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A time-dependent variant of the WKB method is developed for propagators which do not have the simple Feynman 
structure K = jexp(iS/h) with j = j( t). The method is applied to radial propagators for N-dimensional isotropic oscillators. 
An expansion in ascending powers of h results in an asymptotic series, which sums to a simple form involving a Bessel 
function. Alternatively, a convergent series for the propagator is obtained by expansion in inverse powers of tr. 

Semiclassical approximations to propagators are extensively applied in spectroscopy, scattering theory, molecu- 
lar dynamics, irreversible thermodynamics and elementary-particle theory [ 11. Terms in the WKB expansion in- 
volving higher powers of ti are less often considered. In this paper, we develop a time-dependent formulation of 
the WKB method which can be systematically extended to arbitrary powers of fi. The method is applied to the 
radial components of the Feymnan propagators for N-dimensional isotropic harmonic oscillators. 

Consider accordingly anN-dimensional Euclidean space (x1, x2 . . .xN) with the generalized radial variable 

r= (1) 

For anN-dimensional isotropic harmonic oscillator, the partial-wave propagator for hyperangular momentum 
quantum number L satisfies the radial Schrijdinger equation 

N=2,3,4...; L=O,1,2, (2) 

subject to the initial condition 

KIN)@, t’, 0) = 6 (r - r’)/(rr’)N’2_ 112. (3) 

The form of the N-dimensional Hamiltonian is discussed in a recent acticle [2]. The cases N = 2 and 3 are most 
familiar. The factor dividing the delta function in (3) arises from the weight function rN-l in the Sturm- 
Liouville formulation. 

As shown by Feynman [3 1, for Hamiltonians reducible to quadratic forms in generalized coordinates and mo- 
menta, the propagator has the structure 

K =fexp(iS/#f). (4) 

Here S represents the classical action, while the pre-exponential factorfis a function oft alone. For Hamiltonians 
not of the above type, including that represented in eq. (2), the simple reduction to eq. (4) is no longer guaranteed. 

We propose to generalize the form of eq. (4) such thatf=f(r, f, t) a function of the coordinates as well as time. 
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Substituting (4) into (2) and collecting like powers of A, we obtain 

-[S,~(1/2m)S,2+~mo2r2]f+iR{ft+(l/m)S,f,~(1/2m)S,,f~[(N- 1)/2mr]S,f} 

+ (fi2/2m) ( frr + [(N - 1)/r] fr - [L (L + N - 2)/G] f } = 0. (5) 

The segment of zerot order in R reduces to the Hamilton-Jacobi equation for a one-dimensional harmonic oscil- 
lator. The solution is well known [3,4], viz. 

S(r, r’, t) =+ mw(r2 + rr2) cot wt - mod csc ot. (6) 

We next assume an expansion of f(r, r’, t) in ascending powers of fi. We write for convenience 

f(r, r’, t) = n$o(idi2m)” f (+, r’, t). (7) 

With the use of (6) and (7) eq. (5) is transformed to a recursive relation for the f (n): 

ft(“+AJrcotwt-cdwr’cscot)p+[~Nocotot-~(N- l)o(r’/r)cscwt] f’“’ 

=f,f-” + [(N- 1)/r] f$Q- [L(L tN-2)/?] f(% 03) 

As an etude which illustrates the essential features of the method in a much simplified computation, the reader 
might consider the free particle limit o = 0 and perhaps, in addition, the “S-wave” case L = 0. 

For n = 0 in eq. (B), an obvious trial solution of the form f co) = (w’)Q (w csc ot)P works with cr = l/2 -N/2, 
fl= l/2. Thus 

f (O)(r, r’, t) = const. (r#)1/2-N/2 (w csc cdt)li2. (9) 

It is readily shown that successive functions f 0~) differ by factors proportional to ~/WV’ csc wt. We write accord- 
ingly 

f (‘) = cn (cd csc cd)-” f(O) = const. c&+)1/2-N/2-n (0 csc wt)1/2-n. (10) 

Substitution of (10) into (8) leads, after somewhat lengthy algebra, to the following ratio of coefficients: 

c,/c,,_ 1 = (n + L + N/2 - 3/2) (n - L -N/2 t 1/2)/n. (11) 

For even N the series (7) diverges since c, /c,+ I - n as n + =. For odd N, the series terminates at n = L t N/2 - l/2 
(or n = 3/2 -L -N/2). In either case, f (r, r’, t) can be represented in terms of a generalized hypergeometric series: 

f(r, r’, t) =p(r, r’, t) 2F0 [(L + N/2 - l/2), (-L -N/2 + 3/2); ; ih/2morr’ csc wt], (12) 

where [5] 

O” 0% @)n 
2Fo(~,P; ;z)= c 7 9, 

n=O 
(a), =a@ + l)...(c+r- I), (01)u = 1. (13) 

Now the function (13) appears in the asymptotic expansion for a confluent hypergeometric function,M(u, b, z). 

Specifically [6], 

Wa, b, z) - [W)/Wdl ezzaeb 2FO(b-u, 1 --a; ; l/z) as lzl +m, (14) 

where 
* (4, zn 

M(a,b,z)= IFl(n;b;z)=n~o 0 7 . :: n . 
(15) 
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It is easy to show that both sides of eq. (14) satisfy Kummer’s differential equation 

zf”(Z) + (b - z) f’(z) - af(z) = 0. 

With use of (14) and (9) in (12) we obtain 

f(r, t’, t) = const. @QL (w csc c&+~‘~ exp(2imorr’ csc ot/fi) 

X M(L +N/2 - 1/2,2L +N- 1, -2imwrr’ csc at/h). 

Note that b = 2a in M, in which case reduction to a Bessel function occurs in accordance with ref. [7] 

J&r) = GM@ ++, 2~ + 1, T2iz). 

Finally, substitution of (17) and (6) into (4) gives the desired radial prop~ator: 

@l(r, +, t) = (-i)L+N12(yrr)l-N12 (ma csc at/B) exp [imo(r2 + rf2) cot wt/ui] 

(17) 

(18) 

x JL+N,&mwn’ CSC at/‘@, (1% 
in which the constant has been adjusted to fulfill the initial condition (3). The result (14) agrees with our earlier 
derivation based on the Fourier transform of the corresponding Green’s function [2]. We note that, as is the case 
in the conventions WKB method, expansion in ascending powers of R produces an a~ptotic series [S]. 

The propagator (19) can alternatively be derived from a convergent expansion in descending powers of R. The 
calculation can be based on eq. (8) as before but now we write 

f(r, r’, t) = nio (i~/2rn)-~f~-~)(~, f, t). (20) 

with n = 1, eq. (8) admits of the solutions = # X ~function of r’ and t). More specifically, it can be conjectured 
that 

f”(r, r’, t) = const. (r+ (0 csc tit)@, (21) 

with p to be deterrnined. In analogy with (lo), we write 

ftwnl = const. ~__,(rr’~+’ (0 csc wt)P+n. (22) 

Substitution into (8) identifies @ = L t N/2 and leads to the recursion formula 

c_(~+~~/c_~ = (Al + L +N/2 - 1/2)&r t 1) (n t 2L tN- 1). (23) 

This corresponds to the convergent series for the function 

f = f’M(L +N/2 - 112, 2L +N- 1, 2imcn’ csc cot/R). 124) 

With use of (18), we again arrive at the propagator (19). 
For odd dimension N, the propagators can be expressed in terms of spherical Bessel functions. Specifically, for 

N= 3,withL =I: 

K&, i, t) = (-i)‘+312(21n)1’2(mw csc c.ot/fi)3’2 exp[imo(r2 + r’2) cot wt/%j Jl(morr’ csc a#). (25) 

With use of the addition theorem [9] 

exp(iz cos 0) = l$u (21 t 1) ii Jr(z) Pl(cos e), (26) 
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the sum over partial waves 

K(r, f’, t) = & [(21+ 1)/47r] P,(cos fqzq(r, r’, t) (27) 

results in the familiar three-dimensional harmonic-oscillator propagator [3,4] 

K(r, i, t) = (mw csc wr/27riR)3’2 exp{(imo/2A) [(r2 t rf2) cot wt - 2r.C csc at]}. (28) 

This propagator has, of course, the simple Feynman structure (4) withf=f(t). 
In a separate publication, we apply the time-dependent WKB expansion developed here to the Coulomb propa- 

gator, for which the semi-classical approximation was recently given [lo]. 
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