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Abstract: The problem of setting a confidence interval with fixed proportional accuracy for the 
mean of a normal distribution is considered. A sequential procedure is proposed; and asymptotic 
expansions for its average coverage probabilities and its expected sample size are obtained. The 
procedure is shown to have asymptotically minimal expected sample size, subject to a constraint 
on the error probabilities. 
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1. Introduction 

The possibility of using sequential methods to set a fixed width confidence inter- 
val for the mean of a distribution with an unknown variance has attracted substan- 
tial interest in theoretical statistics. This interest was stimulated by Stein's (1945) 
two-stage procedure, the fully sequential procedures of Anscombe (1953) and Chow 
and Robbins (1965) for the normal and non-parametric cases, and Hall's (1981) 
three stage procedure. The recent paper by Finster (1985) describes multiparameter 
extensions and may be consulted for further references. 

Much of this research exploits the independence of the sample mean and variance 
in the normal case. The independence provides a simple relation between the 
coverage probability of a sequential procedure and the first two moments of the 
stopping time; and this relation Permits a second order asymptotic expansion for the 
coverage probability as the width of the interval shrinks to zero. See, for example, 
Anscombe (1953), Hall (1981), and Woodroofe (1982, Section 10.2). The second 
order terms in these expansions are especially interesting, since the effect of optional 
stopping appears there. 
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The objective of this paper is to provide a simple example of a related problem 
in which the estimator and the stopping time are much more highly dependent, but 
a weak asymptotic expansion is still possible. Suppose that potential observations 
X1,X2,.. .  are independent and normally distributed with unknown mean 
0, - oo < 0< oo, and unit variance, and a confidence interval with fixed proportional 
accuracy is sought. Let 

S n = X  1 -F "" + X  n and f ( n = S n / n ,  n >  1, 

denote the partial sums and averages of X~, Xz,... ; and consider estimators of 0 of 
the form 

O,=Xn-6,/n,  n>_l, (1) 

where 

6.  = b . ( . e . ) ,  n_>l, 

and b,,, n_> 1, is a convergent sequence of absolutely continuous functions on 
( -  oo, oo). (In the sequential case, the sample mean may be a biased estimator, and 
an appropriate choice of b,,, n>_ 1, may reduce bias.) 

Next, let A denote a continuous, almost everywhere positive function on 
(-oo, oo), the proportionality function; and let zJn =A(XD denote the maximum 
likelihood estimators of A(O) for n >0.  If t= t(Xl, X2, ...) is a stopping time, let 

Yh(t; 0)=Po{ 10,-el <-hi/At} (2) 

denote the probabil i ty that 0t differs f rom 0 by at most hl/zJt. Given 0 < y < 1 and 
a small h > 0, a stopping t imne t is sought for which Yh(t; O) ~-. y for all -- oo < 0 < oo. 
The closely related forulation in which CZ~ t is replaced by ]/d (0) in (2) is considered 
too.  

Motivation for the formulation(s) is provided by supposing that 0 is the mean dif- 
ference between two treatments which have been administered to a pair of patients 
in a clinical trial. If ]0[ is large, then ethical considerations demand that the experi- 
ment be terminated as soon as the sign of 0 is determined, since then one number 
of each pair is receiving a greatly inferior treatment. While, if 101 is small, then the 
ethical demands are less, and more data is needed to determine the sign of 0. Pro- 
portionality functions of the form d(0)=  1 + aO 2, with a >  0, are suggested in such 
a c a s e .  

The exact meaning of ~ here is complicated. If ~ is a density on ( -  e~, oo), and 
t is a stopping time, then the average confidence level of t unde ~ is defined to be 

Yh(t; ~)----- l ~ Yh(t; 0)~(0)d0,  (3) 
J-- Oo 

and the approximate equality .~ is interpreted to mean that 

Yh(t; ~) = y + o(h 2) (4) 
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as h ~ 0  for a large class of densities ~, twice continuously differentiable densities 
with compact support. 

Average confidence levels have been considered recently by Stein (1981) and by 
Woodroofe (1986) in a sequential setting. Rationale for replacing confidence levels 
by their averages is provided in Section 1 and 6 of  the latter. 

The paper proceeds as follows. A sequential procedure is defined and studied in 
Section 2. Some properties of average confidence levels are described in Section 3. 
The main result, a n  asymptotic expansion for the average confidence levels 
of the sequential procedure, is presented in Section 4. The sequential procedure 
is shown to have asymptotically minimal expected sample size, subject to (4), in 
Section 5 and 6. 

2. The procedure 

To understand the procedure, it is useful to have a first approximation to the 
sample size required. If At were replaced by d(0) and t were replaced by a fixed 
sample size n, in the formulation then 

Po{IXn-OI<_hl/A(O)}>_7 iff n>N=c2/h2d(O),  (5) 

where 2¢~(c)- 1 = Y and ¢~ denotes the standard normal distribution function. Here 
N represents the first approximation. 

The sequential procedure effectively estimates N and stops as soon as the sample 
size exceeds the current estimate. Let gn, n _> 1, denote convergent sequence of con- 
tinuous functions on (-oo, oo) for which g n > - n  for all n; and let 

cn=c]/{1 + ~n/n}, 

where gn =g,,(R~), for all n= f,2, ... .  Then the sequential procedure t= th is defin- 
ed by 

t = inf{n > m: n > c~/h2z~n }, (6) 

where m > 1 denotes an initial sample size and the infimum of the empty set is 
understood to be oo. In fact, by the Strong Law of Large Numbers and the Law of 
the Iterated Logarithm, t<  oo w.p. 1 (P0) unless d and its first two derivatives all 
vanish at 0. 

Properties of t may be deduced from the non-linear renewal theorem of Lai and 
Siegmund (1977,1979), under modest conditions. To see how, write 

where 
t =  inf{n > m; Zn > c2/h 2 }, 

Z n ----- l l Z t n C 2 / C  2 for n > 1, 
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and observe that if A is differentiable at a fixed 0 then Z,,, n___ 1, may be written 
in the form 

Zn= Tn + Un, 

where 

and 

(7) 

Tn = T~,o= hA(O) + A'(O)(S~- nO) 

U.  = U~,o = n [ a  ( g . ) -  A(0)  - A ' ( 0 ) ( g n -  0)] 

+ nA(XDtc2/c 2 -  1] = U~ + U~,', say, (8) 

for n = 1, 2, . . . .  Since each Tn, n >_ 1, is a random walk, this is of the form con- 
sidered in the non-linear renewal theorem. 

To exploit this observation, some conditions are needed. In their statement, 1 
denotes a compact interval, 

Et( W) = su p Eo( W ) (9) 
OeI 

for non-negative random variables W, possibly depending on 0, and Pt(B)=Et ( ID 
for events B, possibly depending on 0. 

Condition G on I: gn, n_> 1, are continuous functions on ( -o  o, o~) for which 
gn >-- ½n on ( - ~ ,  co), gn ~ g  uniformly on L and 

Observe that 

SUpn ~n4 ] < ~" 

(10) holds, if gn, n ~ 1, are dominated by a polynomial. 

(10) 

Condition D on I: A is a continuous, almost everywhere positive function on 
( -  ~, ~);  A is positiveand twice continuously differentiable on some neighborhood 
of I; Izl'l > 0  a.e. on I; and (10) holds with ~,, replaced by z~n for n _ l .  

Theorem 1. Let I denote a compact interval; and suppose that conditions D and G 
are satisfied on L Let 

t * = t ~ = ( t - N ) / ~ N  and R h = Z t - c 2 / h  2, h>O. 
Then 

t*= N[O, A'(0)2//1(0) 2 ] 

as h~O for  all 0~I ,  where ~ denotes convergence in distribution. I f  0 ~ I  and 
A'(O) :/: O, then 

where 

with 

Rh=R - H  O, 

Ho{dr}=I1/Ee(Ta)]Pa{Ta>r } dr, r > 0 ,  

a = i n f { n >  1: Tn >0}, 
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and R h is asymptotically independent o f t *  as h~O, under Po. Finally, i f  Oe I  and 
d'(O) ~ O, then 

where 
lim E o ( t -  N)  = ct(O)/A(O) 

Proof. The theorem follows directly from Theorems 4.2 and 4.5 of Woodroofe 
(1982), with Ak equal to the sample space and l k =0 for all k in the latter. The con- 
ditions imposed in these theorems are verified in Lemmas 1 and 2 below. 

The calculation of quantities of the form ~o is discussed by Woodroofe 
(1982, p. 33). 

Recall that random variables Vn, n _  1, are said to be slowly changing i ff  
max{I Vkl: k < n }  =Op(n) and for every t > 0 ,  there is a ~ > 0  with 

P I m a x [ V " + k - V n [ > t l < e  I,.k<_.n6 for all n >  1. 

Lemma 1. Suppose that conditions D and G are satisfied on a compact interval I. 
Then, for  each 0 ~ L 

U n ~½A"(O)x 2 -  A(O)g(O) (11) 

as n--, oo under Po, where X 2 denotes a random variable which has the chi-squared 
distribution on 1 degree o f  freedom; and Un, n> 1, are slowly changing under Po. 
Moreover, 

supEIImaxlUn+klzln Lk<n < ~  (12) 

and 
Oo 

E Pz{lU.l>ne}< °° for  all e>0.  (13) 
n = I  

Proof. Relation (11) is clear; and the slow change of Un, n > l ,  follows directly 
from Example 4.1 of Woodroofe (1982, pp. 41-42). To establish (12), write 
U, = U~ + U~, as in (8). Then 

IuXl-<2A. Ig.I, for n_>l; 

so, Un, n >  1, satisfy (12) by Schwarz' Inequality, since A n and gn, n > l ,  both 
satisfy (10). Next, let J denote a compact neighborhood of I on which A is twice 
continuously differentiable; let t~ denote the distance from I to J ' ,  the complement 
of J;  and let K=maxjlA"[. Then 

max I Un + k [ <- K max (Sk - kO)2/n 
k<n k<2n 

+sup  I l l{ lY:k-Ol > >-n} 
k>n 
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for all n >_ 1. Here the first term has a distribution which is independent of  0 e I; and 
its square is uniformly integrable by standard maximal inequalities (cf. Woodroofe 
(1982, pp. 48-49)). The square of the second term is dominated, since A satisfies 
(10) and k4Po { I Xk I > 6 } is summable for all ~ > 0. Finally, (13) follows from (12) 
and Markov's Inequality. 

Lemma 2. I f  conditions D and G are satisfied on a compact interval I, then there 
is an e = e(I) for which 

P1{t<eh-2}=o(h 2) and E l { t I { t> l / eh2}}=o(1)  

as h~O. 

Proof. Let J and ~ be as in Lemma 1; let K and K '  be upper bounds for d and A'  
on J;  and let a = c2/h z and e = 1/4K. Then t < ea implies X t ~ J', 

P1{t<log2a} < ~ Pt{2kz l ,>a}  
k < log 2 a 

= O[a -2 log6(a)] = o(h 2), 

and 
P/{log 2 a<t<ea}  <Po{ IX,[ > ~, ffk > log z a}, 

which is of smaller order of magnitude than h 2, by elementary calculations. This 
estabishes the first assertion of the lemma. 

For the second, let Ko=inf jA and t=Ko/2C z. If n > l / e h  2, [~n/n] <1, and 
X.  e J, then t < n; so, 

ez{t>n} <-Pl{l ,/nl > 1} +P0{ I ',1 
for all n > 1/eh 2. Since the sequence on the right is summable, the second assertion 
follows easily by a simple summation by parts. 

3. On average confidence levels 

The key to computing average confidence levels is the following observation: if  
is a density and t is stopping time, then 

Yh(t; ~ ) = P {  IO- ~t[ < h~z~t}, (14) 

where P= P¢ denotes probability in the Bayesian model in which 0 has density 
and XI, X2,... are conditionally independent normal random variables with mean 
0 and unit variance, given 0. The measure P may have to be defined on the product 
of  the original space with ( -  ~,  ~) ;  if so, the random variables Xl ,  X2, ... are to be 
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injected into the large space. Of  course, optional stopping has a much smaller effect 
in the Bayesian model than it does on frequentist calculations. 

Throughout  this section, ~ denotes a fixed density with satisfies the following con- 
ditions: for some - co < 0o < 01 < co and q>_ 2, 

~(0) = (0 - 00)q+ (01 - 0)q+ ((0) (15) 

for - co < 0 < co, where ( is a positive twice continuously differentiable function on 
( -  co, co) and (x)+ =max{x;  0} for - co < x <  co. 

For each n = 2, 3 , . . . ,  let A n denote the event 

A n =  {00 + log/ ' / /¢//< S. < 01 --log r//¢/'/}. 

Then an easy exercise shows the existence of a constant K =  K(O,  depending only 
on ~, for which 

P(~__nm~) <K(logn/l/n) 3 (16) 

for all n = 2, 3, . . . .  For  the details, see Woodroofe  (1986), where it is also shown that  

E (sup [(X" n - 00)+ 2 + (0 , -  X'n)+2 ]In.1 < co. (17) 
kn>l ) 

For  each n = 1, 2, . . . ,  let an denote the sigma algebra generated by X1, . . . ,  An. 
Then, the conditional (posterior) distribution of  0 given 9n has density 

gn(s) ~ exp { - n(s - xn)E/2}~(s) 

for  - c o < s <  co. The conditional distribution function of  l/n(O-Xn) given an is 
needed. Define el, e2, and G =rn(z, Xn) by 

and 
= e2 = (18)  

P{1/n(S:n- O)<-z[ an} = cli(Z) + (1/l/n)~ln#P(Z) 

- (1/2n)~2,,z¢(z) + (1/n)rn (19) 

for - c o < z < c o  and n =  1 ,2 , . . . ,  where 0/0  is to be interpreted as 0 in (18) and 
e-in =ei(Xn) for i=  1,2 in (19). Then a Taylor series expansion and some algebra 
show that  

rn~O w.p. 1 (P) ,  

Irnl <_K{(Xn-Oo)+2 +(O1-Xn)?~ 2} on A,, 
(20)  

for all - co < z < co and n > 2 for some K depending only on ~. In addition,  it is easily 
seen that e~n and [e2n[ are bounded by the right side of (20) on An for some K. 

With/~n as in (1), it follows from (19) and (20) that 

P{lO-dnl <-hl/Anl a.} 
=2¢b(Cn)- 1 -(Cn/n)¢(Cn)II~n + 26nOln+~2nl+(1/n)rn.o, (21) 
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where 

and 
C, = h¢(nitn) (22) 

[rn.o[ <K{(,~n- 00)+ 2 + (01 -X'n)+2 }{ 1 + 64}/~/n + 2sup [rn(z) [ 
z 

on A,  for all n = 2, 3, ... for some constant K. 
In order to integrate these expansions, additional conditions are needed. Again, 

let I denote a compact interval. 
Condition B on I: bn, n_> 1, are continuous functions on (-oo, oo) which con- 

verge to an absolutely continuous limit, uniformly on I. 
In the next lemma, ~t denotes the sigma algebra of events determined prior to 

a stopping time t. 

Lemma 3. Let ~ denote a density o f  the form (15): suppose that conditions B, D, 
and G, are satisfied on the support [ o f  ~; let t = t h, h > O, be any stopping times 
for  which 

t/N--, 1 in probability, (23) 

P{ t < eh -2 } = o(h 2) (24) 

as h~O for  some e>0; and let F=Fh denote any ~t-measurable events for  which 

P(F')=o(h 2) as h~O. (25) 
Then 

where 
l I ~h(t; ~)= [2¢}(Ct)- 1] d P - h 2 c - l  O(c ) fl~ dO + o(h2), 

B = F N A t N { t > e h  -2} and f l = A b 2 - 2 ( A b ) ' + d  ". 

Proof. It follows directly from (16) and (24) that 

P(B')=o(h 2) as h~0 .  (26) 

Since posterior distributions are unaffected by optional stopping, it follows from 
(21) and (26) that 

Yh(t; O = P I B ,  [O-•tl <-h~/zlt} +0(h 2) 

= I e{lO- 'l<-hl/Ai[ ~t} de+°(h2) 
B 

=IB [2*(Ct)- I] ~P-h2 IB (I /h2t)Ctl~(Ct)[~t+2etel t+e2t]k~P 

+ IB (1/t)rt'° dP+ o(h 2 ) (27) 
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as h~0 .  Since 6t are bounded B, it follows easily from (17) and (20) that the last 
line in (27) is o(h 2) as h"*0. Next, the integrand on the middle line converges to 
c-l$(c)zI [bE+ 2be1 + e2] in probability as h-,0; and the integrand is dominated on 
B, as above. So, the integral converges to 

f f c--lqb(c) A[b2~+2b~'+~ "1 dO=c-ldp(c) [Ab2-2(Ab)'+A"]~dO, 
O0 - - 0 0  

by the dominated convergence theorem and a simple integration by parts. This com- 
pletes the proof of the lemma. 

Remark 1. The proofs of (26) and (27) used only conditions (24) and (25), not (23). 

4. Average confidence of the sequential procedure 

The main result is presented next. 

Theorem 2. Let I denote a compact interval; suppose that conditions B, D, and G 
hold on I; and define t by (6). Then 

)Ph(t; ~) -~ ~ + h2c-l~(c) l LO d-Ag -fl]~ dO+ o(h 2) (28) 

as h-,O, for  all ~ of  the form (15) with support in L where fl is as in Lemma 3. 

Proof. Let ~ denote a fixed density, as described in the theorem; let e be as in 
Lemma 2; and let F=Fh be the event F =  {t_< 1/eh2}. Then conditions (23), (24), 
and (25) are satisfied, by Theorem 1 and Lemma 2. So, Lemma 3 is applicable, and 
it suffices to consider the integral of 2¢~(Ct)- 1. Now, 

C 2 - h E Z , 4 / c  2 

= c 2 + h2Rh + c2g t / t  + h2Rh~t / t .  

Let 

Then 
q/(x) = 2q~(1/x) - 1 for x >  0. 

i [2¢~(Ct)- 1] d P =  ~, + 
B B 

=) '+ IB 

W(cZ)] dP + o(h 

dP + o(h 2) 

for some intermediate point C~' between Ct and c. Now, h2t~c2/d(8) and Ct~c  
w.p. 1 (Pe) as h ~ 0  for all 0~I; and R h = R - H  0 under Po as h- ,0  for a.e. 0~I. It 
follows easily that 

h-2ql ' (C~2)(C 2 - c 2) =~ ~'(c2)[g + Zl (0)g(0)] 
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under P as h ~ 0 ,  where the conditional distribution of R given 0 is Ho. Moreover, 
Ct >½c on B,~ 2 are dominated, and E[R~Is] remains bounded as h~0 ,  by Lemma 
4 below. So, 

f l h -2 u/'(C~2)(Ct2-c 2) dP-*c-lq)(c) [0+ Agl~ dO 
B - o 0  

as h--,0. This completes the proof of the theorem, except for Lemma 4; the latter 
is presented below. 

The function gn, n_> 1, which appear in the definition of t, are design 
parameters. The first corollary indicates how they may be chosen to make the 
average confidence levels be at least y +  o(h 2) for all ~ of the form (15). 

Corollary 1. I f  Q+Ag> (= )  fl, then 

Yh(t; ~) >-- (= )  Y + o(h 2) 

as h~O, for all ~ of  the form (15) with support in t. 

(29) 

Corollary 2. I f  Conditions B, D, and G are satisfies on every compact interval I, 
then (28) holds for all ~ of  the form (15); and i f  Q+Ag>_ (=) fl, then (29) holds 
for all ~ of  the form (15). 

Example 1. Suppose that bn = 0 for all n >_ 1, so that/~n = ' (n  for all n > 1. Then the 
function g of Corollary 1 is g= [A"-  Q]/A. Let gn = min{n, max{ -½n, g}} for n >  1. 
If A satisfies condition D on an interval I, then it is easily seen that gn, n >  1, 
satisfy condition G on L 

Example 2. For the sequential procedure t, Xt may be a biased estimator of  0. In 
fact, if conditions D and G are satisfied on an interval I, then it may be shown that 

Eo{Yc, } = o + h c-2A'(O) + o(h 2) 

for all 0 e I, by using techniques described by Siegmund (1978). This suggests letting 
b = A ' / A  and  Q + A g  = -A  (log A)' .  As above, if A satisfies condition D on an inter- 
val I, then appropriately truncated versions of b and g satisfy conditions B and G 
on / .  

If b = A'/A, and if conditions B, D, and G are satisfied on an interval I, then the 
relation 

P{O-t~t<-h~zlt}=P{O-t~t>h~zlt} + o(h2), 

for all ~ of the form (15) with support in I, may be proved along the lines of 
Theorem 2. 

Remark 2. The function Q may be computed as in Example 2.4 of Woodroofe (1982) 
with/z = A (0) and tr = [A'(0) I . 
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Remark 3. Alternatively, if  Q is replaced by 0 in (28), then the = is replaced by _> ; 
and if g=fl /A,  then the average coverage probabilities are _> y + o(h 2) as h- ,0 .  The 
proofs of these relations are simpler than that of Theorem 1: one simply notes that 
C2>c2{1 +~t/t} and proceeds as in the proof of the theorem without the com- 
plicatiang references to R h. 

Remark 4. The conditions on the prior Q may be relaxable, although some 
smoothness is required. At present, the most general such conditions are not known 
(by the author). 

Remark 5. Theorem 2 does not assert that yh(t; 0 ) - 7  =h2c-l•(c)[• +Ag-fl](O)+ 
o(h 2) as h--,0 for fixed 0. There are small oscillations, of order h 2, which are 
damped by the integration. See Woodroofe aJad Keener (1986). 

For the alternative formulation, in which zin is replaced by A(0), let 

?(t; o)=Po{lOt-Ol (30) 

for stopping times t, h > 0, and -oo < 0 < ~ ;  and define average confidence levels 
yh(t; ~) by (2) with Yh replaced by yh for densities ~. 

Theorem 3. Let I be a compact interval; suppose that conditions B, D, and G are 
satisfied; and define t by (6). Then (28) with Yh replaced by yh and ~ by 

f l* = f l +  ¼(C 4 -- c2)A "2/A + ½c2A " - c2bA , 

holds as h~O, for  all ~ o f  the form (15) with support in L 

The proof of Theorem 3 is similar to that of Theorem 2 and is, therefore, omitted. 
In addition, Corollaries 1 and 2 have obvious analogues. 

In the proof of Lemma 4, it is convenient to let N'=eh -2 and N"= 1/eh 2, where 
e is as in Lemma 2. 

Lemma 4. Under the assumptions o f  Theorem 2, 

E{R2IB} =O(1) as h~O. 

Proof. Let a = c2/h  2, let Tn, n>_ 1, be as in (7), and let 

V=max{IU, l:N'<_n<_N"}. 

Then E(V 2) is bounded, by Lemma 1. Now Rh=(Tt -a )+ Ut and IUtl <- Von B, so 
that 

P{B, Rh> 2r } < P{B, R h >2r ,  V< r} + P{  V > r} 
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for all r > 0 and h > 0. For fixed 0 e / ,  let a denote the first passage time for the 
unperturbed random walk, 

a=inf{n>_N': Tn>a+r}. 

Then B, Rh>2r, and V<_r imply t = a .  So, for all r > 0 ,  h>0,  and 0~I, 

Po{B, Rh > 2r, V< r} < Po{ To- (a + r) > r} 

<sup Po{ 7:'1 > r + s t T1 > s}. 
s>0  

That 

E{R~Is}=2 forP{B,  Rh>r} dr 

remains bounded as h ~ 0  follows easily. This completes the proof of Lemma 4 and, 
therefore, that of Theorem 2 too. 

5. Two lemmas 

Two lemmas are needed to establish optimality. 

Lemma 5. Suppose that ~ is o f  the form (15) with support L Suppose also that h 
is twice continuously differentiable on I, and let 

Hn=Kn +(1/n)i~'~E(ell ~D + (1/2n)/~, 

when XneI ,  where/~n=h(~'D, /;~,=h'(Xn) and/;~,=h"(XD for n>_l. Then 

lim E I sup k IE(h(O) ] ~D - nk  l lAkl = O. 
n-,~* Lk>n ) 

Proof. By Taylor's theorem, 

h(O) - fin = t?n(O- Xn) + ½ ~ ( 0 -  Xn) z + ½ [h'(0*) - h ' (XD](0-  XD 2 

for some intermediate point 0* between 0 and X" n, whenever Xn e I and n >_ 1. 
Moreover, if ~n e I, then a simple integration by parts shows that 

EI(O-.Xn) } ~nl = (I/n)E(el ] -~n), 

ft(O-Xn)21Y~l = 1/n + (1/n2)E(e2] ~n)" 

See Lemma 1 of Woodroofe (1985). The lemma now follows easily from the fact 
that the conditional expectations on the right are uniformly integrable martingales 
and some simple algebra. 

Lemma 6. Suppose that ~ is o f  the form (15) and that condition D is satisfied on 
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the support I of  ~; let t = th be any stopping times for which (23) and (24) are 
satisfied; and define B as in Lemma 3 with any F for which (25) holds. Then 

ii l t[A (0) - A,I d P  ~ - ~ A"~ d0 (31) 
B - o o  

as h ~ 0 ;  and if t is the sequential procedure (6), then 

.t'8 d ( t - N ) d P ~ I ~ -  ~ a~dO, (32) 

where a = o + A g - ½ A "  as in Theorem 1. 

Proof. By Lemma 5, the integral in (31) is 

1 l f tE(d-z l t l  Y t ] d P ~  (A'~'+½A"OdO=-½ d"~dO 
B - o o  - o ~  

as h-*0, establishing the first assertion of the lemma. If t is the sequential procedure 
(6), then 

. lnA(O)(t-N) dP= lnt[A(O)-zlt] dP + Io(tz]t-c2/h2) dp. 

The first integral is given by (31); and the second converges to J(Q + Ag)~ d0, as in 
the proof of Theorem 2. 

Remark 6. Alternatively, (32) may be established by showing that the convergence 
in Theorem 1 is bounded. 

6. Asymptotic optimality 

In this section it is shown that the sequential procedure (6) is asymptotically op- 
timal up to terms which are small compared to the cost of a single observation, 
among all stopping times for which (24) is satisfied. The proof studies a related de- 
cision problem in which the statistician must select a sample size n and incur a loss 

Lh(i~ O)-~ a c 2 h - 2 I {  10-~nl  ~> h~zlt} + hA(O)- c2h-2[A(1 - ),) + 11, 

for n_> 1, - oo < 0< oo, and h >0 ,  where A = 1/c¢)(c), ~b denotes the standard normal 
density, and c denotes the ½(1 + y) quantile of the standard normal distribution. If 
t is a stopping time and ~ is a density, then the risk function of t and the integrated 
risk of t with respect to ~ are denoted 

I 
o a  

rh(t; O) =Eo[Lh(t; O)] and rh(t; ~) = rh(t; 0)~(0) dO. 
- -  0 0  
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Observe that r(t; ~) may be written in the following two ways: 

rh(t; ~)=E[Lh(t; O)l, 

rh(t; ~)=Ac2h-2{[1-yh( t ;  ¢)] - [1 - )']} + 2-t'°~o~ Eo(t- N)(A O(0) dO. 
(33) 

The three terms in L represent the cost of not covering 0, the cost of sampling, 
and a normalization. With this interpretation, the cost of a single observation is 
A(O). 

Theorem 4. Let I denote a compact interval; suppose that conditions B and D hold 
on I; and let ~ be any density o f  the form (15) with support in I. I f  t=th, h>0,  are 
any stopping times for  which (24) holds, then 

lim inf rh(t; O>- l?oo (]3-½A')~ (34) 

where fl = b 2 - 2(bA)' + A" as in Theorem 1. Moreover, the limit exists and there is 
equality in (34) when t is the sequential procedure (6) with g = ( • -Q) /A.  

The proof of Theorem 4 is presented below. The following corollary shows that 
in order to have the average confidence levels be at least ~, + o(h2), the average ex- 
pected sample size must be at least that of the sequential procedure (6), up to (1). 

Corollary 3 . / f  t = th, h > 0, are any stopping times fo r  which (24) holds and 

y(t; ~ )>y+o(h  2) as h--~O, (35) 

for all of  the form (15) with support in I, then 

I ?oo [Eo( t - N)  - (i~ - ½ A " ) / A l ~ dO >- o(1) (36) 

as h--,O for  all ~ o f  the form (15) with support in I. Moreover, there is equality in 
(35) and (36) when t is the sequential procedure (6) described above. 

Proof .  If t = th, h > O, satisfy (24) and (35), then 

I ~_~__ Eo( t -N)zI~  dO_>rh(t; O + o(1) 

> I ?  ( f l -  ½A")~ d0+ o(1) 

for all ~ of the form (15) with support in I, by Theorem 4. The first assertion now 
follows by replacing ~ with ~0oc~/A. The second follows easily from Theorem 2 
and Lemma 6. 

Proof  of  Theorem 4. Let t = th, h > 0, and ~ be as in the statement of the theorem. 



M. Woodroofe / Confidence intervals with fixed accuracy 145 

In the proof, h approaches zero along a subsequence for which the lira inf in (32) 
is attained; and the lira inf is assumed to be less than oo, without loss of generality. 

From (26) and Lemma 6, the integrated risk may be written 

where 
rh(t; ~) = h-2~'l q" l 2 d- O(1), 

I l = ~ [K(C2)-K(c2)] dP, 
3 B 

K(x) = 2 A c 2 [ 1  - O(]/x)] + x ,  x > 0 ,  

l t 12=Ac 2 (1/h2t)CtO(Ct)[6~+26t~lt+~.2t] d P +  [d t e l t+sd t l  dP, 
B B 

Ct = hl/(tz~t), and B is as in Lemma 3, with F equal to the sample space. 
The first two derivatives of K are 

K'(x) = 1 -Ac20(]/x)/]/x, K"(x)=Ac2(1 + x)O(x)/2l/x 3 

for x>0 .  Thus, K is a convex function, since K#>0;  and K attains its minimum at 
x= c 2, by definition of A. So, I 1 is non-negative. 

Next, it is shown that (23) holds. Since z~t--*A(O) in probability as h ~ 0 .  Given 
e>0 ,  let d denote the minimum of K(x2)-K(c 2) when I x - c  I >e.  Then d >0,  and 

rh(t;  ~ ) >  t ~ h - 2 p {  [ C , - c  I > e} + / 2  + o(1)  

for all h > 0 .  Since rh(t; ~) is bounded above and I2 is bounded as h--*0 (along the 
subsequence), it follows easily that Ct-*c in probability. 

Finally, as in the proof of Lemma 3 and 5, 

I2~ I~_ (fl-½d")~ dO 

as h-~0 (along the subsequence); and the first assertion of the theorem now follows 
easily from the non-negativity o f /1 .  

The second assertion of the theorem follows directly from Theorem 2 and 
Lemma 6. 

Remark 7. The condition (24) imposed in Theorem 4 is inelegant and may limit the 
theorem's interest to some extent. The necessity of this condition is still unresolved. 
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