~ ,  m(r), vanishes on each 
of  the principal x-z and y-z planes of  the lattice. This is a direct consequence of 
the compound n = 2 symmetry of our model. Of course, since this symmetry contains 
a global U(1) symmetry, the above conditions imply, as they should, global neutrality 
of the m field as well. 

The complete partition function can therefore be written as 

Z = Z o  Y, exp ( - ~  m(r)G(r, r')m(r')), (3.16) 
{re(r)} 

where the sum over {m(r)} includes only those configurations for which (3.15) is 
valid, and G(r, r') is the configuration space propagator. The explicit form of the 
propagator can be obtained approximately by considering the dominant contribu- 
tions of  the Fourier transform of D -1 close to the singular lines given by (3.14). 
The result is 

( z - z ' )  2 
G(r, r ' ) - l n  Ix-x'l  In [Y-Y'I 2(x_x,)2(y_y,)2, (3.17) 

where s - s '  is the component of r - r '  in the s direction. 
The similarity between (3.16) and the logarithmic gas representation of  the 

two-dimensional x-y model suggests that, just as the point charges in the d = 2 x-y 
model are the topological excitations of the model, so that m(r) are topological 
excitations of the present theory. The interpretation of  the point charges in the 
globally-symmetric x-y model as representing the multiple windings of the U(1) 
spins around some closed contour is straightforward. The same is unfortunately not 
true in the present case. Recall, from (3.8), that the m(r) are particular combinations 
of the integer fields Kp and KL which we introduced to retain the periodicity of 
the hamiltonian in going from (3.3) to (3.4). This is still identical to the corresponding 
origin of the point charges in the x-y model. However, here it is difficult to tell 
what are the configurations for the theory defined through (3.3) which lead to 
non-zero values for m. In the case of non-zero KL, the interpretation is like that of 
the x-y model: KL represents the number of  complete rotations undergone by a 
spin as we move from a site at r to the next in the z-direction. The interpretation 
of Kp is not quite so simple, so that a geometrical interpretation of the m's is not 
entirely straightforward. It should be stressed that, as we have mentioned before 
[1], the fact that the energetics of the partition function are most simply expressed 
in terms of  point charges (in this case), does not necessarily mean that the geometry 
of  the topological excitations can be understood simply in this representation. It is 
quite possible that the m(r) are related to some quality of a different object (e.g. 
the ends of  a string), so that a complete understanding of  the topological excitations 
may require considering topological objects of higher dimension. 
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Fig. 2. The hamiltoman of  eq. (3 18). 
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A second simple model which we would like to describe here is defined by the 
hamiltonian 

H =Y. [a~I2(i; x, z )+a212(i;y ,  z ) ] ,  (3.18) 

where the notation is the same as in (3.1); that is, the theory describes four-body 
interactions around elementary plaquettes in the x - z  and y - z  planes (see fig. 2). 
This theory is invariant under  

~(x,  y, z) ~ &(x, y, z) + A,(x, y) + A2(z), 

where the A, are arbitrary functions of  their arguments. The theory thus has a 
compound  n = 2 plus n -- 1 symmetry. 

The appearance  of  an n = 1 symmetry has radical consequences: It is not difficult 
to see that, because of  this symmetry, the theory decouples into a set of  non- 
interacting two-dimensional models. In fact, for the case of  ZN (U(1)) spins, (3.18) 
can be t ransformed into a set of  decoupled d -- 2 N-state clock (x - y )  models. This 

is a general feature of  theories with n = 1 symmetries. Any such theory (when defined 
on the elementary simplices of  the lattice) decouples along the direction defined by 
the n = 1 axis. To see this, notice that the n -- 1 symmetry of  this model allows us 
to perform global rotations of  all spins which lie on any line along the z-direction. 
Therefore, by performing these linear transformations,  any particular x - y  plane can 
be t ransformed so that all its spins have the same phase. Having fixed the gauge in 
this manner,  the partition function for the model will factorize by the use of  a 
Jordan-Wigner- l ike transformation which explicitly decouples the model. 

The argument  can be applied to any n = 1 theory in d dimensions to show that 
it will decouple into a set of  non-interacting theories in d -  1 dimensions. For the 
purpose of  illustration, it is instructive to go through the argument for the one- 
dimensional Ising model,  a particularly simple n = 1 theory. 

Consider a one-dimensional Ising model in a finite lattice of  N spins with free 
boundary  conditions. The partition function for this model is given by 

Z = Y. 3~ . . .  ~ e -~E,',s,+, , (3.19) 
S 1 s 2  S N 
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where s, = ± 1 is an Ising spin at site i. Define new Ising spins tr, such that 

M 

sM = l-I o',. (3.20) 
t = l  

It follows that % = sjsj_l for j >  1, and o'1 = s~. In terms of  or,, (3.19) can be written 
a s  

Z = Y~ Z "  "" Y~ e -~2'~=2o-' = 2(2 cosh f l )N- , .  (3.21) 
o- 1 o- 2 o- N 

It is straightforward to apply an analogous transformation to (3.18) along the 
z-direction to show that it is equivalent to a stack of two-dimensional ZN clock 
models. Furthermore,  a generalization of the theorem of sect. 2 can be seen to follow 
from this non-local transformation: Because the ( d -  1)-dimensional theories into 
which the d-dimensional  n = 1 theory was transformed are non-interacting, the 
expectation value of the spin, ( s )=  0. Therefore, as we mentioned in subsect. 2.2, 
theories with symmetry index, n = 1 cannot break their global symmetry spon- 
taneously, regardless of  whether the group is discrete or continuous. 

The third model we will present has a hamiltonian which can be written as 

H =Y. [a , I2( i ;  x, z) + t~212(i ; y, z) + ot312(i; x, y ) ] ,  (3.22) 
I 

where we have used the notation described in (3.1). The model thus describes 
four-body interactions of  spins which lie at the corners of  elementary plaquettes in 
the x-z ,  y - z  and x - y  planes (see fig. 3). This theory is invariant under  the transfor- 

mation 

~b(x, y, z) --> ~b(x, y, z) + Al(X) + A2(y) + A3(z), 

and so, has a triple n = 2 symmetry. Because of  the last term in (3.22) though, it 
does not have the n = 1 symmetry of  (3.18). 

Using the techniques of  ref. [13], it is straightforward, if tedious, to perform the 
same analysis for this model as was done for the 2/24 model. It is not difficult to 
see, however, in what ways these two models differ in their properties under a 
duality transformation. The fundamental  interactions in (3.22) are defined on the 

~ [ O~ 1 
r 

r+y 

r + z  

r r+~c 

v ~ 

r 

Fig. 3. The hamiltonian of eq. (3.22). 

r r + k  
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plaquettes of  the lattice. To each plaquette in the original theory there corresponds 
a link, u~, in the dual theory, passing through the center of  the original plaquette. 
The delta-function constraints which follow from the integration over angles require 
that the sum of  the 12 u , ' s  which form the edges of  the cube surrounding the original 
lattice site vanish. These constraints are solved by defining integer link fields v~ 
such that u ~ = V x ( V y V y - V z v z )  and so on for the other two directions. The v~'s 
therefore live on links forming crosses perpendicular to the corresponding u,,. 
Defining 8z---VxVy, etc., the dual hamiltonian can be written in the form 

H = Z  F2o,  
~O 

F,,v = a,,vv - avv,,. 

The symmetry under transformations of the v~ is of  the form 

v,, --, v~ + a~A ( r ) .  

Therefore, the dual theory is a local gauge theory. One important reason for 
presenting this example is that, although this three-plaquette model seems to be 
fundamentally different from the 2/24 model, and certainly has a different duality 
structure, the phase structure of  both theories is qualitatively the same. Therefore, 
there is no simple correspondence between the duality properties of  these models 
and their phase structure. 

3.2. MONTE CARLO SIMULATIONS 

We have performed more or less extensive numerical analysis of  all the above 
models. Details of the procedures which were used have been discussed in the 
literature [13]. Here we will briefly recapitulate the general strategy employed in 
our analysis and will state the results. 

An overall view of  the phase structure of  the models was obtained by simulating 
thermal cycles. Starting from an ordered configuration at a large value of  the inverse 
temperature, flo, a thermal cycle is simulated by performing a succession of  Monte 
Carlo iterations of the lattice and increasing the temperature before starting the 
next iteration. This procedure is repeated until fl = 0 and then reversed until fl = flo. 
Several quantities of interest are measured for each iteration. Although in such a 
numerical experiment the system is never really in equilibrium, it is generally close 
to equilibrium as long as the system does not go through a phase transition. In the 
neighborhood of  a transition, however, the distance from equilibrium increases, and 
the measured quantities will show hysteresis-like loops. For the ZN version of  these 
models, this type of analysis is done for several values of N. Examples of the internal 
energy of  the 2/24 model for N = 4, 5, 6, 7, 8 and 9 are shown in figs. 4-9. Whereas 
the model for N = 4 displays a single pronounced loop, as N increases through 5, 
the appearance of  an intermediate region between two loops becomes evident. Once 
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Fig. 4. The internal energy in a thermal cycle for the model defined in (3.4) for N =4. A single, 
pronounced loop is seen to occur at the model's self-dual point/3 = In (1 + 2 L/2) = 0 . 8 8 . . .  Further analysis 
shows that this is a first-order transiUon. The lattice size for this simulation measured 15 x 15 x 15 with 
periodic boundary conditions. The step size m/3 was 8/3 = 0.001. All simulations were done using a heat 

bath updating algorithm 

these regions of  interest have been identified through this procedure, a different 
type of  simulation should be used to determine the type of  transition (in the 
infinite-volume limit) which can be associated with a given hysteresis loop. The 
pattern which is seen to emerge in all cases is that these models undergo two 
transitions for N t> No. The high-temperature transition soon becomes independent 

10 

0.8 

0.6 

0 4  

0 2  

0 0  

E 

- Z 5  

1 

0 0  0 5  1.0 15  2 0  2.5 

Fig. 5 Same as fig. 4 for N = 5. A less pronounced loop than that seen for N = 4. Further analysis points 
to two continuous nearby transitions at inverse temperatures//~ ~ 0.9 and/ /2  ~ 1.1. For thts simulation, 
as well as for those pictured in figs. 6-9, we used cubic lattices of  linear dtmension L = 20 with periodK 

boundary conditions. The step size in/3 was 8 / /=  0 002. 
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0.0 0 5  10 1.5 2 0  2,5 3.0 

Fig. 6. Same as fig 5 for N = 6. Two clearly separated loops and the appearance of  an intermediate 
phase. Further analysis points to two continuous transitions at inverse temperatures fll ~ 1.0 and l/2 ~ 1.5. 

of  N as N grows, in agreement with general arguments. The low temperature 
transition scales with N as fl~ --- 3"/[ 1 - c o s  (2 ¢r /N)] ,  with a value for the constant, 
% which depends on the details of  the model. For the 2/24 model,  3' = 0.75. 

When the transition is first order, the internal energy is discontinuous at the 
critical temperature.  This permits a very precise determination of  the critical tem- 
perature in these cases. By preparing an initial state in which half  of  the lattice is 
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0 . 2  

O0 
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O0 0 5  10 15 2.0 2 5  3.0 

Fig. 7. Same as fig. 5 for N = 7. Analyses performed in the critical regions points to two continuous 
transitions at inverse temperatures 131 = 1.0 and/3 2 = 2.0. In accordance with general principles and our 
discussion of sect 3, the second transition is seen to move toward/3 ~ o% as N grows The lengthening 

intermediate phase can be seen to be dominated by massless, spin-wave excitations. 



180 F.C. Alcaraz et al / Spin systems 

E 

0 8  

0 6  

10  

0 4  

0 2 -  

0.0 
0 0  

Z 8 

10  2 0  3 0  

Fig. 8. Same as fig. 5 for N = 8. 

40  

ordered and half of  it is completely disordered, simulations are performed at a set 

of  temperatures in the region of  hysteresis and the time-evolution of  the initial state 

is observed. At the critical temperature in a first-order transition, each half of the 

lattice will evolve into a different stable state, and the value of, say, the energy will 

appear to be roughly constant in time. At temperatures away from the critical point, 

however, the system rapidly evolves into a unique stable state. Once a good estimate 

of  the critial temperature has been obtained in this manner, it is possible to distinguish 

fairly easily between first-order and continuous transitions by observing the time 
evolution of  two extreme initial states, one completely disordered and one ordered, 

E 

1.0 

0 6  

0 4  

0 2 -  

0 0  
0 0  

Ftg. 9 

Z 9 

10 2.0 3 0  4 0  

Same as fig. 5 for N = 9. 
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at the estimated critical point. In a continuous transition, after a period of  relaxation, 

the values of  the energy for both states will coincide. At a first-order transition, on 

the other hand, the energy of  the two states will evolve to two different values. Using 
this kind of  simulation, we determined that for all models, with the exception of 
that given by (3.18), the transitions observed for N~<4 are first order. All other 
transitions observed are continuous. No effort was made to determine the order of 

the continuous transitions. 
Further analysis to determine the nature of  the intermediate phase observed for 

N ~  > Nc along the lines discussed in ref. [5] was performed for these models. The 
results are consistent with the absence of  long-range order in the intermediate phase 
and therefore with the absence of long-range order in the U(1) limit, in accordance 
with the prediction of  the theorem of sect. 2, and the behavior of  two-dimensional 

ZN clock models. 
It is interesting to note that the value of  Nc is the same for all three models 

studied in this section and coincides with the value found in two-dimensional clock 
models. All these models share the same type of  index-n symmetry;  that is, the 
constraints on A are all of  the type shown in (2.20). In the next section we will 
describe an n = 2 theory whose gauge function satisfies constraints of  a different 
form. We will find that the qualitative phase structure of  that theory is similar to 
that of  those satisfying (2.20), but with a different value of No. 

3 3 MORE GENERAL MODELS 

The models we have discussed so far share two important characteristics: They 
are all defined on cubic lattices and they all have index-n symmetries in the restricted 
sense of  (2.20). In this section we will briefly discuss two theories which differ in 
these characteristics. We will be particularly interested in finding out whether the 
phase structure of  these theories is qualitatively similar to the ones we have studied 

above and, if  so, whether the critical value of N is the same. 
The first model is a simple but interesting statistical theory of  ZN spins defined 

on a three-dimensional FCC lattice [6]. The model is described by the hamiltonian 

H = ce ~ cos A~(t~). (3.24) 

where A~(q5)= (27r/N)(~b~+ q b2-~b3- ~b4). The sum in (3.24) is over all elementary 
tetrahedra of  the lattice, and the indices on ~b refer to the four vertices of  a given 
tetrahedron. H has compound  n = 2 symmetries of  the type (2.20) and is self-dual 
in the sense we have employed above. As N ~ oo, the model has point-like topological 
excitations with interactions which are basically logarithmic. For finite N there are 
also domain-wall-l ike excitations. The phase structure of  this model is quite similar 
to that of  the two-dimensional clock models [3], the locally-symmetric ZN gauge 
theories [14], and the models described in subsects 3.1 and 3.2 above. For N smaller 
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than a critical value, No, the model has a single, first-order transition separating an 
ordered from a disordered phase (the corresponding transitions in the ZN gauge 
theory is also first order, whereas that of  the d = 2 clock models is second order). 

For N t> N~ this transition bifurcates into two softer ones demarcating an intermedi- 
ate phase with no long-range order. In the limit as N ~ oo, where the model has a 
U(1) symmetry,  the low-temperature transition moves toward T =  0 as N -2, and 
the symmetry-breaking phase disappears, consistent with the theorem of the past 
subsection. For this model,  as for the clock model in d = 2 and the ZN gauge theory 
in d =4 ,  as well as the models described in subsect. 3.1, N~ appears  to be close to 
5. Another example in this category which has been discussed in the literature is 

described by a hamiltonian similar to (3.24) but defined on an H C P  lattice. The 
general features of  this model are again essentially the same as those of the above 

models. 
The second model we would like to mention here is an example of  a theory with 

the more general type of  symmetry of the type (2.21). The theory is described by 

the hamiltonian 

H = ReY,  [as(t)s*(r+~,)+fls*(r-.~)s*(r+.~)s*(r-~)s*(r+~)s4(r)]. (3.25)  
r 

In its periodic gaussian form, the partition function of the model takes the form [4] 

N - 1  oo 
z = E  E 

{tO =0} {m,n =--oo} 

(2"/r2 2 } 
e x p / - - ~ - ~ [ - f l ( V p ~ b  , -  Nn,)2-a(Vz<- Nm,) 21 , (3.26) 

where j labels a lattice site and 

2 Vp~bj = ~j_~.+ tb,-,-+ thj+.~ + th,-.~ - 4 ~ , ,  

V,&~ = ~b, - ~b~_e, (3.27) 

where £, fi, £ represent unit vectors on a cubic lattice. An nj is associated with an 
elementary cross in the (x, y) plane, and an mj is associated with a link in the 

z-direction. 
The hamiltonian of this model, considered as a function of the 4~'s (that is, after 

summing over the n's and re's) is invariant under (2.21) with n = 2 where O~ = V~ 
and O2=Vz. The phase diagram of this model is similar to that of  the models 
described above, but with two important differences: First, for N < No, the single 
transition in this case appears  to be second order, rather than first, and for N >i No, 
the two transitions are known to be infinite order [4]. Second, the value of N~ is 
not 5, but, as a preliminary Monte Carlo analysis indicates, seems to be close to 
11. It is significant that all the known models with symmetry index n = 2 of  the type 
(2.20) have the same value of N~, while the one that does not fit into this category 
but rather has a more general symmetry of the type (2.21) has a different value for 

No. 
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4. Summary 

In this paper  we have presented the results of  a first step in a systematic study 
of theories with unusual symmetries as described in ref. [1]. We have discussed a 
number  of  theories with symmetry index n <~2, and have concentrated on three 
dimensions. In the same sense in which d = 2 is the lower critical dimension for 

ordinary spin theories with a continuous global symmetry, n = 2 is the lower critical 
value of the symmetry index for our wider class of  theories. In our study we found 
remarkable similarities between the phase diagrams and other properties of  our 
n = 2 three-dimensional models and globally-symmetric models in two dimensions. 
We also discussed a model whose n = 2 symmetry is of  a somewhat different character 
than the n = 2 symmetries of  our other examples. Significantly, the ZN version of 
this model has a value for Nc which is very different from that shared by all our 
other models and the d = 2 clock models. It thus appears  that the precise form of 
the constraints on the gauge function have a strong influence of the value of No. 

Our study has left a number  of  intriguing questions unanswered. In "addition to 
those mentioned in subsect. 2.4, it would be interesting to know how Nc depends 

on the operators  in (2.21) for the case n =2 .  It would also be interesting'to know 
how the critical exponents in our models vary from one to the other, and how they 
compare with those of  the d = 2  clock models. Series expansion and finite-size 
scaling techniques might be useful here. Finally, for those theories with n > 2, it is 
important to examine the patterns of  symmetry breaking that occur. In such theories 
there are a variety of  semi-local symmetries which may or may not be broken at 
the same point in coupling-constant space as the global symmetry. The study of 
this important  question could uncover new phases and forms of symmetry breaking 
and will deepen our understanding of critical phenomena in general. 

We are happy to acknowledge the hospitality of  the Institute for Theoretical 
Physics at Santa Barbara, where this and related work was begun. The research was 
supported,  in part, by the National Science Foundation under grant PHY77-27084. 

Appendix 

Consider the classical hamiltonian in (3.4) and think of  the z axis as defining a 
(euclidean) t ime direction. In this appendix we will construct an operator , /q ,  which 
will describe the evolution of a spin configuration at z into one at z'. Throughout  
this appendix,  we will label the z direction with an variable, t (with a lattice spacing 
r in the z direction) and consider a cubic lattice of  linear dimension L. When the 
spins are ZN variables of  the form 

s(r,  t) = e '(2~/N)n(r'O, n = O, 1 , . . . ,  n -- 1, (A.1) 

where r = (x, y) refers only to the spatial coordinates, the system can exist in any 
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of M states for each t, where 

M = N L2 . 

The classical hamiltonian we are interested in is given by 

H = Y'. [h,(t) + h2(t)], 
t 

where 

(A.2) 

h2(t) = ~ , - ½ a 2 [ s ( r ,  * A ~ ^ t )s  ( r + x ,  t ) s ( r + x + y ,  t ) s * ( r + ~ ,  t )+c .c . ] ,  (A.3) 
r 

ha(t)  = Y. - ½cq[s(r, t )s*(r ,  t + z)  + c.c.]. (A.4) 
r 

We want to construct a matrix, the transfer matrix, 7", such that the partition 
function for the model can be written as 

z = Tr [ ~L] .  (A.5) 

Calling In) a configuration of the system at time t, and In') another at time t', we 
can write 

(n'l 7"1 n) = (n'l L I  n)(nl  2~21 n),  (A.6) 

where 

(hi ~21n> - e-~h2 <') , (A.7) 

<n'l Tll n> = e -oh,<') , (A.8) 

with ha and h2 given above. We can think of s(r ,  t) as the eigenvalue of an operator 
S(r ,  t) which acts on the space of configurations, 

S(r ,  t ) ln)  = e'(2=/N)"(" ') ln).  (A.9) 

Because T2 is diagonal, it can simply be written in terms of S. To construct the 
off-diagonal part of T, 7"1, notice that, in terms of the integer phase of s(r,  t), n(r,  t), 
we can write 

(n'12rlln)=exp(/3ot2)SL._.,i.o+exp /3a2cos-~ 81._.,i.1 

+ . . . + e x p  •o/2 cos ~ .] 8 1 n _ n , i , N _  1 . (A.10) 

Because the set of states, {In)}, is complete, (A.10) can be written in terms of an 
operator R(r)  which is the ZN conjugate of S: 

(n'JRJn) = 6., .+~ (mod N ) .  (A.II) 
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It follows that 

S ( r ) R ( r )  = e"2"~/~)R(r)S(r) , (A.12) 

R N = l ,  (A.13) 

with [S(r) ,  R(r ' ) ]  =0  for r #  r'. Therefore, 

^ N--1 I 1 Tl=l -  I ~,, gg ( r )  exp flalcos2--~k (A.14) 
, k~0  N J '  

The operator hamiltonian can now be obtained by considering the limit 

with r the spacing in the t direction. The limit must be taken with A fixed, where 

fla2 
"1" 

It is easy to see from (A.14) that only the first two terms in the sum contribute, so 
that we can identify 

121=-A ~ , ½ [ S ( r ) S * ( r + ~ ) S ( r + ~ + ~ ) S * ( r + f i ) + c . c . l - l y ,  [ R ( r ) +  R*(r)].  (A.17) 
r r 

The dual operator corresponding to /~r can be obtained quite easily. Define the 
operators 

I~(r) = S(r )S*(r+ ~ ) S ( r +  ~ + ~)S*(r+ fi) , (A.18) 

P(r) = ~I ~ R(x-  nx, y -  ny) ,  (A.19) 
nx=O ny=O 

where ~ ~ ^ ^ = r+~(x+y) .  It is a simple exercise to show that 

p(~)/.* (~) = e'(2"/N)/z(~)p(I :) (A.20) 

and that 

[ p(~),/z (~:) ] - -0 .  (A.21) 

Furthermore, pN(~)=/ ,  N(~)= 1, so the dual operators have the same algebra as 
the original operators S and R. Also, 

p(r )p*(r+ x)p(r+.~+ fi)p*(r& fi) = g ( x +  ~+ fi) . (A.22) 
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Therefore, 
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f l 
+ f ) +  h c.] 

Y, [ ~ ( i )  + /~*(~) ] / •  (A.23) 
J 

From (A.17) and (A.23) it follows that 

/4(A) = A/q(1/A) ,  (A.24) 

demonstrating the self-duality of  the hamiltonian operator. The dual coupling is 
given by A = l /A, implying that the self-dual point occurs at A = 1 for all values 
of  N. 
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