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THE FINITE ELEMENT RESPONSE MATRIX METHOD FOR THE 
SOLUTION OF THE NEUTRON TRANSPORT EQUATION 
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Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan, U.S.A. 

Abstract--The finite element response matrix method has been applied to the solution of the neutron transport 
equation. This method has previously been applied to the neutron diffusion equation for coarse mesh reactor 
analysis with excellent results. As with the diffusion equation implementation, the transport method employs a 
local-global projection technique to allow treatment of internal heterogeneities that would normally not be resolved 
by the coarse global mesh that is needed for computational efficiency. However, since the transport equation 
includes the angular domain, the local~lobal projection technique has been extended to angle as well as space. 
Since the response matrices do not depend on the multiplication factor, a conventional fission source iteration 
method is utilized for criticality problems. The method has been applied to the one-dimensional and two- 
dimensional neutron transport equations. For one-dimensional geometries, the local global projection method 
yields excellent results, indicating the potential of this approach as a viable coarse mesh transport method. 
Numerical results are presented for several one-dimensional configurations that were analyzed with varying choices 
of local and global meshes in the spatial domain. Preliminary results with two-dimensional applications indicate 
that computational times may be an order of magnitude faster than with the conventional finite element solution of 
the two-dimensional transport equation. 

1. INTRODUCTION 

The development of the application of the finite 
element method to the neutron transport equation 
may be divided into two approaches: variational 
methods applied to the second-order form of the 
neutron transport equation and weighted residual 
methods applied to the conventional first-order equa- 
tion. Early work with the second order form dealt with 
finding a solution on the complete phase space 
domain. 9"I° Later efforts partitioned the spatial 
domain into smaller regions and recast the method 
into a response matrix or interface current 
approach. 2'3 Work on the first-order form has pro- 
ceeded in a similar fashion. One- and two-dimensional 
applications 7'16 demonstrated the success of the 
conventional finite element method. Subsequent 
effort 5'6's employed a partitioning (or segmentation) 
of the spatial domain into sub-regions with a global 
iteration technique coupling the sub-regions together, 
achieving a significant increase in computational 
efficiency. This approach has many similarities to an 
interface current approach, although would not be 
classified as a response matrix method. 

In this paper we present the development of a 
response matrix formulation of the finite element 
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method applied to the first-order form of the transport 
equation. The inspiration for this approach is a finite 
element response matrix method applied to the 
neutron diffusion equation. 12 As in that work, two 
levels of polynomial expansions (i.e. with finite element 
basis functions) are used. One, the local level, is defined 
on a mesh fine enough to provide reasonable accuracy. 
The second, the global level, is a coarser mesh which 
reduces computational effort. The methodology for 
linking the local and global calculations is a key aspect 
of the overall method. 

In Section 2, we present the basics of the response 
matrix formulation in which the conventional re- 
sponse matrix is divided into two matrices in order to 
remove the dependence of the response matrix on the 
multiplication constant. A typical mesh (either global 
or local) is described in Section 3, and response 
matrices are developed by expansion of fluxes and 
sources in terms of finite element basis functions 
defined on the given mesh. In Section 4, the finite 
element method is applied to the first-order neutron 
transport equation on the local mesh, obtaining the 
local response matrices. Then, by projecting the local 
solution onto the global mesh, global response 
matrices are defined. The results of application of the 
response matrix method to several one-dimensional 
benchmark problems are discussed in Section 5. 
Conclusions are drawn in Section 6, and the 



238 J.A. RATHKOPF and W. R. MARTIN 

application to two-dimensional geometries is briefly 
discussed. 

2. RESPONSE KERNEL EQUATIONS 
In this section, the alternative formulation of the 

response matrix method is modified from that pre- 
sented by Nakata and Martin ~2 to allow application 
to the transport equation rather than the diffusion 
equation. Here, response kernels are defined rather 
than response matrices. In Section 3, the spatial and 
angular dependence is discretized to obtain response 
matrix equations that approximate the response 
kernel equations. 

The spatial domain ~ upon which a solution of the 
neutron transport equation is desired is divided into L 
regions, denoted by ~t, such that 

L 
~ = U  ~t" 

I - 1  

The following notation will be used throughout the 
formulation: 

tg~ = boundary of region l 

V~ = phase-space: ~ x 4n 

n, = unit outward normal to t3~'t 

F~ = t g ~ x 4 n  

F~ + = outgoing boundary: all (r, It)eF, for n~. I t > 0  

F~- = incoming boundary: all (r, It)~F~ for n~' I t<0 .  
Consider the first-order neutron transport equation 

for a single region ~,  

1~ • V~b(r, f t ) +  ~,(r)~(r, 11) 

= / dit'~C~(r, I t "  It)~b(r, It') 
34 / t  

+ S(r, f~) for (r, It)e  V~ 

subject to a specified incoming boundary condition 

~b(r. It) = ~bi,.l(r, It) on r [ .  

The source S(r, [1) includes production of neutrons 
due to fission or an external source. Solution of this 
equation will yield the spatial and angular distribution 
of neutrons on V~ and the outgoing angular flux 
~bl+(r, It) on the outgoing boundary Fz +. 

Because the transport equation is linear, a response 
kernel equation may be written to relate tb~÷(r, tl), 
$in3(r, It), and S(r, It) 

~z+(r, It) = f ds' dfl'ln ~ • It'l 
dr 

Rsl(r ', ~'--.r, It)~bi,3(r', It') 

+ .Iv, dr' d~'R~v 

(r', I t ' ~ r ,  It)S(r', It') for (r, It)~Fl + 

(1) 
where 

Rs t (r', It'--* r, It) = response kernel for outgoing 
angular flux due to the transport 
of the neutrons entering region l 

Rvt(r ', I t ' ~ r ,  It) = response kernel for outgoing 
angular flux due to the transport 
of the neutrons produced within 

In the conventional response matrix formulation, this 
expression would take the form 

~bl+(r, ~) = f ds' dit'ln ~ • It'lg'(r', I t ~ r ,  It) 
dr 

~bin,l(r' , It') 
e x l  + ~b~+(r, f~) for (r, It)~F~ + (2) 

where 

R~(r ', I t ' ~ r ,  It) = response kernel for outgoing 
angular flux due to an arbitrary 
incoming flux 

~b~. t = outgoing angular flux due to fixed 
source within ~ r  

The alternative formulation divides the conventio- 
hal response kernel R ~ into two parts, R~ and R~, 
representing surface-to-surface and volume-to-volume 
transport of neutrons, respectively. This partitioning is 
similar to that used in interface current methods and 
collision probability methods. 

The angular flux ~b(r, It) on the region interior can 
also be expressed in terms of the incoming flux and 
source: 

q~(r, It) = ~ ds' dit'ln z • It'lM~ 
dr 

(r', I t ' ~ r ,  It)~bin3(r', ~')  

+ f  dr' , t , di t  My(r ,  It'--*r, It)S(r', f~') 
Jr, 

for (r, It)~V I. (3) 

The kernels M~(r', It '-*r, It) and M~.(r', It '-*r, It) 
represent the surface-to-volume and volume-to- 
volume transport of neutrons, respectively. 

A region coupling equation can be written by 
defining Him(r', It '-*r, It) for (r', It ')eF +, (r, It)eF I- 1, 
m = 1 . . . . .  L, as the probability that a neutron leaving 
region ~m at r' with angle I t '  will enter region ~ at r 
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with angle f~. Because the regions are assumed to be 
contiguous, H~, represents the continuity of neutron 
flow across an interface and serves as a reindexing 
scheme to identitify neighboring nodes: 

¢~in.t( r' ~"~) = E ds' df l 'H, , .  
m = l  ,~ 

(r', fV--,r, f~)4~.+(r', fg) 

for (r, f~)eF/. (4) 

If the response kernels were known, these three 
kernel equations (1), (3) and (4) could be used to find 
the angular flux distribution on ~. Unfortunately, 
they are not known. In the following section, the 
response kernel equations will be recast into response 
matrix equations, which will be solved by the finite 
element method. 

3. RESPONSE MATRIX EQUATIONS 

Approximate forms of the response kernels can be 
found by approximating the spatial and angular 
dependent fluxes and source by expansions in terms of 
polynomials. These expansions in effect discretize the 
phase space of each region. The result of this 
discretization is the set of response matrix equations. 

Let region ~ contain N spatial points on its interior 
and N s spatial points on its boundary 0~ .  Further- 
more, define K points on the angular domain. The 
phase space V~ therefore contains M = NK points and 
the phase space boundary F t contains M s = N s K  
points. Define polynomials q~,(r, fl), i= 1 , . . . ,  M, 
which have value one at point i and zero at the 
remaining interior phase space points, and poly- 
nomials qJsff, 1)), j =  l . . . . .  M s, which have value 
one at point j and zero at the remaining boundary 
phase space points. 

On each regions ~'~ the incoming and outgoing 
fluxes and the volume flux and source can be expanded 
in terms of the appropriate polynomials: 

Ms 
t~in.l(r' ~'~) = E Vs,(r, ~"~)~bisn./j (5a) 

j - - I  

Ms 
~bt+(r, l'/) = ~ Vs,(r, n)q~s+j (5b) 

j = l  

M 

~b(r, a )  = ~ q~i(r, fl)tb, v (5c) 
i = 1  

M 

S(r, n ) =  ~ q~,(r, n ) S [  (5d) 
i = 1  

where s s v v qSt+~, and are the expansion ~ i n . l j '  (~ll all 

coefficients. The superscripts S and V indicate expan- 
sion coefficients in surface and volume polynomials, 
respectively. 

The vector notation 

T(r, f~)=col(hUl(r, f~), q~2(r, f~) . . . .  qJu(r, ~)) 

• s(r, fl)=col(Wsl(r, f~), qJs2(r, fl) . . . . .  q~sMJr, f~)) 

01s .t = col($S ,,,, s s 
(~in,/2~ ' s 

el+ = col(4,L 1, 4~L 2, . . . .  4'f+ M) 

v colt,6v ,6v , ~bv) 

s~ = co l (SL s,~ . . . . .  s,~) 

allows less cumbersome expressions for the expansions 

qSi.a(r, f~) r s =Tsbi . , l  (6a) 
~bt+(r , f~)_  r s - T s  b,  + (6b) 

~b(r, fl) = V r b  v (6c) 

S(r, f~) ='I'TS, ~ (6d) 

where T indicates transpose. 
Substitution of these approximations into response 

kernel equations (1), (3) and (4) and application of the 
Galerkin weighted residual technique yields the re- 
sponse matrix equations. In particular, the outgoing 
angular flux is found by multiplying equation (I) by 
Vs,(r, ~) and integrating over the outgoing surface F~ + 
yielding 

S 1 S 1 v 
bl + = Rs~ sbin,, + Rs~v S~ (Ta) 

Equation (3) is weighted by qJff, fl) and integrated 
over V t to get 

b V : M ~ s b ~ . , t + M ~ v S ,  v (7b) 

The continuity matrix equation is found by integrating 
equation (4) with the weighting function q~sj(r, l'~) over 
the incoming surface F [  : 

L 
I~iS, E H , , .  s = b,.+- (7c) 

m = l  

The response matrices in the three preceding 
equations are easily obtained by formally inverting the 
matrix equations that arise when the Galerkin 
weighted residual method is applied. 

Matrix equations for each region can be combined 
to form a set of equations (and an iterative solution 
scheme) for the entire spatial domain ~ by defining 

S S S S ) 
b i n  : c o l ( b i n , l '  ([)in,2 . . . . .  b i n , L  

b s  = col(bS +, bs2 + . . . .  s , ¢~+)  

b ~ = co~lb~, b~ . . . . .  b D  

SV=col(S~,  S v . . . . .  Sff). 
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The individual regional response matrices are also 
combined to form large block diagonal matrices, 
resulting in the following iteration scheme 

d#stn)_ l~ ,kStn- ~).a_ l~ SVtm- ~) 
+ - -  ~ S ~ S ~ " i n  ~ ~ S ~  V 

~ S ( n ) -  l . l d ~ S ( n )  

~ ) V ( m )  - -  111/i ~KS(n) -1- ~b l  . ~ V ( m  - 1 ) 
. . . .  V ~ S , V f i n  t . . . V ~ V O  (8 )  

where n is the inner iteration index (to converge on the 
interface flux distribution) and, in the case of a critical 
eigenvalue problem, m is the outer iteration index. The 
source term is written 

1 
S v t - I =  k(,,,) Fd~ et ' )  (9) 

where F is the usual fission production term and k is 
the multiplication factor. This method of solution is 
the conventional inner-outer source iteration scheme. 
If the system contains no fissile material, the external 
source is specified and the global distribution of 
neutrons is found by iterating only on the interface 
fluxes. 

for which a solution is desired on region ~ subject to 
an arbitrary neutron source and irradiation on the 
surface F f  

(~(r ,  l '~)  = ~bin,,(r , ~'~) o n  I- ' t - .  (11) 

The solution is found by applying the finite element 
method not to this equation itself but to an equivalent 
weak form which is found by multiplying equation (10) 
by ~b~(r, f~), an element of the function space H~ (or 
'energy' space) defined by 

where 

(q~, ~b)~ = local volume inner product 

- ~ S dr dl~b(r, fl)g,((r, fl). 
,jr i 

The solution itself, ~(r, fl), is assumed to be a member 
of this function space. After integration by parts, the 
desired weak form of the transport equation is 
obtained for region l: 

Find ~(r, fl)eH~, such that for all ~(r, ~)e//~ 

4. RESPONSE MATRICES FROM THE FINITE 
ELEMENT METHOD 

The response matrix equations and a solution 
method were developed in Sections 2 and 3 under the 
assumption that the response kernels themselves were 
known. Generally, this is not, of course, the case. 
Fortunately, the response matrices can be found 
directly from the first-order neutron transport equa- 
tion by application of the finite element method to find 
a solution on each spatial region. In order to obtain a 
suitably accurate solution the phase space domain is 
divided into a fine 'local' mesh. Then, to reduce the 
computational effort required to solve the response 
matrix equations iteratively, this local solution is 
projected onto a coarser 'global' grid resulting in the 
response matrix equations presented in Section 3. 

In Section 4.1, the local response matrices will be 
developed directly from the transport equation. Then, 
the global response matrices will be found via a 
weighted projection technique in Section 4.2. 

4.1. Loca l  response matr ices  

Now return to the first-order form of the neutron 
transport equation 

~ "  VO(r, ~ ) +  E,(r)O(r, ~)  

= f  d~'Es(r, ~ ' -  l~)~b(r, ~ ' )+S(r ,  l'~), (10) 
n 

=(Ks¢,t~b, ~b,),+(S, ~b,), (12) 

where 

(q~, ~b) ±l = local surface inner product 

~- [ ds drain t • ~l~b(r, ~)~(r,  g~) 
Jr  

and the scattering operator is defined 

Kscatq~(r, [~) -= f,,~ df~'Es(r, f~" l~)~b(r, fl'). (13) 

In order to reduce the infinite number of trial 
functions ~bt(r, fl) to a manageable amount, a finite- 
dimensional subspace of H~ is defined. This subspace, 
S~, is constructed by defining N~ interior spatial points 
in the region ~t~ and Kt angular points such that 
M~ = NzK t is the total number of phase space support 
points. The superscript h provides a measure of the 
spacing of these phase space points. The points identify 
the elements of S~ which are piecewise polynomials 
~,u(r, fl), i=  1 , . . . ,  M~, that are unity at phase space 
point i and zero elsewhere. Because the solution 
~b(r, fl) assumed to be a member of S h, it can be 
expanded in terms of the basis functions ~,li(r, ~)  

M t 
qS(r, ~ ) =  ~ ~ku(r , ~)qSu=dffdp~ v (14) 

i = 1  
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where 

~ ,  = c o l ( q r ,  ~ , 2  . . . . .  ¢i~,) 
IV - -  IV IV IV ~I -col(Si1, St2, , • . .  S l ~ ) .  

The superscript l V denotes coefficients of expansion in 
the local volume space. Requiring the weak form to be 
satisfied for all ~ij,  j =  1 . . . . .  Mi,  results in the matrix 
equation 

AI¢II V = Oin,I "F S!  (15)  

where 

A,~, = - ( q ,  ii ,f~ Vq6)i + <~'i i ,  ~ ' l i> +i 

- ( K ~ . , q , . ,  q'ij)I + (X,¢., q'lj)i 

and the contributions of the incoming flux and source 
a r e  

d~n,, = f ds dftln I • nlSi.,t(r, n)~i(r, ft) 
dr  f 

~-- <b in , l ,  ~ / I ) - l  ( 1 6 a )  

SI = ~ S dr d.qS(r, f~)~z(r, f~) 
dr  i 

= (S, ~t)l- (16b) 

Because As is nonsingular, it can be inverted to obtain 
an expression that gives the angular flux on the interior 
of ~l from the contributions of the incoming angular 
flux at the region boundary and those of the arbitrary 
neutron source: 

t ~ t = A  I-  l t~ in , t+  A t -  I s  I. (17) 

The outgoing surface flux Sl+(r, 11) can be expanded 
in terms of surface basis functions ~01sff, f~ ), 
j = 1 . . . . .  MIS, which are defined only on the bound- 
ary F I. The boundary contains Nis spatial points. The 
polynomials have value one at phase space point j, 
zero elsewhere. The total number of local surface 
support points is Mis = NIsK l. The resultant expansion 
is 

Sl+(r, r IS 1"~) = ~ l ~ ,  + (18) 

where 

lilts = COI(~,bISI' ~ lS2 . . . . .  I~l tSM,s) 

d~,l s = col(Sift+l, IS is S 1 + 2 '  " ' " "  SI+MIs)" 

The outgoing flux is simply the angular flux on the 
outgoing boundary F~+: 

S,+(r, f t)=S(r,  fl) (r, ft)~F 7. 

Substitute into this equation the expansion for S(r, f~), 
S(r, n)  = O/SdOll v (19) 

and that of Sl+(r, fl) (equation (18)) and apply the 
Galerkin weighted residual method to obtain 

IS IV 
T~s,IsqI + = TIs,IOn (20) 

where 
T 

Tts,ts = < OllS,O/zs> +l (21 a) 

T, .  r IS l = <OlS, ~t > + I" (21 b) 

Equation (20) expresses the relationship between the 
two expressions for the angular flux on the outgoing 
boundary: expanded in terms of the interior basis 
functions and expanded in terms of the boundary basis 
functions. Formally solve equation (20) for dpff, 

IS T-1 T a~w (22) ~ l+ ~ ~ IS,IS ~lS,f"gl 

and substitute into equation (17) to find the outgoing 
flux in terms of the incoming angular flux and source, 

O[S+ = Rls,l~Oin. ! + Rts, tS l (23) 

where 

Rts,  ̀  = i t s )  s T~s,IA I- 1. (24) 

The matrix Rls,i is, in a sense, a local response matrix. 
It will become part of a true response matrix once the 
contribution Oi.,l is related to the expansion coefficient 

In order to find the flux distribution over the entire 
space domain ~, the individual regions must be 
coupled via a coupling equation. Assuming conti- 
guous nodes, continuity of neutron flux across region 
interfaces mandates for adjacent regions ~l and ~,, 

Sin,i(r, £"~)=~m+(r, ['~) for (r, fl)eF~ (25) 

where F~ is that part of F t- that coincides with part of 
F +. Substitute the expansions for S=+(r, fl) and 
Sin,l(r ,  ~'-~ ), 

S.+(r, r ,.s ~ )  = ~mS~m + (26a) 

Sin.t(r, r IS 1-~) = Otsd~in,t (26b) 

and apply the weighted residual method to obtain 

L 
Tts,lsd#Is,, = X HIs,msd~,.ms+ (27) 

m = l  

where lt~s,,.s is a matrix similar to T~s,I s in that it 
consists of terms of the form <qrs,$.,s> +l. The terms, 
however, are arranged in such a way as to indicate 
which regions are adjacent and which direction 
neutrons must flow in order to leave one region and 
enter its neighbour. The more familiar continuity 
matrix equation results by multiplying equation (27) 
by T-  1 and redefining//~s ,.s: IS,IS 

L 
IS ¢in. l  = Y~ . .s  His,.,sd#., + . (28) 

m = l  
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All that remains to generate a set of local response 
matrix equations is the reconciliation of d~.t and ~'~.v 

We rewrite equation (16a) to serve as a reminder 
that the contribution of the incoming surface flux to 
the finite element equation is a simple inner product: 

Illin,t = <q~in.t( r, [~), OA r, f ~ ) ) - v  

Substitute the polynomial expansion for the incoming 
surface flux, 

~bin,/(r ' T ts l-l) = 0t~lh..t (29) 

into equation (16a) to obtain the relationship 

¢in,/-~- rl,lst~liSn,l (30) 

where 

T~,,s = (Or, o r >  -v (31) 

Substitute equation (29) into equation (23) and define 

Rts,ts = Rts,~ T~,ts 

- T -  t Tt s tA t- t Z (32) -- IS,IS , l,lS 

and 

Mt.t s =A t- 1Tl.i s (33) 

to obtain the system of local response matrix equa- 
tions: 

IS _ R~ S IS 1 ~l + -- ,lSl~in.I + RIs,ISI 

dptis t = ~ Hzs,,.sdp: s ~ (34) 

*ttv= ml,tS(llliSn,i.-~- a l -  l Sl. J 

Equations (34) represent the finite element solu- 
tion to the transport equation on the regions ~t, 
1= 1 . . . .  , L. They could be used in an iteration 
scheme such as equation (8) to find the particle 
distribution over the entire phase space V. This might 
be computationally expensive, however, due to the fine 
local mesh. By projecting the solution onto a coarser 
global mesh, computational requirements can be 
reduced. In the following section, global response 
matrices are constructed from the local response 
matrices developed here. 

4.2. Global response matrices 

The global response matrices are found from the 
local response matrices by reconciling the local 
polynomial expansion approximations presented in 
the previous section with the global polynomial 
expansions of Section 3, equation (6). The already 
well-used Galerkin weighted residual technique serves 
as the tool of reconciliation. 

Equations (6b) and (6c)--the global polynomial 
expansions for the outgoing flux ~bt+(r, fl) and the 
region interior flux ~b(r, f~)--are rewritten here: 

~t  +(r, n ) =  v ~ 0 f +  

¢(r, n )  = v r *  v. 

The global approximations cannot simply be equated 
to the local approximations given in equation (15) and 
(14). However, they can be made equal in a weighted 
residual sense by requiring the residuals to be ortho- 
gonal to ~s  and T, respectively: 

Tss~S+ = Ts.tsdptt s (35a) 
V IV rvvd  h - rv. f lh (35b) 

where 

Tss = (Uls, ' e r )  +t 

T 
Tsas = ( T s ,  dlts) +l 

Ttvv =(T, Tr), 

Tv., = ('r, 0[),. 

Substitute equations (35) into the response matrix 
equations given in equations (34) to obtain 

Os+ = r ~  1 rs.,s(R,s,,¢in., + gts.,S,) 

d# v = Tvv  t Tv.t(A t- ld~in,, + A t- tSt). (36) 

The contributions O~,.t, once again, and S t can be 
related to the global expansion coefficients by recalling 
equations (16) 

{~in,/~" (~bin.t(r, f~), 0t( r, f l ) ) - t  

S t = (S(r, f~), 0t(r, f~))v 

Substitute equations (6a) and (6b), 

Sa) - ~I' s ¢ i . , t  4'i.,,(r, _ • s 

S(r, ~ )  = 'I' r S v  

into equation (16) and evaluate the surface and volume 
inner products to obtain 

~in,t = Tl,Sl~Sn,t (37a) 

S t = Tt.vSt v (37b) 

where 

and 

r~s = ( ' l ' s ,  0 [ > - ,  

r,.v = ( v ,  0/) , .  

Substitute equations (37) into equation (36) and define 

R z s,-  s = Tss t Ts,lsRls a TI,s (38a) 

R ~ .  v = r i s  1Ts.,sR,s.,TLv (38b) 
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M~ us = r f d  rv,tA,- 1 Tz.s (38c) 

1 - -  - 1  - 1  M v ~  v - T(, v Tv.tA t T~, v (38d) 

to obtain the long sought after global response matrix 
equations: 

S 1 S 1 V 
dPt ÷ = Rs , - s  ¢bi~,t + R s ~  v St  

V t S t V 
d~t = M v ~ s  ~i.,l + M v ~  v St  • 

Thus the finite element method has been used in 
conjunction with a local-global projection technique 
to generate the response matrix equations which are 
identical to the formal equations derived earlier as 
equations (7). 

5. NUMERICAL RESULTS 

The finite element response matrix method for 
solution of the transport equation has been formulated 
for both one- and two-dimensional applications. 
In this paper, however, only the one-dimensional, 
application will be discussed because additional work 
is necessary to further improve upon the two-dimen- 
sional results. 

In one dimension the spatial domain is divided into 
regions whose boundaries usually fall on material 
interfaces. On each region a local mesh and a global 
mesh of points are specified which define the 
Lagrangian polynomials that are used in the poly- 
nomial expansions described in Section 4. Similarly, 
two sets of mesh points are specified on the angular 
domain, denoted by the cosine p. Lagrangian poly- 
nomials are again used as the basis functions. The 
multi-dimensional (x, #) polynomials are found by 
taking the tensor product of the space and angle 
polynomials. Because no spatial variation can exist 
along the boundary of one-dimensional regions, the 
expansions of incoming and outgoing surface fluxes 
are in terms of Lagrangian polynomials defined in the 
angular domain, not both the angular and spatial 
domain. 

It has been found in other applications of the finite 
element method to the first-order form of the transport 
equation 7 that significantly improved results are 
obtained if discontinuities in the neutron angular flux 
are allowed at points in the angular domain that 
distinguish outgoing neutrons from incoming neu- 
trons. In one-dimensional plane geometry this point 
corresponds to/~ = 0. This discontinuity is handled by 
supplying two angular support points at # = 0 instead 
of only one. 

Once the multi-dimensional local and global, 
volume and boundary polynomials have been defined, 
the finite element matrix A t is found for each unique 

region by evaluating the various integrals included in 
the definitions of its matrix elements. Because the 
phase space polynomials are tensor products of 
individual one-dimensional polynomials, the multi- 
dimensional integrals are also tensor products of one- 
dimensional integrals. The matrix is inverted by means 
of LU-decomposition. The size of A t is small because 
only a small fraction of the entire spatial domain is 
included in A t thereby allowing the inversion to be 
reasonably inexpensive. 

The various projection matrices, denoted by T 
earlier, are also the tensor products of one-dimen- 
sional matrices found by evaluating inner products. 
Furthermore, the inverse of the multi-dimensional 
matrices are simply the tensor products of the inverses 
of the one-dimensional matrices. This fact further 
reduces the cost of generating the response matrices. 

The resultant surface-to-surface response matrix, 
Rs ~s, has a form which lends itself to iterative solution 
by the Gauss-Seidel method and, by extension, the 
successive over-relaxation (SOR) method. The con- 
verged fluxes are found using SOR and alternating the 
sweep between left-to-right and right-to-left. No 
acceleration schemes have been attempted in the 
outer, source iterations that are necessary for the 
solution of eigenvalue problems. 

Three different one-dimensional test problems were 
analyzed as a means of evaluating the finite element 
response matrix method: two of these problems--  
Reed's problem and Alcouffe's problem--contain 
strong heterogeneities; the third problem is actually a 
series of homogeneous eigenvalue problems. 

5.t. Reed's problem 

Reed's problem, x5 as depicted in Fig. 1, was 
originally devised to test differencing schemes for 
discrete ordinates codes. It is a problem of four 
different material regions with a non-uniform, iso- 
tropic source distribution, a reflecting boundary 
condition on the left, and a vacuum boundary 
condition on the right. 

Figure 2 is a plot of the scalar flux distribution in 
Reed's problem obtained with the Monte Carlo code 
TART, 13 which shall be considered a benchmark 
solution. The obvious features of this profile include a 
peak at the source zone of the scattering material, a 
plateau in the void due to neutrons travelling from the 
scatterer on the right to the gray and black regions on 
the left, a depression to nearly zero in the sourceless 
gray region as the neutrons traveling left are absorbed, 
and another plateau of value 1.0 in the intensely 
absorbing region with the large source. The flux 
distribution in both the void and gray region is due to 
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Fig. 2. Reed's problem: Monte Carlo benchmark. 

neutrons from the scattering source. The flux, there- 
fore, is extremely anisotropic throughout the problem, 
except in the black absorbing region, where the source 
itself forces isotropy, and the scattering region. 

Reed's problem has been analyzed using FTRAN, 7 
a conventional one-dimensional finite element code, 
and using the response matrix method with a variety 
of local and global spatial mesh spacings. In all 
cases both the local and global angular domains 

contain six support points located at 
p = - l ,  -0 .5 ,  - 0 ,  +0,  +0.5, + l. Thus there was no 
attempt to utilize a local-global projection in angle for 
this test problem. 

Figure 3 depicts the scalar flux found by three 
different applications of the response matrix method. 
The profile labelled 5/5/cm indicates a calculation in 
which both the local and global mesh contains five 
mesh points per cm, corresponding to a uniform mesh 



Reed's P r o b l e m - - S c o l o r  Flux 

"1 5 / 5 /  cm 
x 5 / 3 /  cm 

o 

d 

The FEM response matrix method 245 

! ! 

,ioo 2'.0o 3'.oo ,.oo i oo 6.00 ¢.oo 
×(cm)  

Fig. 3. Reed's problem: response matrix (mesh size=0.5 and 0.25 cm). 

o 

o 

IO.00 8.00 

spacing of 0.25 cm. Each response matr ix  region spans  
1 cm. Al though not  plot ted in this figure, the F T R A N  
results using the same 0.25 cm mesh coincide nearly 
exactly with the 5/5 response matr ix  values. Both  agree 
quite well with the M o n t e  Car lo  benchmark  as can be 
seen from the errors  listed in Table  1. The errors listed 
in Table  1 and  succeeding tables of this type are defined 

f :~ [~brer(x ) -  qS(x)] dx 

relative error  = - " 

and  

Ei? ] [~,e: ( x ) -  ~(x)] 2 dx ~ 
RMS error  = " 

[q~r,f(x)] 2 dx  ~ 
a 

where qS,cf(x ) is the reference scalar flux {TART), #~(x) is 
the scalar flux in question,  and  x a and  x b are region 
boundaries .  The flux is assumed to vary linearly 
between the points  plot ted in Fig. 2. The regions of 
Table 1 are the mater ial  regions as numbered  in Fig. 1. 

Also plot ted in Fig. 3 are the profiles of two cases in 

Table 1. Errors in scalar flux for reed's problem (errors with respect to Monte Carlo benchmark; 
angular support points: 6; response matrix convergence criteria: 10-5) 

Error 

Region 

Case Total 1 2 3 4 5 

Relative error (%) 
FTRAN a 0.069 -0.002 -3.312 0.039 0.722 -0.216 
5/5 b 0.069 -0.002 -3.311 0.039 0.723 -0.216 
5/3 0.055 -0.024 -6.142 0.038 0.953 -0.294 
3/3 0.274 -0.025 -5.524 0.621 1.061 -0.243 

R M S  error (%) 
FTRAN 1.169 0.434 8.522 0.039 1.556 0.789 
5/5 1.169 0.434 8.522 0.035 1.556 0.788 
5/3 2.860 0.483 29.17 0.038 3.128 1.424 
3/3 3.317 0.468 26.21 0.621 4.414 1.672 

a FTRAN mesh structure: five support points/cm. 
b 5/3 indicates Response Matrix mesh structure of five local support 

support points/cm. 
points/cm and three global 
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which the global mesh is 0.5 cm (cases 5/3 and 3/3). 
The local mesh size, however, is 0.25 cm for 5/3 and 0.5 
for 3/3, i.e. for case 5/3 fine mesh response matrices are 
projected onto a coarser global mesh. The RMS errors 
presented in Table 1 demonstrate that although both 
the coarse mesh solutions provide less agreement with 
the benchmark than the fine mesh solution (especially 
in the gray region, 2, although the percent errors here 
are misleading because the flux itself is nearly zero), the 
5/3 solution is in better agreement than the 3/3 
solution in the void and region 4, the source-scattering 
region. Projecting the response matrices from a fine 
mesh, therefore, improves the results of a coarse mesh 
calculation. 

To further demonstrate the local-global projection 
method, a series of coarse mesh calculations with a 
spacing of 1.0 cm were performed, as listed in Table 2. 
In all of the response matrix calculations, a global 
mesh of 2 support points per cm is used with each 
response matrix region spanning 1 cm. The local mesh, 
however, varies from a fine mesh of 5/cm to coarser 
meshes of 3/cm and 2/cm. For the 2/2 case, where the 
local and global meshes are the same, the results are 
nearly identical to those of the FTRAN calculation 
performed with the same 1 cm mesh spacing. With 
decreased local mesh size, however, better agreement 
is seen with the benchmark, even though the same 
coarse global mesh is used throughout. The overall 
improvement is not dramatic but in several 
regions--the void, in particular, and region 4--i t  is 
significant. 

Additional calculations 14 have shown that results 

obtained by the response matrix method are indepen- 
dent of the size of the response matrix region if the 
mesh spacing is held constant. Furthermore, increased 
accuracy may be obtained by using polynomials of 
higher order. In all the cases presented above linear 
polynomials were used. 

Computational times required by the Amdahl 5860 
computer at The University of Michigan to solve 
Reed's problem are presented in Table 3. The compu- 
tational costs can be divided into two components: the 
cost of generating one or more response matrix sets 
and the cost of the iteration solution procedure itself. 

The response matrix generation cost is dependent 
on the local and global mesh size desired and whether 
the two mesh structures are identical. The costs, of 
course, increase with the number of support points. If, 
however, the global mesh is identical to the local mesh, 
the costs are somewhat reduced because some calcula- 
tions may be bypassed. 

The cost of finding the global solution is dependent 
on a number of factors, including the number of 
iterations required to reach convergence and the cost 
per iteration. The iteration count depends on the 
number of regions in the problem, the physical 
characteristics of the problem, and the iteration 
scheme chosen. 

For most of the solutions to Reed's problem, the 
iteration costs are much less than the cost of generating 
response matrices, as seen from Table 3. The only 
exception is the 32 region problem. For that case the 
response matrix generation costs are less because the 
regions contain few support points. The iteration costs 

Table 2. Errors in scalar flux for coarse mesh Reed's problem: constant global mesh (errors with 
respect to Monte Carlo benchmark; angular support points: 6; response matrix convergence 

criteria: 10- ~) 

Error 

Region 

Case Total 1 2 3 4 5 

Relative error (%) 
FTRAN a -2.190 -0.046 8.132 -2.104 -5.918 --1.700 
2/2 b -2.104 -0.055 8.133 -2.126 -5.958 - 1.176 
3/2 0.252 -0.004 --0.249 -0.621 0.334 -0.011 
5/2 0.071 -0.004 --0.064 -0.038 0.342 -0.101 

R M S  error (%) 
FTRAN 7.392 0.604 60.39 2.104 9.579 3.783 
2/2 7.349 0. 569 60. 39 2.126 9.603 3.030 
3/2 6.322 0.557 60.04 0.621 7.565 2.685 
5/2 6.313 0.556 60.03 0.038 7.565 2.691 

a FTRAN mesh structure: two support points/cm. 
b 3/2 indicates Response Matrix mesh structure of three local support points/cm and two global 

support points/cm. 
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Table 3. Computational costs to solve Reed's problem (AMDAHL 5860) 
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Mesh structure 

Local Global 

Total Iteration 
response 

Number matrix Total 
of generation Total CPU CPU 

regions time (sec) inners time (sec) time (sec) 

33 
' 5  5 

5 3 
3 3 

9,5 9,5 
2 2 

9 
"'2 2 

3 2 
5 2 

. . . . . . . . . . .  0.065 a 
0.196 ' i3  0.016 0.212 

8 0.220 13 0.011 0.231 
8 0.128 13 0.012 0.140 

5 0.443 14 0.019 0.462 
32 0.108 59 0.115 0.223 

. . . . . . . . . . . .  0.017 a 
0.108 i ;  0.009 0.117 

8 0.128 13 0.012 0.140 
8 0.200 13 0.011 0.211 

aFTRAN. 

are high because the many regions cause an increase in 
both the effort required for each iteration and the 
iteration count. 

The F T R A N  times quoted in Table 3 indicate that 
the response matrix method is not competitive with 
F T R A N  for this type of problem. This is a conse- 
quence of the explicit inversion necessary to generate 
response matrices. F T R A N  solves the finite element 
matrix directly (but does not invert it) while taking 
advantage of its band structure. This results in a linear 

dependence of costs to the number of spatial mesh 
points. 

5.2. Alcouffe's problem 
A second test problem, Alcouffe's problem,1 pro- 

vides a second confirmation of the effectiveness of the 
response matrix method in solving coarse mesh 
problems with strong heterogeneities. This problem, 
shown in Fig. 4, has been analyzed by two different 
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Fig. 4. Alcou~'sproblem. 
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local/global configurations, 5:5 and 5: 2, where 5:2 
indicates five local support points/region and two 
global points/region. In both cases, the regions are 
3 cm in width and an angular mesh with six support 
points is used. Figure 5 is a plot of the calculated scalar 
flux distributions for these two cases. It is clear that the 
two cases are in very good agreement for the coarse 
mesh flux. 

5.3. Eigenvalue problem 
The results of analysis of a series of homogeneous 

eigenvalue problems are presented in Table 4. For  all 
cases the local and global mesh structures are identical 
and cross sections ofE t = 1.0 cm-  1, E~ = 0.5 cm-  1 and 
vZj.=0.5 cm-~ were used. Thus, one mean free path 
(mfp) is equivalent to 1 cm. Eigenvalues are presented 
in two forms: the conventional multiplication con- 
stant, k, and the number of secondary neutrons 
required to obtain criticality, c. The response matrix 
method calculates k directly from the ratio of the 
integrated fission sources of consecutive outer iter- 
ations. The value c can be calculated from k by 

and is presented for comparative purposes. 
It is apparent that the response matrix method 

calculates k very accurately. For the smallest problem 
(half-width = 0.5 mfp) the poorest results are obtained 
because the angular resolution is not fine enough.Note 
that the FTRAN case with eight angular support 

points agrees well with the benchmark. For the largest 
problems, however, the small angular mesh is not as 
critical, as expected. Comparable, if not better, values 
are found using the response matrix method, particu- 
larly when a finer spatial mesh is used. Such a fine mesh 
is feasible because many identical regions can be used 
in the global solution procedure but only one set of 
response matrices needs to be calculated. 

The iteration counts and CPU times quoted in 
Table 4 demonstrate that the inner iteration count 
increases with the number of regions. This is consistent 
with the previous results with the diffusion equation, t 
where it was shown that the spectral radius of the 
iteration matrix was equal to the largest transmission 
probability for any region in the system. As the 
number of regions increases, the transmission proba- 
bility approaches unity, hence the spectral radius 
approaches unity and the iteration count increases. In 
addition, as the half-width increases towards a critical 
configuration, more outer iterations are required. For  
the eigenvalue problems, iteration is required to find 
the solution with FTRAN as well. In FTRAN the finite 
element matrix equation must be solved at each 
iteration, although only back substitutions are 
required for each iteration because the A matrix is LU- 
decomposed in advance. The response matrix iter- 
ation, in contrast, consists of simple multiplication of 
flux vectors by matrices. Thus the cost of response 
matrix generation overhead is overcome by the 
cheaper iteration procedure which enables the re- 
sponse matrix method to be competitive with FTRAN 
for eigenvalue problems. 
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Fig. 5. Alcouffe's problem: scalar flux. 
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6. SUMMARY AND CONCLUSIONS 

In this paper, a response matrix method has been 
developed for solution of the neutron transport 
equation. The method uses the phase space finite 
element method as applied to the first-order form of 
the transport equation as its theoretical foundation. 
The response matrices have been formulated in such a 
way as to remove their dependence on the multiplica- 
tion constant in eigenvalue problems. The response 
matrices are calculated only once, at the beginning of 
the problem, for each unique spatial region. 

An additional feature of the present method is the 
two level structure of the spatial and angular discreti- 
zation. The lower level (local level) is a fine mesh, 
chosen to resolve the internal heterogeneities satisfac- 
torily. The upper level (global level) is a coarser mesh 
which results in a reduction in computat ional  expense, 
while retaining information obtained with the local 
calculation. 

The method as applied to one-dimensional geome- 
tries has been tested through several benchmark 
problems. For  a given spatial mesh size, the response 
matrix method gave results nearly identical to those of 
the conventional finite element method. Superior 
coarse mesh results were obtained, however, using the 
local-to-global projection technique. The response 
matrix method was found to be more efficient than the 
conventional finite element method in one-dimen- 
sional slab geometry for only the criticality problem. 

Although no two-dimensional results were pre- 
sented in this paper, preliminary results 44 indicate that 
the present method is nearly an order of magnitude 
more efficient than the conventional finite element 
method in two dimensions. Additional work is 
required, however, to substantiate these results for 
different two-dimensional configurations, including 
the ray effect problem. This will be the subject of a 
future paper. 
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